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Abstract

Often, when using a Markov State Model (MSM) to model a physical or biological sys-
tem, only the equilibrium distribution is experimentally measurable, yet this equilibrium
alone is insufficient to uniquely fix the system’s transition probabilities. To determine these
probabilities and thus the dynamics of such systems, this paper considers inhibiting various
transitions and using the new equilibria to gain information about the system. We completely
determine the minimum number of cuts required to fully characterize three-state systems,
and conjecture that n−1 cuts is both necessary and sufficient for complete, n-state systems.
Because such a characterization is inherently valid only up to scaling, we establish the num-
ber of blocks in the transition graph as a lower bound on the degrees of freedom. Finally,
we simulate systems to confirm the practicality of our minimum-cut algorithm for the three-
and four-state situations.

Summary

Many real-world systems, from the stock market to protein folding and gene expression,
have some amount of randomness. We can often describe these systems by a Markov State
Model (MSM), which assumes the very next state of something in the system, say a cell or
particle, depends only on its present state. Such systems always end up in a steady-state, or
equilibrium, situation. Because the equilibrium is often all we can measure, it is of interest
to determine all we can about such systems solely from data describing the equilibrium. To
do this, we block off transitions between different states in the system, which gives a new
equilibrium and more information. We determine how many blocked transitions are sufficient
to uniquely determine the behavior of the system, and run simulations to test our algorithm
in a realistic situation with natural errors in data. Finally, we also prove the impossibility
of determining exactly how quickly the system progresses towards the equilibrium if we
may only block transitions, and we provide a bound on exactly how many such pieces of
information we cannot determine.



1 Introduction

Stochastic processes, or sequences of random variables, form a central tenet of proba-

bility theory with various interpretations in physical systems. Brownian motion [1], protein

folding [2], gene expression [3, 4], and evolution [5] represent only some of the real-world

dynamical systems exhibiting such randomness. A significant subset of those systems can be

further described by a Markov state model (MSM), a model which satisfies the Markov prop-

erty : the state of a given variable or particle one time step in the future depends only on the

current state. Indeed, the use of such MSMs, which cluster data into states and then consider

transition probabilities between these states, has recently increased in popularity [6] espe-

cially in modeling protein folding [7–11] and gene expression [5, 12]. Knowledge of transition

probabilities uniquely determines the model, enabling understanding of crucial attributes of

systems such as mean first passage times and state differentiation probabilities [8, 13].

In practice, calculating transition probabilities is difficult, as collecting relevant data is

challenging, especially in microbiological systems. A recent breakthrough has been made in

the methods of data collection by Rosenberg et al. [14], who introduce a method of analyzing

thousands of cells in a system at once. This allows us to gain accurate knowledge of equilibria

without extrapolating from the states of only a few cells. Although these single-cell snapshots

are becoming more obtainable, their static nature limits the recoverable information about

dynamics or progression over time. A single set of equilibrium distribution data may represent

various transition matrices and systems; that is, such matrices are non-uniquely determined

by the individual measurements. This paper’s goal is to determine which manipulations of

the system (e.g. inhibiting select transitions, isolating states) are necessary and sufficient to

uniquely determine the transition matrix and characterize the system.

Some information about the systems is inherently unknowable when only equilibrium

information is gathered. In particular, transition probabilities are only determinable up to
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at least one scaling factor, so, for example, the rate of convergence to equilibrium is indeter-

minable. While statistical approaches such as Bayesian inference and maximum likelihood

estimation have previously been effectively used to reconstruct the most likely transition

matrix given data [15, 16], the systems to which they have been applied are time resolved.

We instead focus on the measurements and changes to the system that are necessary to

algebraically determine transition probabilities when only equilibrium data is available. Fur-

thermore, we do not assume detailed balance, meaning the systems we focus on do not nec-

essarily possess time reversibility. While this statistical mechanics assumption of reversibility

simplifies analysis and is commonly used [8, 16], many biological systems do not obey ther-

modynamic equilibrium and thus do not possess reversibility.

