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Abstract

We study rings of compactified q-deformed integer-valued polynomials defined by Harman
and Hopkins, along with another ring of multi-variable q-deformed integer-valued polyno-
mials. We disprove a conjecture of theirs about how one such compactified ring may be
generated andfind a basis for a generalization of these sets of polynomials. We also find a
basis for the multi-variable analog of these polynomials.

Summary

We analyze certain polynomials that send modified integers to other types of modified
integers. We find a characterization of such polynomials and disprove a conjecture about
these polynomials made by previous authors. We also work with polynomials in multiple
variables of roughly the same form and find a characterization for these polynomials as well.



1 Introduction

In the seventeenth century, Newton worked on polynomial interpolation in his Principia

Mathematica [1, Book 3, Lemma 5, Case 1], where he studied the polynomial of lowest degree

passing through a set of points. One such problem considered polynomials on lattice points,

which led naturally to an attempt to characterize all polynomials that mapped integer inputs

to integer outputs. These polynomials are known as integer-valued polynomials. Newton

determined that any integer-valued polynomial could be uniquely expressed as the linear

combination, with integer coefficients, of the set of binomial polynomials. These binomial

polynomials are polynomials that output specific binomial coefficients when evaluated at

integer values.

Pólya [2] and Ostrowski [3] formalized this theory in 1919, adding proofs where Newton

neglected to include them. They focused on finding a “regular basis” for the set of integer-

valued polynomials for general fields, including the one that Newton worked in. That is,

they focused on finding a collection of integer-valued polynomials, one of each degree, such

that any integer-valued polynomial could be uniquely represented as the linear combination

with integer coefficients of polynomials in the basis. For more background on integer-valued

polynomials, consult Cahen and Chabert’s Integer-Valued Polynomials [4].

In 2016, Harman and Hopkins [5] defined q-deformations of these polynomials and discov-

ered a number of properties about the q-binomial coefficients and some associated operations.

A q-deformation is a modification of existing structures to include an auxiliary variable q. By

convention, setting q as 1 should recover the normal definitions of the q-deformed objects.

This paper answers some of the open questions at the end of Harman and Hopkins’ paper

(see Section 9 of [5]).

Harman and Hopkins [5] defined the q-binomial polynomials to produce specific q-binomial

coefficients when evaluated at the q-integers and proved that these q-binomial polynomials
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satisfy a number of nice positivity properties. They proceed to define a q-deformation, Rq,

of the ring of integer-valued polynomials, denoted R. These quantum integer-valued poly-

nomials map the q-integers to polynomials in q and q−1. Harman and Hopkins showed that

this ring is spanned by the set of q-binomial polynomials. They found connections between

the q-binomial coefficients and finite fields, finite Grassmannians, and the Young tableau [5].

For a more detailed discussion of q-deformations, see Section 2. Harman and Hopkins (see

Section 4 of [5]) also noted connections between the set of quantum integer-valued polyno-

mials and quantum groups, specifically the group Uq(sl2). These quantum groups, in turn,

have connections to quantum mechanics [6, 7].

We extend Harman and Hopkins’ results, but work with polynomials that map positive

q-integers to polynomials in q and negative q-integers to polynomials in q−1. They suggested

that this ring, denoted R+
q ∩ R−

q , might be spanned, with integer coefficients, by the q-

binomial polynomials. We show that this is not the case and prove a basis for R+
q ∩R−

q .

In Section 2, we recall Harman and Hopkins’ definitions of q-analogs, and find some coun-

terexamples to their conjecture about R+
q ∩R−

q . In Section 3, we recall some generalizations

of R+
q ∩R−

q from Harman and Hopkins’ work, and construct a basis on these generalizations.

In Section 4, we consider multi-variable quantum integer-valued polynomials by extending

Harman and Hopkins’ definition of Rq. We prove in this section a natural and regular basis

for multi-variable quantum integer-valued polynomials that extends an analogous folklore

result for multi-variable integer-valued polynomials. We proceed to extend Harman and

Hopkins’ definition of R+
q and R−

q to multiple dimensions in Section 5, and prove a natural

and regular basis for these rings. Section 6 describes some avenues of further research.
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2 q-deformations

2.1 Definitions and properties

We begin by formally defining the ring R of integer-valued polynomials, which is defined

as

R :=
{
P (x) ∈ Q[x]

∣∣∣P (n) ∈ Z, ∀n ∈ Z
}
.

The set {(
x

k

)
, k ∈ N0

}
forms a regular basis for R as a Z-algebra [2, 3].

We now recall the the definitions of the q-deformations of various important objects.

The q-deformation of the integer n, denoted [n]q, is given by [n]q =
n−1∑
i=0

qi =
qn − 1

q − 1
. The

q-deformation of the factorial n! is denoted [n]q! and is given by
n∏

i=1

[i]q. The q-binomial

coefficient is defined as [
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
.

Note that setting q = 1 recovers the standard expressions for n, n!, and
(
n
k

)
.

The q-deformation of the kth binomial polynomial, denoted
[
x
k

]
, is given by[

x

k

]
:=

1

q(
k
2
)[k]q!

k−1∏
i=0

(x− [i]q).

This expression is chosen so that
[
x
k

]
satisfies the property[

[n]q
k

]
=

[
n

k

]
q

.

In order to define the q-analog of R, let Q(q) be the set of rational expressions in q over

Q. Harman and Hopkins use Q(q) to define q-deformations of integer-valued polynomials,

also known as quantum integer valued polynomials, by generalizing the definition of R to
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the rings

Rq :=
{
P (x) ∈ Q(q)[x]

∣∣∣P ([n]q) ∈ Z[q, q−1], ∀n ∈ Z
}
,

R+
q :=

{
P (x) ∈ Q(q)[x]

∣∣∣P ([n]q) ∈ Z[q], ∀n ∈ N0

}
,

R−
q :=

{
P (x) ∈ Q(q)[x]

∣∣∣P ([−n]q) ∈ Z[q−1], ∀n ∈ N0

}
.

