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Abstract

Dacey graphs include looped structures of maximal cliques when two maximal cliques
cover a third. Dacey established a class of simple, finite graphs, called Dacey graphs, which
corresponds to the set of finite orthomodular posets, posets where the join of orthogonal
elements exists and satisfy constructive properties. We begin an enumeration of Dacey graphs
by presenting methods of partitioning Dacey graphs into equivalence classes based on the
structures of maximal clique intersections and characterizing Dacey graphs which are edge-
covered by m maximal cliques. This leads to a complete classification of Dacey graphs for
m ≤ 4. We then explore the implications of applying Dacey as a local condition to show
each Dacey graph is locally-Dacey and investigate some bounds on such a local condition.

Summary

Orthomodular posets map out the logical structure of experiments which potentially hold
implications in quantum mechanics. Dacey formulated the class of graphs, Dacey graphs,
which represent orthomodular posets. Using this, we present ways to simplify graphs without
altering their underlying structure and classify graphs whose edges can be covered by m fully
connected parts of the graph. We find a complete classification of Dacey graphs for m up to
four. We also show how the Dacey condition, when applied to the part of a graph close to
each vertex, can affect the graph as a whole.



1 Introduction

We investigate the structure of graphs which correspond to orthomodular posets and

describe methods by which such graphs can be generated. In John von Neumann’s [1] math-

ematical formulation of quantum mechanics, a projector on a Hilbert space H acts on a state

and a collection of these objects represents the effect and outcome of quantum physical mea-

surements. The set of projectors P(H) on a Hilbert space are in one-to-one correspondence

with the set of all closed subspaces of H [2]. The set of projectors P(H) and the rela-

tion of set-theoretic inclusion form an orthomodular partially ordered set (poset). A poset

P = (P,≤) consists of a set of elements P and a relation denoted by ≤ where for two elements

x, y ∈ P , we have at most one of the following: x ≤ y, y ≤ x, or x and y are incomparable.

Two elements are orthogonal in a complemented poset if the complement of one element is

bounded below by the other.

Orthomodular structures are prominent in understanding quantum logic. In an orthomod-

ular poset, the supremum of orthogonal subsets always exists and for two related elements

a ≤ b, element a can always be paired up with an orthogonal element so that the supremum

of the pair is b. Orthomodular posets generally serve as structures to describe experimental

setups on physical systems. Dacey [3] showed there exists a class of simple graphs which

corresponds to orthomodular posets, where vertices in each graph correspond to the atoms

of an orthomodular poset while edges correspond to pairs of orthogonal atoms. The condi-

tion necessary for a graph to correspond to an orthomodular poset pertains to the maximal

cliques of the graphs, which represent maximal Boolean algebras in the poset. In this way,

we take a graph-theoretic approach to begin enumerating algebraic orthomodular posets.

We begin by introducing modifications on graphs which preserve the relevant conditions.

We use this to establish a classification of graphs which can be edge-covered by m cliques and

enumerate the graphs which are Dacey for m up to four. Along the way, there are reasonable
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simplifications and bounds on the number of cliques. These results motivate simple structural

theorems as well.

2 Orthomodular Posets to Graphs

Notation

We consider only simple, undirected, and finite graphs. We denote the set of vertices of G

by V (G). At times, the vertex set V (G) may be used to denote the graph induced in G by the

vertices in V (G) as specified in context. Given two vertices a, b ∈ V (G) we say (a, b) ∈ E(G)

if they are adjacent in G and (a, b) 6∈ E(G) otherwise. Given a subset of vertices A ⊆ V (G),

we denote the set of neighbors of A by N(A) where a vertex v ∈ V (G) belongs to N(A) if

and only if we have (v, a) ∈ E(G) for all a ∈ A. A maximal clique of G is a subset M ⊆ G of

vertices which induces a complete subgraph in G where there does not exist a vertex v ∈ G

such that M ⊆ N(v). We denote the set of all maximal cliques and of all cliques in G as

M(G) and K(G), respectively.

Previous Work

Dacey [3] shows the precise correlation between graphs and orthomodular posets, the

result of Theorem 2.1.

Definition 2.1. Given a graph G, let S ⊆ V (G). The set of vertices S is closed if and only

if N(N(S)) = S.