The purpose of this paper is to derive the transition probabilities of MSMs only using

knowledge of equilibrium distributions. More precisely, we consider cutting, or inhibiting,

different transitions between states. Such cuts change the system and induce different equi-

librium distributions among the states, and we use the values of these different distributions

together to determine the initial, uncut system’s transition probabilities. In Section 2, we

formalize the specific attributes of the MSMs considered in this paper and introduce the idea

of a cut. In Section 3.1, we focus on complete systems under the assumption of overdamp-

ing, so that when a transition is cut its probability shifts to the transition back into the

same state. Establishing optimal measurements in these complete systems, in Section 3.2 we

characterize all of the three-state degenerate situations, or those having certain inter-state

transitions with zero probability. Then, in Section 4, we clarify the issue of scalability by

establishing a lower bound on the number of indeterminable scaling factors of transition

probabilities in any given system. In Section 5, we simulate three- and four-state complete

systems to determine the feasibility of our explicit algorithm on noisy data. Finally, we defer

proofs of some of our results to the appendices for space purposes.
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2 Formalization of Markov Processes

Let P(A|B) denote the conditional probability of event A happening given B. Formally,

a process is Markovian given the following: whenever Xi are random variables in, and si are

elements of, a state space S, we have

P(Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, ..., X0 = s0) = P(Xn+1 = sn+1|Xn = sn).

Focusing only on finite state spaces S, we can thus define the n-step transition probability

pi,j(n) := P(Xn = j|X0 = i) for i, j ∈ S. This gives rise to the transition matrix

P =


p1,1(1) . . . p1,m(1)

...
. . .

...

pm,1(1) . . . pm,m(1)

 ,
where |S| = m. Note that

∑
k∈S

pi,k(1) =
∑
k∈S

P(Xn+1 = k|Xn = i) = P (∪k∈SXn+1 = k|Xn = i) =

1, which is to say P is stochastic, meaning each of its row sums is 1.

In a given Markov process with transition matrix P , we consider an initial distribution

π ∈ Rm over the different states, where the ith element of π represents the probability of

starting at state i. In particular, if the system is one of cells and the states are different states

the cells can be in, the ith element of π denotes the proportion of all the cells which will

start in state i. Thus, after one time step, the expected distribution of the cells is πP . Now,

the Markov property also gives pi,j(n) in terms of shorter time step lengths as demonstrated

by the Chapman-Kolmogorov Equation, the validity of which is shown, e.g., by Meyn and

Tweedie [17].

Lemma 2.1 (Chapman-Kolmogorov). For a Markov process with n-step transition proba-

bility pi,j(n) and integers n1, n2 > 0, the equation

pi,j(n1 + n2) =
∑
k∈S

pi,k(n1)pk,j(n2) (1)

holds.

The right hand side of Equation (1) can be considered as a dot product of two vectors,
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and thus we see that the transition matrix satisfies

P n =


p1,1(n) . . . p1,m(n)

...
. . .

pm,1(n) pm,m(n)

 .
Therefore, the distribution after n steps is πP n. Now, to describe the particular models which

we focus on, we define the following two terms.

Definition 2.1. A state i is aperiodic if gcd{n ≥ 1 : pi,i(n) > 0} = 1.

Definition 2.2. A chain is irreducible if for any two states i, j, there exist t1, t2 > 0 such

that pi,j(t1) > 0 and pj,i(t2) > 0.

It is a well-known result [17] that if a Markov process is irreducible and every state is

aperiodic, then there exists a unique distribution λ, known as the equilibrium (or stationary)

distribution, such that λP = λ. The aperiodicity and irreducibility are necessary to avoid

in the long run both oscillatory behavior or hidden states, respectively. As such, we assume

both always hold. For the remainder of this paper, we focus on Markov State Models, which

are models of a system that consider progression in the system to be a Markov process. As

such, reference to the system actually means the MSM modeling the system.