The rings R−
q and R+

q can be thought of as a kind of positive part and negative part of

Rq, respectively. Harman and Hopkins then prove that the polynomials
[
x
k

]
form a basis for

Rq and R+
q as a Z[q, q−1] and Z[q] algebra, respectively.

Harman and Hopkins [5] also work with two involutions on Rq, a shift operator S that

maps Q(q)[x] to Q(q)[x] with S(x) := qx+1, and a bar involution¯: Q(q)[x] → Q(q)[x] with

q̄ = q−1 and x̄ = −qx. These operators satisfy nice properties and arise in several identities

about
[
x
k

]
. For a list of some of these properties and other results of Harman and Hopkins,

see Appendix A. The polynomials
[
x
k

]
, obtained by applying the bar involution to

[
x
k

]
, form

bases for Rq and R−
q as a Z[q, q−1] and Z[q−1] algebra, respectively.

2.2 Properties of R+
q ∩R−

q

The ring R+
q ∩ R−

q has some very interesting properties. One reason why it is worth

studying is its compactification property. In R+
q , it is reasonable to evaluate at q = 0, as

all interesting expressions involved are in Z[q], but not to set q = ∞. Similarly, in R−
q , it is

reasonable to evaluate at q = ∞ as all expressions are in Z[q−1], but not to set q = 0. In

R+
q ∩ R−

q , it is in some sense reasonable to set either q = 0 or q = ∞, thereby producing a

compactification property. It is this property that leads the basis proven later for this set to

have only a finite number of elements of each degree in x.

We examine further properties of R+
q ∩R−

q by applying the identities proven by Harman

and Hopkins [5]. They had suggested that R+
q ∩R−

q = SpanZ

{[
x
k

]
,
[
x
k

]
, k ∈ N0

}
. Note that

they specify a linear span over Z instead of Z[q] or Z[q−1] for the reason that while
[
x
k

]
and[

x
k

]
lie in R+

q ∩R−
q , q−1

[
x
k

]
and q

[
x
k

]
do not. However, we have found polynomials in R+

q ∩R−
q
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that do not lie in SpanZ

{[
x
k

]
,
[
x
k

]
, k ∈ N0

}
, as demonstrated in the Proposition 2.1 and the

following example.

Proposition 2.1. For nonnegative integers k and integers m, we have

qm
[
x

k

]
∈


R−

q iff m ≤
(
k+1
2

)
R+

q iff 0 ≤ m.

and q−m

[
x

k

]
∈


R+

q iff m ≤
(
k+1
2

)
R−

q iff m ≥ 0.

For the proof of Proposition 2.1, see Appendix B.

Many of the polynomials in Proposition 2.1 are not actually in

SpanZ

{[
x

k

]
,

[
x

k

]
, k ∈ N0

}
.

We provide an example with q
[
x
2

]
. We note that

[
x
2

]
= q5

[
x
2

]
+ q3

[
x
1

]
by Proposition 6.3 of [5].

Because
[
x
2

]
,
[
x
2

]
, and q

[
x
2

]
have coefficients of

[
x
2

]
with different degrees in q, we know that

q
[
x
2

]
cannot be written as a linear combination of the first two with integer coefficients.

These polynomials in Proposition 2.1, however, are not the only polynomials in R+
q ∩R−

q .

We find a basis for R+
q ∩R−

q , and also a basis for a generalization of this set.

3 A basis for a generalization of R+
q ∩R−

q

Before defining a basis for R+
q ∩ R−

q , we first define some generalizations of these rings.

Other than the basic rings R+,0
q = R+

q and R−,0
q = R−

q , Harman and Hopkins [5] also defined

the rings R+,m
q and R−,m

q with

R+,m
q := {P (x) ∈ Q(q)[x] : P ([n]q) ∈ Z[q], ∀n ≥ m} and

R−,m
q :=

{
P (x) ∈ Q(q)[x] : P ([n]q) ∈ Z[q−1], ∀n ≤ m

}
.

Recall Harman and Hopkins’ [5] definition of the shift operator S, which sends x to

qx+1. Harman and Hopkins’ [5] Proposition 5.1 shows that Sm is an isomorphism from R+
q

to R+,−m
q and an isomorphism from R−

q to R−,−m
q .
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Also recall from Harman and Hopkins’ paper [5, Proposition 6.3] that[
x

k

]
= (−1)kq(

k+1
2
)Sk−1

[
x

k

]
.

As such,
{
S−m

[
x
k

]
, k ∈ N0

}
is a basis for R+,m

q as a Z[q]-algebra, and
{
q(

k+1
2
)Sk−1−m

[
x
k

]
, k ∈ N0

}
is a basis for R−,m

q as a Z[q−1]-algebra.

We now define the sets

Bar(k) :=

{
qi
[
x

k

]
, 0 ≤ i ≤

(
k + 1

2

)}
,

X(k) :=

{
qi
[
x

k

]
, 0 ≤ i < k

}
, and

Y(k) :=

{
m∑
i=0

(−1)iq(
i
2
)
[
k −m+ i

k −m

]
q

[
x

k −m+ i

]
, 0 ≤ m ≤ k

}
.

These sets will be used to form a basis for R+,s
q ∩R−,r

q .

Note that the sets X(k), S X(k), S2X(k), . . . , Sm−1X(k), Sm Bar(k) have different orders

in q on their
[
x
k

]
terms, which are shown in Figure 1. See Figure 2 to understand the notation

in Figure 1.