The poset corresponding to G consists of elements which are the closed sets S. It is

possible to define equivalence classes on K(G), the set of all cliques in G, such that each

closed set of vertices S may be formed by the unions of equivalence classes on K(G). This
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allows us to define a poset on the set of closed S and the relation of set theoretic inclusion

⊆, which leads to the key result of Dacey. We use the following definition of Dacey graphs:

Definition 2.2 (Sumner [4]). A graph G is a Dacey graph if and only if for each maximal

clique M ∈M(G) and any pair of distinct vertices u, v ∈ V (G) we have

M ⊆ N(u) ∪N(v)⇒ (u, v) ∈ E(G).

In this way, Dacey translates orthomodularity to a single condition on graphs. The cor-

relation between graphs and orthomodular posets is as follows:

Theorem 2.1 (Dacey [3]). Given graph G, let P be the pair

({S |S ∈ V (G) andS is closed},⊆).

The pair P is an orthomodular poset if and only if G is Dacey.

The Dacey condition specifies every graph which corresponds to an orthomodular poset,

but multiple Dacey graphs may correspond to the same orthomodular poset. To define a

set of graphs where this mapping is bijective, we introduce the clique-distant condition. A

natural choice for a set of graphs which form a bijection with finite orthomodular posets

satisfies two conditions, as formulated by Definitions 2.2 and 2.3.

Definition 2.3. A graph G is clique-distant if and only if for any pair of distinct maximal

cliques M1,M2 ∈M(G), there exist four vertices u1, v1, u2, v2 ∈ V (G) such that

u1, v1 ∈M1 and u1, v1 6∈M2,

u2, v2 ∈M2 and u2, v2 6∈M1.

There are no well-known, effective methods to enumerate all finite clique-distant Dacey

graphs. We take steps in beginning this process to generate interesting orthomodular posets.

We begin in sections 3 and 4 by establishing the structure behind graphs which are edge-

coverable by m maximal cliques and confine the area of search for Dacey graphs to induced
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subgraphs of a specified finite graph based on m. This includes constructing the ”inflation”

process on graphs, under which the Dacey condition remains invariant. In section 5, we

provide some bounds between m and the number of maximal cliques in total in a graph.

Section 6 combines the methods of previous sections to provide a classification of all graphs

for m at most four, while section 7 explores the Dacey condition as a local condition.

3 Graphs by Edge-Covering Maximal Cliques

We begin with a formal definition for graphs edge-coverable by m maximal cliques.

Definition 3.1. A graph G is m-clique coverable if there exists a set of maximal cliques

S(G) ⊆M(G), where |S(G)| = m, so that for each K ∈ E(G) there exists some M ∈ S(G)

such that M ⊇ K.

We say G satisfies the (m,n) condition when G is m-clique coverable and |M(G)| = n.

For an m-clique coverable graph G, each vertex v ∈ G belongs to some set of maximal

cliques inM(G). To consider possible structures of an (m,n) graph G, we construct graphs

based on the power set of some set, where again, each element corresponds to a maximal

clique in the subset of m cliques in M(G) covering all edges in G.

Definition 3.2. Let N ⊂ N be a finite set. We say a graph G is an power set intersection

graph if there exists a bijection f : V (G)→ 2N where (u, v) ∈ E(G) ⇐⇒ f(u) ∩ f(v) 6= ∅.

If G is an intersection graph with |N | = m, we say G ∼= PSm.

4 Properties of Inflation and Deflation

Let us denote the closed neighbor set of a vertex v ∈ V (G) to be N [v] = N(v) t v. We

define a binary relation ∼⊆ V (G) × V (G) where v ∼ v′ if and only if N [v] = N [v′]. This
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is an equivalence relation on V (G). The set V (G)/ ∼= {{v ∈ V (G)|v ∼ v0}|v0 ∈ V (G)} of

equivalence classes over ∼ is the collection of all maximal subsets of V (G) containing vertices

sharing the same closed neighbor set in G. Note V (G)/ ∼⊆ K(G).

Definition 4.1. Given graph G with some ordinal on V (G) = {v1, v2, . . . vn} and a sequence

of positive integers S = (s1, s2, . . . sn), we say the inflation GS of G with respect to S is the

graph obtained from replacing each vertex vi ∈ V (G) with a clique Ki ∈ K(GS) such that:

• |Ki| = si, where the size of the enumerated cliques correspond to terms in S

• (u, v) ∈ E(GS) ⇐⇒ (vi, vj) ∈ E(G) for each pair (u, v) ∈ V (GS) × V (GS), with

u ∈ Ki, v ∈ Kj, and i 6= j.

the above implies Ki ∈ V (GS)/ ∼.