Now, while each λ is unique given P , a given λ may correspond to multiple P ’s. To

determine the precise transitions of a given system, we consider various cuts, which involve

inhibiting certain transitions between states and measuring the equilibrium distribution of

the altered system. We focus on overdamped systems, so when a transition is cut, say that

from state 1 to state 2, then the probability p1,2(1) shifts to the probability of not transi-

tioning. Namely, if the system after the cut has transition probabilities p′i,j(1), then we have

p′1,2(1) = 0 and p′1,1(1) = p1,1(1) + p1,2(1).
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3 Cut Minimization

For efficiency, we seek the minimum number of necessary measurements to uniquely fix

a system. Accordingly, we must consider the number of variables and the maximum amount

of information contained in each system. We quantify the amount of information per cut by

the number of linearly independent equations arising from the equilibrium distribution, or

eigenvector with corresponding eigenvalue 1.

Lemma 3.1. In an n-state system, knowledge of the equilibrium distribution begets at most

n− 1 linearly independent equations, and thus at most n− 1 new pieces of information.

Proof. See Appendix A.

1
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a1

b2

a2

b3

a3
b1

Figure 1: Labeling of 3-state system transition probabilities

We now focus our attention on the three-state case. Simply solving the system of equations

which arises from λP = λ and referring to Figure 1, we get the unhomogenized equation

λ = (a2a3 + b2b3 + b2a3, a1a3 + b1b3 + b3a1, a1a2 + b1b2 + b1a2). (2)
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3.1 Complete Systems

We call a system complete if, for all i 6= j, we have pi,j(1) > 0, so none of the non-diagonal

entries in the transition matrix are 0.

Lemma 3.2. In a three-state system, if blocking off a single transition does not alter the

equilibrium distribution, the system is not complete.

Proof. See Appendix B.

For the remainder of this subsection, we only consider complete systems, so by Lemma 3.2

equilibrium distributions are changed when deleting an edge. In light of Lemma 3.1, from

each measurement we derive at most two equations, and therefore three measurements are

necessary to solve for all six probabilities. Now, we consider the coefficient matrix Q for such

equations, so the system is Q · (a1, a2, a3, b1, b2, b3)T = 0.

Theorem 3.3 (Minimum Cut Feasibility). There exist two distinct cuts which, in conjunc-

tion with knowledge of the initial equilibrium distribution, are sufficient to uniquely determine

a complete, three-state system.

Proof. We will determine the initial equilibrium distribution and the equilibria defined by

deleting two consecutive transitions. Without loss of generality, we cut the transitions from

state 1 to state 2 and state 2 to state 3. We use subscripts to denote components of λ, so,

for example, Equation (2) gives λ1 = a2a3 + b2b3 + b2a3. Now, if P is the transition matrix

for the system, from λ(P − I) = 0, we get

(a2a3+b2b3+b2a3, a1a3+b1b3+b3a1, a1a2+b1b2+b1a2)


−a1 − b1 a1 b1

b2 −a2 − b2 a2

a3 b3 −a3 − b3

 = 0.

Therefore, the first two components of the multiplication give λ1a1 + λ1b1− λ2b2− λ3a3 = 0

and λ1a1 − λ2a2 − λ2b2 + λ3b3 = 0. Encoding this in Q, we see the first two rows of Q are

6



Q =


λ1 0 −λ3 λ1 −λ2 0

λ1 −λ2 0 0 −λ2 λ3
...

...
...

...
...

...

 .
Now, we let λ(1) be the new equilibrium distribution upon setting a1 = 0, which Equation (2)

gives as (a2a3 + b2b3 + b2a3, b1b3, b1b2 + b1a2). If P1 is the transition matrix for this system,

P1 =


1− b1 0 b1

b2 1− a2 − b2 a2

a3 b3 1− a3 − b3

 =⇒ P1 − I =


−b1 0 b1

b2 −a2 − b2 a2

a3 b3 −a3 − b3

 ,

and then the first two components of λ(1)(P1 − I) = 0 are −λ(1)1 b1 + λ
(1)
2 b2 + λ

(1)
3 a3 = 0 and

λ
(1)
2 a2 + λ

(1)
2 b2 − λ(1)3 b3 = 0. We get analogous equations for a2 = 0, and thus arrive at