0

k

2k

mk

(
k+1
2

)
+ 1

k +
(
k+1
2

)
+ 1

2k +
(
k+1
2

)
+ 1

mk +
(
k+1
2

)
+ 1

SBar(k)

S2Bar(k)

Bar(k)

SmBar(k)

X(k)

SX(k)

S2X(k)

SmX(k)

Figure 1: The orders of the polynomials in the sets Bar(k), S Bar(k), . . . , Sm Bar(k) and

X(k), S X(k), . . . , Sm X(k).
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[
x
k

]
q
[
x
k

]
q2
[
x
k

]
q3
[
x
k

]
q4
[
x
k

]
q5
[
x
k

]

0 6

Figure 2: A depiction of the meaning of the lines in Figure 1

Note that X(k) is essentially the non-overlapping portion of Bar(k), that is, the part of

Bar(k) that doesn’t overlap with S Bar(k).

In order to show that sets of the form Sm Bar(k), Sm X(k), and Sm Y(k) can be used to

form a basis, we must first show that they lie in the set R+,s
q ∩ R−,r

q for appropriate values

of m and k.

Lemma 3.1. For nonnegative integers k, we have the relations

X(k) Bar(k) R+
q ∩R−,k−1

q

Y(k) R+
q ∩R−,k

q .

For the proof of Lemma 3.1, see Appendix C.

By repeatedly applying the shift operator to Lemma 3.1, we arrive at the following

corollary.

Corollary 1. For integer m and nonnegative k, we have the relations

Sm X(k) Sm Bar(k) R+,−m
q ∩R−,k−1−m

q

Sm Y(k) R+,−m
q ∩R−,k−m

q .

To create a meaningful basis, we must have sets that are linearly independent. Before

showing that the elements in the sets Sm Bar(k), Sm X(k), and Sm Y(k) are linearly inde-

pendent, we first show that these sets are disjoint under certain conditions on the respective

values of k and m for the sets.
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Lemma 3.2. For any integers r, s, the sets of the form Sm−s X(k) or Sk−r−1 Bar(k) with

max(0, r− s+ 1) ≤ k and 0 ≤ m ≤ k + s− r− 2 are pairwise disjoint. When r ≥ s, the set

S−sY(r − s) is also disjoint from the previous sets.

For the proof of Lemma 3.2, see Appendix D.

We define the set

Z(r, s) :=
∞∪

k=max(0,r−s+1)

(
Sk−r−1 Bar(k) ∪

k+s−r−2∪
m=0

Sm−s X(k)

)
∪


∅ r < s

S−sY(r − s) r ≥ s

and note that Lemma 3.2 essentially states that there is no overlap between the sets making

up Z(r, s).

Lemma 3.3. For any integers r, s, the elements of Z(r, s) are linearly independent over Z.

For the proof of Lemma 3.3, see Appendix E.

We now have the tools to prove a basis for R+,s
q ∩R−,r

q .

Theorem 3.4. The set Z(r, s) forms a basis for R+,s
q ∩R−,r

q as a Z-algebra.

Proof. By Lemma 3.3, we need only to show that Z(r, s) spans R+,s
q ∩R−,r

q as a Z-algebra.

Suppose, for the sake of contradiction, that we have some polynomial

P (x) =
k∑

i=0

mi∑
j=0

αi,jq
jS−s

[
x

i

]
=

k∑
i=0

fi(q)S
−s

[
x

i

]
∈ R+,s

q ∩R−,r
q

that is not in the span of Z(r, s). Note that all elements in R+,s
q are of same form as P (x) with

mi ≥ 0, so it is reasonable to assume that P (x) is of this form. In this proof, we require that

αk,mk
is nonzero and pick P (x) such that k is minimal and mk is minimal among polynomials

with minimal k. We split the problem into three cases based on the relative sizes of k and

r − s.

Case 1: We assume k > r − s. We prove that 0 ≤ mk ≤
(
k+1
2

)
+ (k + s− r − 1)k. Because

mi ≥ 0 for all 0 ≤ i ≤ k, we know that mk ≥ 0. We note that because P (x) lies in R+,s
q ∩R−,r

q ,
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the polynomial must also lie in

R−,r
q = SpanZ[q−1]

{
S−r

[
x

k

]
, k ∈ N0

}
.

The degree in q of the coefficient on S−s
[
x
k

]
for

S−r

[
x

k

]
= (−1)kq(

k+1
2
)Sk−1+s−r

(
S−s

[
x

k

])
must be

(
k+1
2

)
+ k(k − 1 + s− r). Therefore, no term in R−,r

q can have a higher degree of q

for the coefficient of its S−s
[
x
k

]
term. As such, we have 0 ≤ mk ≤

(
k+1
2

)
+ k(k − 1 + s− r),

as claimed.

We note that there are
(
k+1
2

)
+ 1 + k(k − 1 + s− r) polynomials in the set

Sk−r−1 Bar(k) ∪
k+s−r−2∪

m=0

Sm−s X(k)

whose coefficients on their S−s
[
x
k

]
terms all have different degrees in q. Furthermore, these

degrees are integers between 0 and
(
k+1
2

)
+ k(k − 1 + s− r), inclusive, so each such integer

must show up as a degree. As such, there must be a polynomial Pmk,k(x) in Z(r, s) with

leading term qmkS−s
[
x
k

]
. The polynomial P (x) − αk,mk

Pmk,k(x) therefore has no qmkS−s
[
x
k

]
term but still lies in R+,s

q ∩R−,r
q . By our conditions on P (x) this new polynomial must lie in

the linear span of the elements of Z(r, s). As such, as αk,mk
is an integer, the polynomial P (x)

can also be written as the linear combination of elements in Z(r, s) with integer coefficients,

contradicting our earlier assumption.

Case 2: We assume k = r − s. Due to space constraints, we will move this proof to

Appendix F. In the proof, we find an explicit linear combination of polynomials in S−s Y(k)

that evaluates to P (x).

Case 3: We assume k < r−s. Due to space constraints, we will move this proof to Appendix

F. As a brief sketch of the proof, we find the degrees of each fi(q) and use these to show

that P ([k + 1]q) is not an integer unless P is constant.
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Because we cannot have any of k < r − s, k = r − s, or k > r − s, it must be the case

that P (x) does not exist, so the set Z(r, s) does indeed form a basis for R+,s
q ∩ R−,r

q as a

Z-algebra.