Naturally, we say a graph G is deflated if there does not exist a pair (u, v) ∈ V (G)×V (G)

and u ∼ v. We see a deflated graph is not a non-trivial inflation of any other graph. Moreover,

it minimally represents graphs with some particular structure of maximal clique intersection.

Analogously, if some graph G is an inflation of a graph H, then we say H is a deflation of

G. From this arises a natural partitioning of m-clique coverable graphs.

Theorem 4.1. Every m-clique coverable graph G is isomorphic to some inflation of an

induced subgraph of PSm.

Proof. For an m-clique coverable graph G, let us enumerate the maximal cliques inM(G) =

{Mi | i ∈ N} and define a map r : V (G) → 2N such that r(v) = {i ∈ N |Mi 3 v}. We

see (u, v) ∈ E(G) ⇐⇒ r(u) ∩ r(v) 6= ∅, meaning the adjacency of vertices are interpreted

through the intersections of their image sets.

Suppose we enumerate the subsets of maximal cliques contained in 2M(G) so that 2M(G) =

{Ai | i ∈ {1, 2, · · · , 2m− 1}}. Say r(v) = Ai for exactly si vertices v ∈ V (G). We define a set
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V of vertices to remove from PSm as follows:

V = {v ∈ PSm| ∃ u ∈ G where f(v) = r(u) = Ai and si = 0}.

We consider the induced subgraph H = PSm\V . Then, the inflation HS of H where S =

(si| si 6= 0) is isomorphic to G. Moreover, there exists a deflation G′ of any m-clique coverable

graph G to an induced subgraph G′ ⊆ PSm.

The mechanism behind this result is the correlation between the cliques of a graph and

the cliques of some inflation of the graph. Deflated graphs serve as a minimal representation

of some structure with regard to maximal cliques and the following result helps show this:

Proposition 4.2. Two distinct vertices u, v ∈ V (G) are contained in precisely the same set

of maximal cliques in G if and only if u ∼ v.

Proof. See Appendix A.

It is necessary to consider how a deflation or inflation GS of a graph G affects the

properties described by Definitions 2.2 and 2.3.

Proposition 4.3. For every graph G, there exists an inflation GS of G such that GS is

clique-distant.

Proof. Take an inflation GS of G with respect to a sequence S where for each si ∈ S we

have si = 2. This means by Proposition 4.2, to every unique set of maximal cliques with a

non-empty arbitrary intersection there corresponds at least two vertices contained in exactly

those maximal cliques (and no others). So, given two distinct maximal cliques in G, where

each must contain some vertex not contained by the other, there exist at least two vertices

in GS contained in one maximal clique but not the other, with respect to both cliques. This

guarantees the graph G is clique-distant.

Moreover, there exists a graph G0 of minimal size for any G which is clique-distant. We

consider the deflation GD of G which is deflated. Note that any two distinct maximal cliques
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differ by either one or two vertices. We then inflate GD with respect to S such that we define

the terms so that si = 2 if vi belongs in some maximal clique M1 where M1\vi ⊆ M2, for

some maximal clique M2 6= M1, and si = 1 otherwise. It follows that given any Dacey graph,

there exists some minimal inflation so that the resulting graph is clique-distant. With this

proposition, we consider only the Dacey condition in constructing deflated graphs, because

every graph may always be inflated to meet the clique-distant condition.

Proposition 4.4. For every graph G and deflation GD, the graph GD is Dacey if and only

if G is Dacey.

Proof. We know G is Dacey if and only if there does not exist a pair of vertices x, y ∈ V (G)

such that (x, y) 6∈ E(G) and M ⊆ N(x) ∪N(y) for some maximal clique M ∈M(G).