Q =



λ1 0 −λ3 λ1 −λ2 0

λ1 −λ2 0 0 −λ2 λ3

0 0 λ
(1)
3 −λ(1)1 λ

(1)
2 0

0 λ
(1)
2 0 0 λ

(1)
2 −λ(1)3

λ
(2)
1 0 0 0 −λ(2)2 λ

(2)
3

0 0 λ
(2)
3 −λ(2)1 0 λ

(2)
3


. (3)

Because we assume the system is complete, we may use the symbolic rank function in MAT-

LAB to find rank(Q) = 5, so by the Rank-Nullity Theorem the nullity is 1; namely, there is a

unique (up to a single scaling factor, see Section 4) solution to Q · (a1, a2, a3, b1, b2, b3)T = 0,

as desired.

Corollary 1. In a complete, three-state system, there exist three measurements which are

both necessary and sufficient to uniquely determine the transition matrix and thus dynamics.

Proof. Necessity comes from Lemma 3.1, and Theorem 3.3 gives sufficiency.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Shown are the eight possible pairs of cuts, with arrows denoting cut transitions.
Red denotes transitions blocked in one cut and blue the other. Note that one of the edges in
case (g) is cut in both situations and is therefore multichromatic.

Under the physically motivated assumptions that we can only cut a single transition,

or possibly a transition and its reverse simultaneously (e.g. the transitions from state 1

to state 2 and state 2 to state 1), there are eight distinct choices of cuts possible in the

three-state case, depicted in Figure 2. The proof of Theorem 3.3 considers case (a), and

analogously evaluating the coefficient matrices Q for the seven remaining situations, we can

similarly utilize MATLAB to determine exactly which of the eight cases uniquely identify

the transition probabilities.

Proposition 3.4. For a complete, three state system, categorizing as in Figure 2, cutting

edges as in situations (a), (b), (d), (e), (f), and (g) all provide sufficient information to de-

termine the system’s transition matrix, while cases (c) and (h) are underdetermined.

The uniqueness provided by cuts, in particular the consecutive cuts in situation (a), does

not appear to be unique to the three-state situation.

Conjecture 3.5. In a complete, n-state system, n measurements are necessary and sufficient

to uniquely determine the transition matrix and thus system dynamics.

From Lemma 3.1, we see that when there is only one degree of freedom with scaling,
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there may be up to n2 − n− 1 unknown variables and only n− 1 equations arise from each

measurement. Consequently,
⌈
n2−n−1
n−1

⌉
= n measurements are necessary, establishing half of

the conjecture.

Utilizing the same consecutive cut procedure as in situation (a) of Figure 2, empirical

trials in MATLAB provide numerical evidence for the conjecture in four- and five-state

systems. If true, this would be a vast improvement in the complete case on any recursive

O(n!) algorithm, bringing it to the minimal possible Θ(n) in the number of cuts.

3.2 Degeneracies

Typically, MSMs will not have direct transitions between every pair of states. This means

that, in such degenerate systems, various transition probabilities are 0. Because additional

zeros generally decrease matrix rank, or at least have the capacity to invalidate the row

operations necessary to perform symbolic Gaussian-elimination, the approaches in dealing

with complete systems no longer work. To wrap up the three-state case, we consequently

identify four unique degenerate situations in which all three states retain nonzero distribu-

tions at equilibrium. Assuming it is known in advance which situation the system is in, we

demonstrate what is determinable, labeling cases in the notation of Figure 3.

(1) (2) (3) (4)

Figure 3: The four, 3-state degenerate cases, with arrows denoting nonzero transitions

Theorem 3.6. In every degenerate 3-state system, less information is necessary to determine

the system than in the complete case. In particular, zero cuts suffice in cases (1) and (3),

while one cut suffices in cases (2) and (4).

Proof. See Appendix C.
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4 Scalability

While previous sections have demonstrated that transition matrices can be mostly re-

covered given an adequate choice of cuts, there is a underlying hole in the ability to use

this information to truly model the dynamics of the systems under consideration. Naturally,

system dynamics rely greatly on the time taken for transitions to occur and the system to

converge to equilibrium [18–20]. When measurements are only taken once equilibrium has

been reached, the rate of this convergence can only be determined relative to other times,

not explicitly and independently.