4 Multi-variable quantum integer-valued polynomials

A natural extension of many problems is to consider the multi-variable equivalent of the

problem.

We start by defining the multi-variable binomial polynomials(
x

k

)
:=

d∏
i=1

(
xi

ki

)
where x = (x1, x2, . . . , xd) has real coordinates and k = (k1, k2, . . . , kd) has nonnegative

integer coordinates.

As with the multi-variable binomial polynomials, we can define multi-variable q-binomial

polynomials as follows.

Definition 4.1. For x = (x1, x2, . . . , xd) ∈ Z[q, q−1]d, n = (n1, n2, . . . , nd) ∈ Zd, and k =

(k1, k2, . . . , kd) ∈ Nd
0, we define[

x

k

]
=

d∏
i=1

[
xi

ki

]
and

[
n

k

]
q

=
d∏

i=1

[
ni

ki

]
q

.

We also define

xk =
d∏

i=1

xki
i

for integers ki and [n]q = ([n1]q, [n2]q, . . . , [nd]q) for n ∈ Zd.

For regular integer-valued polynomials, it is natural to define the ring Rd as

Rd =
{
P (x) ∈ Q(q)[x] : P (x) ∈ Z, ∀x ∈ Zd

}
.

It is a classical forklore result that this ring has a basis given by
{(

x
k

)
, k ∈ Nd

0

}
.
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A natural extension of considering the q-deformations of integer-valued polynomials is to

examine the q-deformation of multi-variable integer-valued polynomials, Rd
q .

Definition 4.2. We define

Rd
q :=

{
P (x) ∈ Q(q)[x] : P ([n]q) ∈ Z[q, q−1] ∀n ∈ Zd

}
,

where we have x = (x1, x2, . . . , xd) ∈ Z[q, q−1]d.

We show that the basis for this ring is the set of multi-variable q-binomial coefficients.

Theorem 4.1. The ring Rd
q has a basis given by{[

x

k

]
, ki ≥ 0

}
as a Z[q, q−1]-module.

Proof. We start by showing that each polynomial of the form
[
x
k

]
is in Rd

q .

When we plug in values [ni]q for xi, we find that
[
ni

ki

]
q

is in Z[q, q−1], so the product of

all these binomial coefficients is also in Z[q, q−1]. As such,
[
x
k

]
is in Rd

q for any k ∈ Nd
0.

Next, we show that the polynomials
[
x
k

]
are linearly independent. Note that the highest

degree in xi of any term in
[
xi

ki

]
is ki, so the highest degree term of any polynomial

[
x
k

]
, up

to rational functions in q, is xk. If the polynomials
[
x
k

]
are not independent, then there exist

expressions fk(q) ∈ Z[q, q−1] such that

∑
k∈Nd

0

fk(q)

[
x

k

]
= 0.

If we consider the term with a nonzero coefficient fk(q) and the largest value of
d∑

i=1

ki, we

have some element
[
x
k

]
whose xk term cancels, which implies that it must have a coefficient

of 0, contradiction. Thus, the polynomials
[
x
k

]
must be linearly independent.

We now show that these polynomials span the ring Rd
q . Suppose we have a polynomial

P (x) ∈ Rd
q with maximal degree k. We wish to show that P (x) must be equal to some
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polynomial P(k+1)d(x) that is in the set

SpanZ[q,q−1]

{[
x

k

]
, k ∈ Nd

0

}
.

We consider a sequence of distinct points n1,n2, . . . ,n(k+1)d in Zd with positive integer

coordinates between 0 and k such that the sum of the coordinates of ni is less than or

equal to the sum of the coordinates of nj for any i ≤ j. We also define xi = [ni]q for

integers 1 ≤ i ≤ (k + 1)d. We define the polynomials P1(x), P2(x), . . . , P(k+1)d(x) such that

P1(x) = P (x1) and

Pj+1(x) = Pj(x) + (P (xj+1)− Pj(xj+1))

[
x

nj+1

]
for all j < (k + 1)d.

Because the sum of the coordinates of nj+1 is at least the sum of the coordinates of ni

for any i ≤ j, there is an integer l with 1 ≤ l ≤ d such that the lth coordinate of nj+1 is

larger than that of ni, so
[

xi

nj+1

]
= 0 for all i ≤ j. As such, Pj+1(xi) = Pj(xi) for all j ≥ i.

At the same time, we know that Pj(xj) = Pj−1(xj) + P (xj)− Pj−1(xj), which implies that

Pj(xl) = P (xl) for all j ≥ l.

We show by induction on j that for x = [n]q with n ∈ Zd, we have Pj(x) is in Z[q, q−1].

To do so, we start with the observation that P1(x) = P (x1) is always in Z[q, q−1]. If the

polynomial Pj(x) maps relevant values of x to Z[q, q−1], then it must map xj+1 to Z[q, q−1].

Therefore, as the q-binomial polynomials map [n]q to Z[q, q−1], the product

(P (xj+1)− Pj(xj+1))

[
x

xj+1

]
maps relevant values of x to Z[q, q−1]. As such, the polynomial

Pj+1(x) = Pj(x) + (P (xj+1)− Pj(xj+1))

[
x

xj+1

]
must also map relevant values of x to Z[q, q−1], as claimed.

We now show that the polynomial Pj(x) is an element of Rd
q . Because we already know
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that Pj(x) maps relevant values of x to Z[q, q−1], we need only to show that Pj(x) lies in

Q(q)[x]. To do so, we proceed by induction on j, noting that P1(x) = P (x1) is a constant

expression in Z[q, q−1], and therefore must lie in Q(q)[x]. We now suppose that the polynomial

Pj(x) lies in Rd
q . Because Pj(x), P (x) ∈ Rd

q , we know that P (xj+1)−Pj(xj+1) lies in Z[q, q−1],

while
[

x
xj+1

]
lies in Rd

q because
[
x
k

]
is an element of Rq. Thus, the product of these two terms

is also in Rd
q , so Pj+1(x) must be in Rd

q as well, as desired.