Consider some deflation D0(G) obtained by contracting some edge (u, v) ∈ E(G) to a vertex

v0, where u ∼ v. By Proposition 4.2, there exists a natural bijection between the set of

maximal cliques in D0(G) containing v0 and the corresponding set of maximal cliques in

G for either u or v. For each pair of distinct vertices x, y ∈ D0(G) both different from

v0 so that x, y ∈ V (G), we see either there exists no maximal clique M ∈ M(G) such

that M ⊆ N(x) ∪ N(y) or there does. If such a maximal clique M in D0(G) exists for a

pair of vertices x, y ∈ D0(G) different from v0 then M ⊆ N(x) ∪ N(y) in D0(G) only if

M ⊆ N(x) ∪ N(y) in G since u and v share the same neighbors. If x = u and y were such

that M ⊆ N(x)∪N(y) in G then M ⊆ N(x)∪N(y) in D0(G) as well. So whether the Dacey

condition is satisfied by G is always preserved by single-vertex deflations D0(G) of G. All

deflations are some sequence of single-vertex deflations, so this holds for all deflations GD.

Similarly, the other direction follows since for all inflations GS of G, there exists a deflation

of GS which results in G. So, the Dacey condition is preserved over inflations as well.
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5 Bounds on Number of Maximal Cliques

By Theorem 4.1, every (m,n) graph is some inflation of some induced subgraph of PSm,

a defined, finite graph. This suggests there exist limitations to n, the number of maximal

cliques in total contained in the graph. We explore these bounds on general graphs and on

Dacey graphs.

Lemma 5.1. Given G′ ⊆ G is an induced subgraph of G, the inequality |M(G′)| ≤ |M(G)|

holds.

Proof. Let us define a map f : M(G′) → M(G). By G′ ⊆ G, we see each maximal clique

M ∈ M(G′) is a clique in G, hence M ∈ K(G). This implies M is contained in a maximal

clique in G and there exists some f(M) ∈ M(G) for which M ⊆ f(M). We show f is

injective.

Assume on the contrary, there exist two distinct M1,M2 ∈ M(G′) where f(M1) =

f(M2) = M . This implies M1 ∪ M2 ⊆ M . Since G′ is an induced subgraph, all adjacen-

cies are preserved between present vertices in G′, and this implies (u, v) ∈ E(G′) for every

v ∈ M1 and u ∈ M2, where u 6= v. This contradicts the maximality of the cliques M1 and

M2 in G′ and shows f is injective so that |M(G′)| ≤ |M(G)|.

Proposition 5.2. For any (m,n) graph G, given λ(m) is the number of distinct maximal

cliques in graph PSm, then we have n ≤ λ(m).

Proof. We know G is some inflation of an induced subgraph G0 ⊆ PSm. By Lemma 5.1, the

inequality |M(G0)| ≤ |M(PSm)| holds. We revisit the mapping f : V (PSm) → 2N where

(u, v) ∈ E(PSm) ⇐⇒ f(u) ∩ f(v) 6= ∅ explained in Definition 3.2. We can define

M(PSm) = {S ⊆ V (PSm)| ∀ u, v ∈ S, f(u) ∩ f(v) 6= ∅

and 6 ∃ w 6∈ S where f(w) ∩ f(v) 6= ∅ ∀ v ∈ S}.

This is the definition of maximally linked systems in P({1, 2, · · · ,m}) as described by

Brouwer in [5]. Since each maximal clique of PSm corresponds to a maximally linked system
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of P({1, 2, · · · ,m}), of which there are λ(m) as listed in the OEIS sequence A001206, then

there are at most λ(m) maximal cliques in G.

Theorem 5.3. For a Dacey, (m,n) graph G, we have the following:

m = 2 implies n = 2,

m = 3 implies n = 3,

m = 4 implies n ≤ 8.

Proof. For a 2-clique coverable graph G, by Theorem 4.1, G is some inflation of an induced

subgraph of PS2. Any inflation of PS2, which is not edge-coverable by only one clique, must

be the clique-sum of two complete graphs, which contains exactly two distinct cliques overall.

For a 3-clique coverable graph G, we know G is some inflation of an induced subgraph

of PS3. By Proposition 4.4, given G is Dacey, the corresponding induced subgraph of PS3

must be Dacey as well. Since PS3 itself is not Dacey and neither is the graph PS3\v for the

vertex v which satisfies f(v) = {1, 2, 3} in PS3, then the induced subgraph of PS3 of which

G is an inflation must differ from PS3 by some vertex different from v. All such induced

subgraphs of PS3 have at most 3 maximal cliques.

For a 4-clique coverable graph, the result follows from Theorem 6.3. Under the deletion or

addition of vertices adjacent to every other vertex in G, the numberM(G) remains invariant.