The problem arises from the homogeneity of the equations acquired from the measured

equilibria; if the transition probabilities between distinct states are scaled by some constant

c, then Q · (a1, a2, a3, b1, b2, b3)T = 0 = Q · (ca1, ca2, ca3, cb1, cb2, cb3)T , so the system with

scaled probabilities has the same equilibrium as the original regardless of which cuts are

made. We refer to such degrees of freedom as unknowable scaling factors, as they are scaling

factors of transition probabilities which do not affect equilibrium and are thus undetectable

when we only cut transitions and measure equilibria. While complete systems only have a

single scaling factor, some systems have multiple sets of transition probabilities which, when

each probability in the set is scaled by the same factor, leave all equilibrium distributions

unchanged. These sets function almost independently of each other and therefore act like

separate subsystems. The number of such sets, or just the number of such hidden scaling

factors, depends on the structure of the system. We analyze different properties of systems

that affect the number of unknowable scaling factors so that we may characterize the extent

of this scalability problem.

To do so, we utilize the Markov Chain Tree Theorem which establishes and generalizes

Equation (2). For a connected, weighted, directed graph G = (V,E), we call a subgraph T a

directed spanning tree (DST) with root at a vertex v if T is a spanning tree, so it is acyclic
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and has vertex set V , and there exists a unique directed path from every vertex u 6= v to

v. For an example, see the graph in Figure 5 where the grey edges are bidirectional and all

edges have unwritten weights. Denote by Tv(G) the set of DSTs with vertex v as a root. The

weight w(T ) of a directed spanning tree T is the product of the weights of its edges. Now,

for an irreducible MSM with transition matrix P , we consider its associated transition graph

GP , the directed graph with P as its adjacency matrix. The relevant result, thought to have

been found by Kirchhoff, is that the equilibrium distribution of the system is expressible by

considering spanning trees of GP , and a simple proof is given by Kruckman [21].

Theorem 4.1 (Markov Chain Tree Theorem). Consider an irreducible, aperiodic n-state

MSM with transition matrix P . Label its vertices 1 through n, and let λ represent the equi-

librium distribution, with λi the ith component. Then,

λi =

∑
T∈Ti(G)w(T )∑

j∈[n]
∑

T∈Ti(G)w(T )
. (4)

Next, we define an articulation vertex of a connected graph G as any vertex v such that

removing v and its incident edges disconnects G. Furthermore, a block of a graph is a maximal

connected subgraph which has no articulation vertices (see Figure 4 or the red subgraph in

Figure 5). Every graph has a decomposition into such blocks, so denote by b(G) the number

of blocks in such a decomposition for a graph G, with component blocks H1, H2, ..., Hb(G).

Figure 4: Depiction of a block decomposition with articulation vertices [22]
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Lemma 4.2. In a directed spanning tree T ∈ Tv(G), every vertex other than v has out-degree

1, while v’s out-degree is 0.

Proof. If v had nonzero out-degree, then the edge to its out-neighbor along with its out-

neighbor’s path to v would form a cycle, contradiction. For a vertex u 6= v, the incident edge

of its path to v is an outgoing edge of u, so u has out-degree at least 1. If u has two outgoing

edges, say to vertices u1 and u2, then the paths from u1, u2 to v converge either at v or an

earlier vertex, forming a cycle when these paths are considered with u, u1, and u2. With this

contradiction, we have the result.

It is also well known [23] that every graph has a corresponding block-cutpoint graph,

B(G), a bipartite tree with partition (A,B) where A is the set of articulation vertices, B

is the set of blocks condensed into a single vertex, and two vertices a, b are adjacent if the

expanded block represented by b contains a.

Lemma 4.3. For a connected graph G, directed spanning tree T ∈ Tv(G) for some vertex v,

and block H of graph G, the subgraph T ∩H is a directed spanning tree of H.

Proof. We split into cases.