We now know that P(k+1)d(x) is in

SpanZ[q,q−1]

{[
x

xj

]
, 1 ≤ j ≤ (k + 1)d

}
.

As such, we have reduced our theorem to showing that P(k+1)d(x) = P (x).

To prove that P(k+1)d(x) = P (x) for all x, we show that by induction on d that their

difference is precisely the zero polynomial. We first note that if d = 1, then we have two

polynomials in one variable that are equal at k+1 points, which means that their difference

has k+1 zeros and therefore is the zero polynomial. Next, we show that if P(k+1)d−1(x) = P (x)

for any polynomial P (x) in Rd−1
q , then P(k+1)d(x) = P (x) for any polynomial P (x) ∈ Rd

q .

By setting x1, x2, x3, . . . , xd−1 to values in [0]q, [1]q, [2]q, . . . , [k]q, the resulting polynomial

in xd has degree at most k and evaluates to 0 at k + 1 distinct values of xd. As such,

this polynomial is the zero polynomial no matter what values in [0]q, [1]q, [2]q, . . . , [k]q we

plug in for x1, x2, . . . , xd−1. As such, when we consider the polynomial in Rd−1
q given by

P (x1, x2, . . . , xd−1, [n]q) for any fixed n ∈ Z, we know it is the zero polynomial by our

inductive hypothesis. Thus, the difference P(k+1)d(x)−P (x) is precisely the zero polynomial,

as claimed.

Other than generalizing Rq to d dimensions, we can also generalize R+
q and R−

q , although

these generalizations don’t translate as nicely into non-q-deformed sets.
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5 Generalizations of R+
q , R−

q to d dimensions

We define the following d-dimensional generalizations of R+
q , R−

q , R+,s
q , and R−,r

q .

Definition 5.1. We define

Rd,+,s
q := {P (x) ∈ Q(q)[x] : P ([n]q) ∈ Z[q], ni ≥ si, 1 ≤ i ≤ d} ,

where [n]q = ([n1]q, [n2]q, . . . , [nd]q) with n ∈ Zd, s ∈ Zd, and x ∈ Z[q, q−1]d.

Definition 5.2. We define

Rd,−,r
q :=

{
P (x) ∈ Q(q)[x] : P ([n]q) ∈ Z[q−1], ni ≥ si, 1 ≤ i ≤ d

}
,

where [n]q = ([n1]q, [n2]q, . . . , [nd]q) with n ∈ Zd, r ∈ Zd, and x ∈ Z[q, q−1]d.

We further define that

Rd,+
q := Rd,+,0

q , and Rd,−
q := Rd,−,0

q ,

where we define c = (c, c, . . . , c) for any constant c. We also define n + c = n + c for any

constant c.

We extend the shift operator S to define

SmP (x) =

(
d∏

i=1

Smi
i

)
P (x)

where Si acts only on xi. Note that Si is still an isomorphism on Rd
q . The bar involution is

still defined to act on all xi.

We start by finding some bases for Rd,+,s
q and Rd,−,r

q .

Lemma 5.1. We have that Rd,+
q ⊆ Rd

q .

For the proof of Lemma 5.1, see Appendix G.

Theorem 5.2. We have that

14



1. The ring Rd,+,s
q has a basis given by{

S−s

[
x

k

]
,k ∈ Nd

0

}
as a Z[q]-module.

2. The ring Rd,−,r
q has a basis given by{

S−r

[
x

k

]
,k ∈ Nd

0

}
as a Z[q−1]-module.

Proof. We note that Rd,+,s
q = S−sRd,+

q , so the first part of the theorem reduces to showing

that
{[

x
k

]
, k ∈ Nd

0

}
forms a basis for Rd,+

q as a Z[q]-algebra. We note that by Lemma 5.1,

the set Rd,+
q ⊆ Rd

q , hence, we can write that

P (x) =
∑
k

fk(q)

[
x

k

]
for any P (x) ∈ Rd,+

q , with some finite set of vectors k ∈ Nd
0 and functions fk(q) ∈ Z[q, q−1].

Suppose, for the sake of contradiction, that P (x) is not in the linear span of
{[

x
k

]
, k ∈ Nd

0

}
with coefficients in Z[q].

Because we have that qm
[
x
k

]
must be in Rd,+

q for any nonnegative integer m, we can

further assume that fk(q) ∈ q−1Z[q−1]. By our assumption on P (x), there must be some

vector k where fk(q) is still nonzero. We now plug in x = [k]q where k minimizes
d∑

i=1

ki over

vectors where fk(q) ∈ q−1Z[q−1] is nonzero. We must therefore have

P (x) = fk(q)

[
x

k

]
= fk(q) ∈ q−1Z[q−1].

At the same time, we must also have that P (x) ∈ Z[q] since P lies in Rd,+
q , so we must have

that fk(q) = 0, contradiction.

As such, we have by strong induction that {
[
x
k

]
,k ∈ Nd

0} forms a basis for Rd,+
q as a

Z[q]-algebra. Therefore, the first part of this theorem is true.
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The second part of this theorem follows simply by taking the bar involution everywhere.

6 Conclusion

We have examined the rings R+,s
q ∩ R−,r

q , Rd
q , Rd,+s

q , and Rd,−,r
q and have found bases

for all of these sets. The basis for Rd
q , in particular, is a very natural generalization of

the basis for standard integer-valued multi-variable polynomials. The bases for the rings of

multi-variable polynomials are also very natural generalizations of the bases for the single

variable analogues.

Further potential directions of research involve other generalizations made by Harman

and Hopkins, including the Frobenius and quantum Frobenius maps (see their Section 7

[5]), a dilation operator defined but largely unexplored [5, Section 9.1], and the maximal

ideals of Rq (see [5, Sections 8, 9.4]). Another potential direction of research is to attempt

to generalize R+
q ∩R−

q to multiple variables in a meaningful way and to find its basis.
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A Results from Harman and Hopkins

We provide here a list of several properties from Harman and Hopkins [5].