This quantity is invariant under inflations and deflations of G as well, so the most maximal

cliques a 4-clique coverable Dacey graph can have is 8, the most maximal cliques any graph

has under Theorem 6.3.
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6 Classification of Dacey m-clique Coverable Graphs

for m ≤ 4

In addition to bounds on the number of maximal cliques, it is important to know how

m-clique coverable Dacey graphs look. Aside from inflation and deflation, modifying a graph

G by removing or appending a vertex v adjacent to all other vertices of G preserves the

Dacey condition. We call such a vertex v a cone in G.

Proposition 6.1. Given a graph G and v ∈ V (G), where for every other vertex u ∈ G\v,

we have (u, v) ∈ E(G), graph G is Dacey if and only if G\v is Dacey.

Proof. See Appendix B.

We should consider only graphs unique both under the inclusion or exclusion of a cone and

under inflation or deflation. This forms partitioned classes of Dacey graphs. In all deflated

graphs, there exists at most one cone. With this, we build the classification, starting with a

new construction.

Definition 6.1. A connected graph G is n-horned if the following is true:

• G contains a clique K so that there exists a set H = {v1, v2, . . . vn} of n mutually-non-

adjacent vertices, where H ∩K = ∅ and H ∪K = V (G)

• the map NH : K → 2H\H is injective.

By the second condition, we see each vertex v ∈ K corresponds to a subset NH(v) ∈ 2H

so that for some vi ∈ H, the adjacency (v, vi) ∈ E(G) exists if and only if vi ∈ NH(v). Note

that in G, we cannot have an element vi ∈ H such that for all v ∈ K it follows vi ∈ NH(v).

Otherwise, there is some vi 6∈ K where N(vi) ⊇ K. The vertices vi ∈ H are referred to as

horns and clique K is maximal in G.
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Proposition 6.2. An n-horned graph H is deflated.

Proof. For all pairs (u, v) ∈ E(G) either both u, v ∈ K or v = vi ∈ H and u ∈ K. If u, v ∈ K,

then we cannot have N(u)\v = N(v)\u as NH(v) is injective. If u ∈ K and v = vi ∈ H, then

N(u)\v = N(v)\u only if K ⊆ N(v), which cannot be the case as K is maximal.

This helps lead to a classification theorem of 4-clique coverable graphs up to inflation,

deflation, and inclusion or exclusion of cones.

Theorem 6.3. A connected m-clique coverable graph G where m ≤ 4 is Dacey if and only

if G is the inflation of one of the following (up to addition or deletion of a cone):

• an n-horned graph with n ≤ 3 where there does not exist some pair vi, vj ∈ H such

that NH(v) ∩ {vi, vj} is non-empty for all v ∈M

• one of the nine deflated Dacey graphs depicted in Figure 1.

Proof. Given the result of Theorem 6.3, for m ≤ 4 the only graphs to consider are induced

subgraphs of PS4. Proposition 4.4 tells we only need to check induced subgraphs of PS4 for

Dacey graphs to determine whether the inflations of those graphs are Dacey. This search

for Dacey graphs spans all graphs for which m ≤ 4. The task can be carried out computa-

tionally by inspection through the program in Appendix C. The program iterates through

all connected, induced subgraphs of PS4 and filters a list of those which are Dacey. After

removing duplicate graphs up to isomorphism, the program deflates the graphs in the list.

The program then displays the resulting graphs, which is classified above.

Theorem 6.3 provides a simple enumeration of all 4-clique coverable graphs which are

Dacey, which in turn allows us to consider all orthomodular posets covered by up to four

Boolean algebras.
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Figure 1: The small set of nine graphs which completes the classification of 4-clique coverable
Dacey graphs. Note the last graph on the bottom row contains 8 distinct maximal cliques,
the most possible among Dacey graphs for m = 4.

7 Structure Theorem

We look now at localizing the Dacey condition and investigate implications on Dacey

graphs in general.

Definition 7.1. A graph G is locally-Dacey if for all v ∈ V (G) the induced subgraph of G

on the set N(v) is Dacey.

Theorem 7.1. Every Dacey graph G is a locally-Dacey graph.