Case (1): v ∈ H. If the path of every other vertex u ∈ H to v remains in H we are done, so

assume ∃u ∈ H such that the path from u to v includes an edge in at least one other block

H ′ sharing an articulation vertex u1 with H, where u1 may be u. The path from u must

pass through u1 to go into H ′, and thus there is some outgoing edge of u1 in H ′. However,

consider the path from u1 to v. If the edge emanating from u1 is in H then u1 has an outgoing

edge in H and a separate outgoing edge in H ′, contradicting Lemma 4.2. Hence, the path

from u1 to v begins in H ′, but it must return to H through some articulation vertex. If this

vertex differs from u1, then we would have a cycle in B(G), contradicting the fact that the

block-cutpoint graph is a tree. Therefore, the path returns to u1, but then we have found a

cycle, contradiction. As such, T ∩H forms a directed spanning tree of H rooted at v.
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Figure 5: A DST with green vertex as root; the red block’s sub-spanning tree is evident

Case (2): v /∈ H (see Figure 5). Every path from a vertex u in H to v must pass through the

same articulation vertex to leave H and eventually reach a block with v, as if there were two

such vertices it would contradict the acyclicity of B(G). If we call this articulation point u1,

then every path from a u in H to v includes a path from u to u1. Due to the result from case

1, this path must be completely contained in H, and because this is true for every vertex of

H other than u1, we see that T ∩H is a directed spanning tree of H rooted at u1.

Lemma 4.3 indicates that for a spanning tree T of G, you can freely rearrange the edges

of T ∩ H such that as long as they still form a spanning tree on H, then they, along with

the edges of T not in H, still form a spanning tree on G. This freedom to permute the edges

of blocks is what creates the scaling factors.

Theorem 4.4. Consider the transition graph GP of a given MSM with transition matrix P .

Then, only using equilibrium data, the process has at least b(GP ) unknowable scaling factors.

Proof. Consider a given block Hk; we claim that scaling up the weights of each edge in Hk by

some constant c maintains the equilibrium distribution. As the denominator of Equation (4)

is a homogenization factor, it is the same for all the λi so we may focus solely on the

numerator,
∑

T∈Ti(G)

w(T ). Because GP has n vertices, each nonzero summand w(T ) is the
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product of n − 1 distinct edge weights, as either all n − 1 edges in T have positive weight

or one of them is 0 in which case w(T ) = 0 and is thus irrelevant. Scaling the weight of

every edge in Hk by c, every nonzero term in the sum is now multiplied by cT (k), where T (k)

represents the number of edges of Hk in the spanning tree T , or equivalently the number of

factors of w(T ) which are now-scaled weights from edges in Hk.

By Lemma 4.3, T ∩H is a directed subtree of H so T (k) is just one less than the num-

ber of vertices of Hk. This is independent of T , and thus every nonzero term of the sum

over spanning trees of G rooted at i is scaled by cT (k). Therefore, scaling the weights in Hk

scales the whole sum by cT (k). Because this is all independent of i, every component of the

equilibrium distribution is scaled by this same factor, and therefore after homogenization,

the equilibrium distribution remains unchanged. Accordingly, we can independently choose

to scale all the edges in any number of the Hi without changing the only measurable com-

ponent of the system: the equilibrium distribution. Hence, as there are b(GP ) of these Hi,

each of which may independently have its edge weights scaled without affecting equilibrium

distributions, there are at least b(GP ) unknowable scaling factors.

5 Verification of Minimum Cut Feasibility

Theoretical understandings of MSMs are important, but while our Minimum Cut Feasi-

bility theorem (3.3) proves that the initial distribution and two distinct cuts can in theory

determine a system’s transition probabilities, there is no confirmation of a practical approach

fit for actual modeling. The finiteness of systems and subsequent noise give reason to ques-

tion the effectiveness of purely theoretical results. Accordingly, we set out to demonstrate

that the sufficiency in our Minimum Cut Feasibility theorem (3.3) translates to a reasonably

successful algorithm by running simulations in MATLAB.