Proposition (See Equation 2.2 and Propositions 1.2, 5.1, and 6.3 of [5]). We have that

1. For nonnegative integers n, k,[
n

k

]
q

= qk
[
n− 1

k

]
q

+

[
n− 1

k − 1

]
q

.

2. R+
q is freely generated as a Z[q]-module by the q-binomial polynomials

[
x
k

]
for k ∈ N0.

3. For integers m, we have Sm is an isomorphism of Z[q]-algebras mapping R+
q to R+,−m

q

and an isomorphism of Z[q−1]-algebras mapping R−
q to R−,−m

q .

4. For all nonnegative integers k we have[
x

k

]
= (−1)kq(

k+1
2
)Sk−1

[
x

k

]
= (−1)k

k−1∑
i=0

q(
k+1
2
)+(k−1−i)(k−i)

[
k − 1

i

]
q

[
x

k − i

]
.

B Proof of Proposition 2.1

We restate here the statement of Proposition 2.1 for the reader’s convenience.

Proposition. For nonnegative integers k and integers m, we have

qm
[
x

k

]
∈


R−

q iff m ≤
(
k+1
2

)
R+

q iff 0 ≤ m.

and q−m

[
x

k

]
∈


R+

q iff m ≤
(
k+1
2

)
R−

q iff m ≥ 0.

Proof. Note that for m ≥ 0, we have qm ∈ Z[q], so qm
[
x
k

]
∈ R+

q by Proposition 1.2 of [5].

For m < 0, we have qm
[
k
k

]
q
= qm ̸∈ Z[q], so qm

[
x
k

]
̸∈ R+

q for m < 0.
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We determine when qm
[
x
k

]
∈ R−

q . Note that

[−n]q − [m]q =
q−n − 1

q − 1
− qm − 1

q − 1
=

q−n − qm

q − 1
= q−n1− qn+m

q − 1
= −q−n[n+m]q

by the definition of [n]q.

Therefore, we have that [
[−n]q
k

]
=

∏k−1
i=0 ([−n]q − [i]q)

q(
k
2
)[k]q!

can be rewritten as

(−1)kq−nk−(k
2
)
∏k−1

i=0 [n+ i]q
[k]q!

= (−1)kq−nk−(k
2
)
[
n+ k − 1

k

]
q

.

We note that
[
n+k−1

k

]
q
∈ Z[q] is a polynomial in q, and therefore must have degree

k∑
i=1

(n+ i− 2)−
k∑

i=1

(i− 1) = k(n− 1).

Hence, the highest degree term in qm
[
[−n]q ]

k

]
has degree

m−
(
k

2

)
− nk + k(n− 1) = m−

(
k + 1

2

)
.

Because we already know that qm
[
[−n]q
k

]
is in Z[q, q−1], we know qm

[
x
k

]
lies in R−

q if and

only if the highest degree term of qm
[
[−n]q
k

]
q

has nonpositive degree. As such, we see that

qm
[
x
k

]
∈ R−

q if and only if m ≤
(
k+1
2

)
.

The second part of the proposition follows by taking the bar involution everywhere.

C Proof of Lemma 3.1

We restate here the statement of Lemma 3.1 for the reader’s convenience.

Lemma. For nonnegative integers k, we have the relations
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X(k) Bar(k) R+
q ∩R−,k−1

q

Y(k) R+
q ∩R−,k

q .

Proof. For all k ≥ 1, we have k+1
2

≥ 1, so
(
k+1
2

)
≥ k, thus X(k) ⊆ Bar(k). We also have that

any polynomial qm
[
x
k

]
is contained within R+

q . Furthermore, Sk−1qm
[
x
k

]
= (−1)kqm−(k+1

2
)[x

k

]
∈

R−
q for 0 ≤ m ≤

(
k+1
2

)
. As such, we have qm

[
x
k

]
∈ R−,k−1

q whenever we have 0 ≤ m ≤
(
k+1
2

)
,

so we must have Bar(k) ⊆ R+
q ∩R−,k−1

q .

We now show that Y(k) ⊆ R+
q ∩R−,k

q . Because

R+
q = SpanZ[q]

{[
x

k

]
, k ≥ 0

}
,

we know that Y(k) ⊆ R+
q . It remains to show that Y(k) ⊆ R−,k

q .

Consider any polynomial of the form

Pm(x) =
m∑
i=0

(−1)iq(
i
2
)
[
k −m+ i

k −m

]
q

[
x

k −m+ i

]
for 0 ≤ m ≤ k − 1. We have

Pm([n]q) =
m∑
i=0

(−1)iq(
i
2
)
[
k −m+ i

k −m

]
q

[
n

k −m+ i

]
q

=
m∑
i=0

(−1)iq(
i
2
)
[

n

k −m

]
q

[
n− k +m

i

]
q

=

[
n

k −m

]
q

m∑
i=0

(−1)iq(
i
2
)
[
n− k +m

i

]
q

.

Using Harman and Hopkins’ Equation (5.3), we see that

Pm([n]q) =

[
n

k −m

]
q

m∑
i=0

(
(−1)iq(

i+1
2
)
[
n− k +m− 1

i

]
q

+ (−1)iq(
i
2
)
[
n− k +m− 1

i− 1

]
q

)

= (−1)mq(
m+1

2
)
[

n

k −m

]
q

[
n− k +m− 1

m

]
q

.

We have

Sm−1

[
x

m

]∣∣∣∣∣
x=[n]q

=

[
n+m− 1

m

]
q

,
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so [
x

m

]∣∣∣∣∣
x=[n−k]q

= (−1)mq(
m+1

2
)
[
n− k +m− 1

m

]
,

so hence

Pm([n]q) =

[
n

k −m

]
q

[
x

m

]∣∣∣∣∣
x=[n−k]q

.