Proof. Assume, on the contrary, there exists v ∈ V (G) such that N(v), the graph induced by

N(v) inG, is not Dacey. This implies there exists some pair of distinct vertices x, y ∈ V (N(v))

such that N(x) ∪ N(y) ⊇ M in the graph N(v) for some maximal clique M ∈ N(v) and

(x, y) 6∈ E(N(v)).
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Considering the entire graph, the clique induced by M t v = M ′ ⊆ G forms a maximal

clique in G since there exist no vertex in G connected to all of the vertices in M ′. But, then

it must follow N(x) ∪ N(y) ⊇ M ′ in the graph G with (x, y) 6∈ E(G) and M ′ ∈ M(G). So

G is not Dacey, a contradiction.

The locally-Dacey condition is weaker than the Dacey condition. All Dacey graphs are

locally-Dacey, but there exist locally-Dacey graphs which are not Dacey. In order to further

investigate how local induced subgraphs apply to the Dacey condition on a graph as a whole,

we introduce the concept of neighbors more than a graph theoretical distance of one away

from some vertex.

Definition 7.2. Let v be some vertex in graph G. We define Nd(v) in G to be the set of all

vertices in G which are at most a graph-theoretic distance of d away from vertex v.

While N(v) does not contain v, the set N1(v) does contain v. This leads to questions on

the bounds of the Dacey condition’s reach for each vertex in a graph.

Theorem 7.2. If G\v is Dacey and v is such that the graph induced on N3(v) is Dacey,

then G is Dacey.

Proof. We restate the Dacey condition by its contrapositive. A graph G is Dacey if and only

if there does not exist an induced subgraph B in G which consists of a maximal clique and

two vertices which do not form an edge who collectively neighbor that maximal clique.

Given G\v is Dacey, we know such an induced subgraph B does not exist in G\v. If we

assume on the contrary, G is not Dacey, there must exist such an induced subgraph B in G.

This implies B contains v. The maximum diameter of an induced sub graph which contains

a maximal clique and two vertices connected to the maximal clique is 3. Since the maximum

distance between any two vertices in B is 3 and v is in B, then B is an induced subgraph of

G fully contained in N3(v). But, this makes N3(v) non-Dacey, a contradiction. So, G must

be Dacey.
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It is not true however that given graphs G and G\v are Dacey that Ni(v) is necessarily

Dacey for positive integers i ≥ 2.

8 Future Work

Further work is needed on a more concise classification of m-clique coverable graphs which

correspond to orthomodular posets. A relevant question is whether the set of nine graphs in

Theorem 6.3 could be unified. Another modification of a graph G to consider is appending

a vertex v so that v is adjacent to all the vertices of some maximal clique in G. We could

consider repeating this process on all problematic maximal cliques of some non-Dacey graph

G until it is Dacey. How this will be useful in an enumeration is not yet clear. Attempts to

incorporate the Dacey condition to a set-theoretic property of collections of subsets of finite

N were made to provide a characterization of Dacey induced subgraphs of PSm, but more

work is needed.

9 Conclusion

Simple, undirected, finite graphs serve as a compact representation of orthomodular

posets. The correlation of graphs to induced subgraphs of PSm graphs and related meth-

ods serve as a characterization of orthomodular posets which can be covered by m element,

order coverings. With inflation, this offers a method of finding orthomodular posets which

are covered by a certain number of Boolean algebras. We introduce a certain simplification

of orthomodular posets which easily identifies those with the same underlying structure of

maximal cliques. Inflation preserves this structure in a graph. Deflated graphs distinguish the

equivalence classes which include infinitely many clique-distant graphs. Moreover, we find a

complete classification of all clique-distant Dacey graphs which are up to 4-clique coverable,
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including structures which have not been widely studied in previous literature.

We also examine the effect of adding or cutting an atom from an orthomodular poset in

the structure theorems. This gives some insight on the local nature of the Dacey condition,

which is at the heart of what makes a graph correspond to an orthomodular poset. These

general results on Dacey graphs help to characterize the effect of the Dacey condition on

individual vertices.
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A Proof of Proposition 4.2

Proposition 4.2 Two distinct vertices u, v ∈ G are contained in precisely the same set of

maximal cliques in G if and only if u ∼ v.