In each simulation of an N particle or cell system, we arbitrarily pick transition proba-
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bilities to describe a system and determine the equilibrium distributions for that system and

the system with certain transitions cut. We acquire experimental equilibria by partitioning

the interval (0, 1) into subintervals with lengths proportional to the components of the actual

equilibria, then randomly sampling N numbers from (0, 1) and assigning each to the corre-

sponding state. We use the experimental distributions to determine the coefficient matrix Q.

However, finding the experimental transition probabilities requires the nullspace of Q, yet Q

is almost always full rank when using the random error-ridden experimental data. As such,

we instead use low-rank approximation and find the nullspace of Q∗, the truncated singular

value decomposition of Q as described by the Eckart-Young-Mirsky Theorem [24], which

guarantees Q∗ as the matrix of desired rank with closest distance to Q under the Frobenius

norm.

To compare the experimental probabilities from the nullspace ofQ∗ with the actual values,

we homogenize so the sum of all probabilities is 1 and then evaluate the mean squared error

(MSE) across the n2 − n probabilities in the n-state case. The number of trials run for each

number of particles N is min
(
10000, 4000000

N

)
. We conduct simulations four separate times

with different, quasirandom equilibrium distributions, twice with three-states and twice with

four-states. The equilibrium data corresponds to the full system’s equilibrium in addition to

consecutive cuts; we cut the transitions from state 1 to state 2 and state 2 to state 3, as well

as state 3 to state 4 in the four-state trials. The data is shown in Figure 6, where both the

mean MSE and median MSE over all trials for a given system and N are graphed. Graph

(a) corresponds to the two 3-state systems, and graph (b) to the two 4-state systems. The

simulation results demonstrate relatively small errors, orders of magnitude smaller than the

probabilities in the systems. The linearity in the log-log graph is apparent, although there is

noise for the smallest and largest N especially in (b). The larger number of fluctuations for

small N is attributable to very high means due to outlier situations in which there may have

been negative values calculated from Q∗s nullspace. These induce a sum of the components
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(a) (b)

Figure 6: Simulation data for three- and four-state systems

which is close to zero, which upon homogenization greatly scales the data, causing high

errors. Since the median is affected little by such outliers, it better reflects the true error

in these simulations. Additionally, the noise for the largest N comes from running at most

4 trials due to computational inefficiency and runtime constraints. Finally, the proximities

of the median graphs’ slopes to −1 suggest standard deviations on the order of 1√
N

upon

transforming back from the doubly logarithmic scale.

6 Conclusion

In this paper, we focus on the problem of determining MSM dynamics when only equi-

librium data is available. This limited availability of data is a very real hurdle in situations

where the most feasible measurements are disruptive. We consider the effect of cutting,

or inhibiting, different transitions on equilibrium distributions, using information from the

changes to uniquely characterize the system. We first show that in complete, three-state,

overdamped systems, two cuts are both necessary and sufficient to reconstruct the transition
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matrix. Numerical evidence suggests the minimum necessary number being sufficient gen-

eralizes to any number of states. We also determine the number of blocks in the transition

graph as a lower bound on the number of unknowable scaling factors of the system, or degrees

of freedom to scale transition probabilities without changing any equilibrium distributions.

Finally, to test applicability, we simulate complete three- and four-state systems and demon-

strate that the sufficient algorithm we present is practical in that it determines transitions

probabilities from experimental data with an error that decreases linearly in the number of

particles considered. In future research, we intend to refine the simulated approximation by

considering different rank-reduction techniques and also prove our conjectured generalization

of minimum cut sufficiency.
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A Proof of Lemma 3.1

Lemma. In an n-state system, knowledge of the equilibrium distribution begets at most n−1

linearly independent equations, and thus at most n− 1 new pieces of information.