Thus,

Pm([n]q) ∈ Z[q−1]

for n < k −m.

For k − m + 1 ≤ n ≤ k, we know
[
n−k+m−1

m

]
q
= 0, so Pm([n]q) = 0. At n = k − m, we

have

Pm([n]q) = (−1)mq(
m+1

2
)
[
[−1]q
m

]
.

Because

[−1]q − [k]q =
q−1 − 1

q − 1
− qk − 1

q − 1
= −q−1[k + 1],

we have [
[−1]q
m

]
=

(−q−1)m

q(
m
2
)

= (−1)mq−(
m+1

2
).

Therefore, Pm([k −m]q) = 1, so Pm([n]q) ∈ Z[q−1] for all n ≤ k.

This shows that Y(k) ⊆ R+
q ∩R−,k

q , as claimed.

D Proof of Lemma 3.2

We restate here the statement of Lemma 3.2 for the reader’s convenience.

Lemma. For any integers r, s, the sets of the form Sm−s X(k) or Sk−r−1 Bar(k) with max(0, r−

s+1) ≤ k and 0 ≤ m ≤ k+ s− r−2 are pairwise disjoint. When r ≥ s, the set S−sY(r− s)

is also disjoint from the previous sets.

Proof. We note that the leading term of a polynomial Smqi
[
x
k

]
is q(m+s)k+iS−s

[
x
k

]
, so the

leading terms of elements in the sets Sm−sX(k) and Sk−r−1 Bar(k) are all different. As such,
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these sets must be disjoint. Note that because k > r − s, none of these sets have elements

with highest order terms of the form (−1)iq(
i
2
)S−s

[
x

r−s

]
. For r ≥ s, the set S−s Y(r − s) has

elements whose highest order terms are of the form (−1)iq(
i
2
)S−s

[
x

r−s

]
, so S−sY(r − s) is

disjoint from the other sets. Therefore, the desired sets are indeed distinct.

E Proof of Lemma 3.3

We restate here the statement of Lemma 3.3 for the reader’s convenience.

Lemma. For any integers r, s, the elements of Z(r, s) are linearly independent over Z.

Proof. As in the proof of Lemma 3.2, we note that most of the elements do not have the

same leading term, so the only possible linear dependence must have highest order terms in

S−sY(r− s). We know, however, that the elements in S−s Y(r− s) have the lowest order in

x of any elements in Z(r, s). As such, if the elements of Z(r, s) are not linearly independent

over Z, then the elements of S−sY(r− s) cannot be linearly independent over Z. It remains

to show that the elements of S−s Y(r − s) are linearly independent over Z.

We first note that the degree in q of
[
k−m+i
k−m

]
q

is
(
k−m+i

2

)
−
(
k−m
2

)
−
(
i
2

)
= i(k −m), so

the highest order term of a polynomial in S−sY(r − s) is

(−1)mq(
m
2
)+m(k−m)S−s

[
x

k

]
= (−1)mq(

k
2
)−(k−m

2
)S−s

[
x

k

]
.

By making some substitutions and swapping the sums, we know that the sum of the terms
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in S−sY(r − s) is
k∑

m=0

m∑
i=0

(−1)iq(
i
2
)
[
k −m+ i

k −m

]
q

[
x

k −m+ i

]

=
k∑

m=0

m∑
i=0

(−1)m−iq(
m−i
2
)
[
k − i

k −m

]
q

[
x

k − i

]

=
k∑

i=0

k∑
m=i

(−1)m−iq(
m−i
2
)
[
k − i

k −m

]
q

[
x

k − i

]

=
k∑

i=0

k−i∑
m=0

(−1)mq(
m
2
)
[
k − i

m

]
q

[
x

k − i

]
.

Now, by using using a result from Harman and Hopkins’ [5, Equation 2.2], the preceding

sum expands to
k∑

i=0

[
x

k − i

] k−i∑
m=0

(−1)mq(
m
2
)

(
qm
[
k − i− 1

m

]
q

+

[
k − i− 1

m− 1

]
q

)
. (1)

In Equation 1, we note that

(−1)mq(
m
2
)qm
[
k − i− 1

m

]
q

+ (−1)m+1q(
m+1

2
)
[
k − i− 1

m+ 1− 1

]
= 0,

so our sum simplifies to
k∑

i=0

[
x

k − i

]([
k − i− 1

−1

]
q

+ (−1)k−iq(
k−i+1

2
)
[
k − i− 1

k − i

]
q

)
.

Because
[
k−i−1
k−i

]
q
= 0 is always true while

[
k−i−1
−1

]
q
= 1 is only true for k − i = 0, we see

that our sum simplifies to
[

x
k−k

][
k−k−1
−1

]
q
= 1.

As such, we can replace the
k∑

i=0

(−1)iq(
i
2
)
[
x

i

]
element in Y(k) with 1, thereby producing a set of k+1 elements whose leading coefficients

have distinct orders in q. Therefore, the elements in Y(k) are linearly independent, so those

in Z(k) are linearly independent as well.
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F Proof of Theorem 3.4, Cases 2 and 3

We restate some background about Theorem 3.4, Cases 2 and 3 for the reader’s conve-

nience. In Theorem 3.4, we show that Z(r, s) is a basis for R+,s
q ∩ R−,r

q as a Z-algebra. In

Cases 2 and 3, we consider a specific polynomial P (x) in this set with degree k ≤ r− s that

we assume is not in the span of Z(r, s). Our goal is to derive a contradiction and show that

P (x) is, in fact, in the span of Z(r, s) as a Z-algebra.