Proof. Given an (m,n) graph G, we enumerateM(G) = {Mi | i ∈ N} where |N | = n. Given

v ∈ V (G), we say v corresponds to a non-empty subset S(v) ⊆ N where i ∈ S(v) if and

only if Mi 3 v. If we have u ∼ v, then M 3 u ⇐⇒ M 3 v for every M ∈ M(G), so it

follows S(u) = S(v). To show the converse, assume S(u) = S(v). Any vertex w adjacent to

u is contained in some maximal clique M ⊇ (w, u). Since N(u)t {u} = N(v)t {v}, we also

have v ∈M , so w is adjacent to v as well. So, we have (u, v) ∈ E(G) and u and v must share

precisely the same closed neighbor set.

B Proof of Proposition 6.1

Proposition 6.1 Given a graph G which contains a vertex v such that every other vertex in

G neighbors v, graph G is Dacey if and only if G\v is Dacey.

Proof. For every maximal clique M ∈M(G), we see M\v induces a maximal clique in G\v,

because no vertex in G neighbors all the vertices of M\v. Similarly, for a maximal clique

M ′ ∈M(G\v), the graph induced in G by the vertices V (M ′)tv = M is a clique in G which

is maximal by the maximality of M ′ in G\v. Moreover, M is the only clique in G containing

M ′, and v is the only vertex in G which is adjacent to every vertex in M ′. This establishes

a one-to-one correspondence between the sets M(G) and M(G\v).

If graph G\v is Dacey, then for each pair of vertices x, y ∈ V (G\v) such that N(x)∪N(y)

contains a maximal clique M ′ ∈ M(G\v), we have the edge (x, y) ∈ E(G\v). If we now

consider G containing vertex v, we see this is true for any pair of distinct vertices u, v ∈ V (G)

containing v. For each pair of vertices u1, u2 ∈ V (G) each different from v, we note that if
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N(u1)∪N(u2) contained a maximal clique M ′ ∈M(G\v), then with respect to G, the graph

induced by N(u1)∪N(u2) contains the maximal clique M induced by the vertices V (M ′)tv.

Moreover, in G the vertices in N(u1)∪N(u2) induce only the maximal cliques in G containing

some maximal clique M ′ in G\v. We see (u1, u2) ∈ E(G) if and only if (u1, u2) ∈ E(G\v).

Because two vertices different from v neighbor a maximal clique in G only if they neighbor

a maximal clique in G\v and edges in G\v are present in G, graph G is Dacey only if G\v

is Dacey.

By the same correspondence of maximal cliques between G\v and G, two vertices in G\v

collectively neighbor a maximal clique in G\v only if the vertices collectively neighbor the

corresponding maximal clique with v in G. Edges of G\v are always preserved in G as well,

so given G is Dacey, we have G\v is Dacey.

C Program: Deflated Dacey Induced Subgraphs of PS4

Runs on SageMath 9.1 with Python 3.7.

def Union(lst1, lst2):

final_list = list(set(lst1) | set(lst2))

return final_list

def Dacey(i):

V = i.vertices()

M = i.cliques_maximal()

for u in V:

for v in V:

if i.has_edge(u,v) == False:

for m in M:

if set(m).issubset(set(Union(i.neighbors(u), i.neighbors(v)))): return False

H=Graph({ 1:[12, 13, 14, 123, 124, 134],

2:[12, 23, 24, 123, 124, 234],

3:[13, 23, 34, 123, 134, 234],

4:[14, 24, 34, 234, 134, 124],

12:[13, 14, 23, 24, 123, 124, 134, 234],

13:[12, 14, 23, 34, 123, 124, 134, 234],
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14:[12, 13, 24, 34, 123, 124, 134, 234],

23:[12, 13, 24, 34, 123, 124, 134, 234],

24:[12, 14, 23, 34, 123, 124, 134, 234],

34:[13, 14, 23, 24, 123, 124, 134, 234],

123:[124, 134, 234],

124:[123, 134, 234],

134:[123, 124, 234],

234:[123, 124, 134],

1234:[1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234]

})

L = list(H.connected_subgraph_iterator())

D = []

for i in L:

if not Dacey(i) == False:

D.append(i)

for i in D:

for j in D:

if D.index(j)>D.index(i):

if i.is_isomorphic(j) == True:

D.remove(j)

for i in D:

U = i.vertices()

for u in U:

for v in U:

if u < v:

if i.has_edge(u,v):

if set(i.neighbors(u, closed=True)) == set(i.neighbors(v, closed=True)):

i.delete_vertex(v); U = i.vertices()

for i in D:

show(i)
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