Proof. Firstly, as the equilibrium distribution λ is merely a left eigenvector with correspond-

ing eigenvalue 1, the only condition on λ is that λ(P − I) = 0, and because the left side

is of dimension n, there are at most n equations. However, the final equation, or the last

component of λ(P − I), is merely the sum of the first n − 1. Indeed, consider the ith com-

ponent of each such equation. Denote λ = (λ1, λ2, ..., λn), so the ith component of the jth

equation is λipi,j(1), for i 6= j. When i = j, because P is stochastic, the (i, i)th element of P

is 1−
n∑

k=1,k 6=i

pi,k(1) so the (i, i)th element of P − I is −
n∑

k=1,k 6=i

pi,k(1), and the ith component

of the ith equation is λi

(
−

n∑
k=1,k 6=i

pi,k(1)

)
. Summing these ith components over j, we get

n∑
j=1

λipi,j(1) = λi

n∑
j=1

pi,j(1)

= λi

(
n∑

j=1,j 6=i

pi,j(1) + (pi,i(1)− 1)

)
.

Finally, the last expression is λi

(
n∑

j=1,j 6=i

pi,j(1) +

(
−

n∑
k=1,k 6=i

pi,k(1)

))
= 0. Therefore, sum-

ming all n linear equations gives the tautology 0 = 0, and therefore the last equation is

the sum of the negations of the first n − 1 equations. This means it can be expressed as a

linear combination of them and is not linearly independent, implying there are at most n−1

linearly independent equations.

B Proof of Lemma 3.2

Lemma. In a three-state system, if blocking off a single transition does not alter the equi-

librium distribution, the system is not complete.
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Proof. Assume, for the sake of contradiction, that there exists some complete system with

transition matrix P , and some transition probability pi,j(1) > 0 which, when set equal to 0,

leaves λ unchanged. Without loss of generality, suppose we change p1,2(1), so a1, to 0. Setting

a1 = 0 in Equation (2), we get λ = (a2a3 + b2b3 + b2a3, b1b3, b1b2 + b1a2). Now, because λ1

remains unchanged, and the first components are identically equal, we must have the second

components are equal. Therefore, b1b3 = a1a3 + b1b3 + b3a1, which equates to a1(a3 + b3) = 0.

This is not possible because the system is complete, so a1, a3, b3 > 0. Thus, we reach a

contradiction, so the system is not complete.

C Proof of Theorem 3.6

Theorem. In every degenerate 3-state system, less information is necessary to determine

the system than in the complete case. In particular, looking at Figure 7 we find zero cuts

suffice in cases (1) and (3), while one cut suffices in cases (2) and (4).

(1) (2) (3) (4)

Figure 7: The four, 3-state degenerate cases, with arrows denoting nonzero transitions

Proof. We label cases in the notation of Figure 7 and referring to the same orientation and

transitions as in Figure 1.

Case (1): Substituting b1 = b2 = b3 = 0 into Equation (2), we find λ = (a2a3, a1a3, a1a2),

which by scaling is equivalent to
(

1
a1
, 1
a2
, 1
a3

)
. As such, reciprocating the measured equilibrium

is sufficient, so no cuts are necessary, only knowledge of the initial equilibrium distribution.

Case (2): From Equation (2), substituting b1 = b2 = 0 we get λ = (a2a3, a1a3 + b3a1, a1a2),

and thus we know a1
a3

and a3+b3
a2

. While this is insufficient, cutting b3 gives case (1), from which
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we determine a1, a2, a3 up to scaling. Therefore, since we know a3+b3
a2

, we can determine b3,

so the initial system and a single cut suffice.

Case (3): Setting a1 = b2 = 0 into Equation (2) gives λ = (a2a3, b1b3, b1a2). Thus, we can

determine a2
b3

and b1
a3

. Checking all other cuts, we can’t gain any more information, a fact

which will later follow from Theorem 4.4. Therefore, all information that can be determined

by cuts is recoverable from the initial equilibrium.

Case (4): Setting b2 = 0 into Equation (2), we get λ = (a2a3, a1a3 + b1b3 + b3a1, a1a2 + b1a2).

Now, cutting the top right, from case (3) we know c1 := a3
b1

and c2 := a2
b3

, so the known initial

equilibrium becomes (a2a3, a1a3 + c1c2a2a3 + c2a2a1, a1a2 + c1a3a2). The ratio of the third to

the first component gives us a1
a3

, and the ratio of the second to the first component gives a1
a2

,

which completes the system. Thus, the initial system and a single cut suffice.
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