Proof. Case 2: We assume that k = r − s. The polynomial SsP (x) lies in R+
q ∩R−,r−s

q , so

SsP ([n]q) ∈ Z for each integer n in 0 ≤ n ≤ k. We have from the proof of Lemma 3.1 (see

Appendix C for the proof and for the definitions of Pm) that for integer values of n,

Pm([n]q) =
m∑
i=0

(−1)iq(
i
2
)
[
k −m+ i

k −m

]
q

[
n

k −m+ i

]
q

=


0 0 ≤ n < k −m

0 k −m < n ≤ k

1 n = k −m.

Therefore, for any sequence of k + 1 integers P ([0]q), P ([1]q), . . . , P ([k]q), we see that

P ′(x) =
k∑

n=0

SsP (x)
∣∣∣
x=[n]q

Pn(x) =
k∑

n=0

P ([n+ s]q)Pn(x)

is a linear combination of the elements of Y(k) such that P ′([n]q) = P ([n]q) for each integer

n in 0 ≤ n ≤ k. As such, our polynomial P ′(x) − SsP (x) has degree k and k + 1 zeros, so

P ′(x) = SsP (x). Thus, we see that

P (x) =
k∑

n=0

P ([n+ s]q)S
−sPn(x),

contradicting our assumption that P (x) is not in SpanZ Z(r, s).

Case 3: We assume that k < r− s. We recall that SsP (x) ∈ R+
q ∩R−,r−s

q , so SsP ([n]q) ∈ Z

for all 0 ≤ n ≤ r− s. We show that P (x) is a constant polynomial, and suppose for the sake

of contradiction that it is not a constant polynomial.
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Let n be the smallest positive integer such that the coefficient in SsP (x) on
[
x
n

]
is not

the zero polynomial. we have 0 < n ≤ k < r − s, so we plug in x = [n]q, which gives that

SsP ([n]q) = fn(q) is an integer. As such, we have mn = 0. We now use strong induction on

i to show that mn+i =
(
n+i
2

)
−
(
n
2

)
.

We have already shown the base case, i = 0, so it remains to show that if mn+j =(
n+j
2

)
−
(
n
2

)
for all 0 ≤ j < i, then we have mn+i =

(
n+i
2

)
−
(
n
2

)
. We note that the degree of[

n+i
n+j

]
q

is
(
n+i
2

)
−
(
n+j
2

)
−
(
i−j
2

)
= (n+ j)(i− j). As such, the degree of

[
n+i
n+j

]
q
fn+j(q) is

(n+ j)(i− j) +mn+j = (n+ j)(i− j) +

(
n+ j

2

)
−
(
n

2

)
=

n+ j

2
(n+ 2i− j − 1)−

(
n

2

)
.

This is maximized when n+ j and n+ 2i− j − 1 ≥ n+ 2(j + 1)− j − 1 = n+ j + 1 are as

close as possible, which is when j = i− 1. This means that the polynomial
n+i−1∑
m=n

fm(q)

[
n+ i

m

]
q

has degree
(
n+i
2

)
−
(
n
2

)
. Also note that the polynomial

[
n+i
m

]
q
fm(q) is identically zero for

0 < m < n. For m = 0, we note that SsP (0) = f0(q). Hence, f0(q) is a constant polynomial,

and
[
n+i
0

]
q
f0(q) is also constant. As such,

n−1∑
m=0

fm(q)

[
n+ i

m

]
q

is a constant polynomial, so the degree of
n+i−1∑
m=0

fm(q)

[
n+ i

m

]
q

is
(
n+i
2

)
−
(
n
2

)
. Because P ([n + i]q) evaluates to an integer, fn+i(q) must also have the

same degree. Thus, by strong induction we know that fn+i(q) has degree
(
n+i
2

)
−
(
n
2

)
for

0 ≤ i ≤ k − n.

However, in this case, plugging in x = [k + 1]q must give a polynomial in q of degree(
k+1
2

)
−
(
n
2

)
> 0. Therefore, SsP ([k + 1]q) ̸∈ Z even though we have k + 1 ≤ r − s. As such,
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P (x) does not lie in R+,s
q ∩ R−,r

q , contradiction. Therefore, the only possible polynomials

P (x) are the constant polynomials. However, because S−s(1) = 1, we have from the proof of

Lemma 3.3 (see Appendix E for the proof) that 1 is a linear combination of the elements in

S−sY(k), so constant polynomials are also in SpanZ Z(r, s). Therefore, there is no polynomial

P (x) ∈ R+,s
q ∩R−,r

q with degree in x less than r − s that is not in the SpanZ Z(r, s).

G Proof of Lemma 5.1

We repeat here the statement of Lemma 5.1 for the reader’s convenience.

Lemma G.1. We have that Rd,+
q ⊆ Rd

q .

Proof. We shall prove that for any polynomial P (x) ∈ Rd,+
q , we have P (x) ∈ Rd

q by inducting

on the degree of P (x). Let the highest degree term in P (x) have degree k.

The base case, k = 0, is true because constants lying in Z[q] must also lie in Z[q, q−1].

We now show that if P (x) ∈ Rd
q for all polynomials P (x) ∈ Rd,+

q with degree less than

k, then P (x) ∈ Rd
q for all polynomials P (x) ∈ Rd,+

q with degree k as well.

We note that P ′(x) = S1P (x) − P (x) must have degree at most k − 1, and must lie in

Rd,+
q . As such, P ′(x) is in Rd

q by the inductive hypothesis. We have from the definition of

P ′ that P ([n− 1]q) = P ([n]q)− P ′([n− 1]q). As such, we have that for n ∈ Zd,

P ([n]q) = P ([n+ n]q)−
n−1∑
i=0

P ′([n+ i]q),

where we set n = max
1≤i≤d

|ni|.

We must have that n + n ∈ Nd
0, so P ([n + n]q) ∈ Z[q]. We also have that P ′([n + i]q) ∈

Z[q, q−1] for any integer i, so we therefore have that P ([n]q) ∈ Z[q, q−1] as well for any n ∈ Zd.

As such, we have that P (x) is in Rd
q , so by strong induction, we have that Rd,+

q ⊆ Rd
q .
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