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Abstract

In 2006, Postnikov derived the combinatorics of the nonnegative grassmannian in his fa-
mously dubbed paper “Total Positivity.” In it, Postnikov was able to describe the bridge
length (similar to the notion of length in a permutation) of A-type Weyl groups, which
had the capacity to fully describe the dimensional theory of the nonnegative Grassmannian.
However, these results have been limited to characterizing only elements of type A Weyl
groups. We present similar characterizations for the elements of the remaining types of Weyl
groups (Bn, Cn, Dn, E6−8, G2, F4) and explicit bounds for their bridge lengths.



1 Introduction

Since Postnikov’s seminal paper [1] detailing the total positivity of the Grassmannian,

the field of algebraic combinatorics has seen a burgeoning interest in the combinatorial

connections with inherently topological objects. Initially, Hermann Grassmann motivated

the Grassmannian to efficiently describe continuity of a linear space by looking at it as a

topology, and the advent of algebraic geometry led to the study of the Grassmannian in a

lens unrelated to combinatorics, let alone permutations.

The Grassmannian is a way to look at a single fibre of a root subspace with continuity

and homotopy. Specifically, it is a set of k dimensional subspaces of an n dimensional vector

space, V . In an effort to efficiently parametrize the Grassmannian, one injects G(k, n) →

P
(∧k V

)
, which is the projectivization of the exterior power of V , referred to as the Plücker

Coordinates. In this case, the nonnegative Grassmannian is exactly the restriction to an

image greater than of all k-multivectors with positive divisors.

In his proof, Postnikov [1] showed that these nonnegative Grassmannians can generate

graphical networks. Briefly consider this set of networks generated by a Grassmannian with

sources, S, and sinks T and order |V |. Call this set Net(k, n), where |S| = k and |V | = n,

and let the weight of an edge be w(e). Now, consider all paths in this network, and define

the boundary measurement, Mij =
∑

p:S→T
∏

e∈P w(e), where {Mij} will represent a matrix.

The Lindström–Viennot lemma [2] was able to express these determinants as det(M) =∑
disjoint P

∏n
i=1

∏
e∈pi w(e), where the criteria for disjoint paths prevents considering two

minors different if they are equivalent by action on GL(n).

In combination, one can completely genearte the Grassmannian from a combinatorial

point of view. The combinatorics were elucidated when Postnikov initiated the study of

these networks embedded in a disk known as plabic graphs (Figure 1).

A Plabic graph is planar, and by convention, bi-colored, meaning its vertices are 2-colored

1



Figure 1: Plabic graph with the vertices colored to indicate right turns on black and left
turns on white.

to indicate direction. A subclass of these plabic graphs are known as bridge graphs (Figure

2), which are in bijection with permutations such that each edge in the graph switches the

two elements at the edge’s endpoints much like a transposition would. These permutations

describe type A Weyl group elements. In this paper, we expand these known graphical

connections to the other classical types of Weyl groups and investigate a property of these

Weyl groups that describe the dimension of the Grassmannian and many other quantities:

the bridge length. Postnikov [1] was able to find an expression to find the bridge length of

type A Weyl group elements and relate these lengths to the positive Grassmannian.

However, for all other Cartan-Killing types, the elements are more abstract than per-

mutations, and as a result much less concretely grounded in the networks generated by the

nonnegative Grassmannian. In this paper, we look at all other classical types of Weyl groups

(Bn, Cn, Dn) as well as some of the exceptional cases to determine explicitly, their bridge

lengths and connection with the positive Grassmannian.1

1Throughout this paper, we will mention the word “root.” Though it may seem different, root and trans-
position convey the same idea, but in some cases, we defer to root as to clarify the idea that transpositions
only apply to permutations (and not to the more abstract elements of Weyl groups for types other than An)
is false.
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2 Preliminaries

Weyl Groups

Fix a finite dimensional Q-vector space E equipped with a symmetric bilinear form (, ).

For a nonzero vector v ∈ E, let rv denote the reflection about the hyperplane orthogonal to

v. Given a root system R, its Weyl group is defined to be the subgroup of GL(E) generated

by reflections rα : E → E with α ∈ R. Fix a generic linear form f : E → Q. Then

{α ∈ R : f(α) > 0} is the set of positive roots, R+, and Π ⊂ R+ are the simple roots, such

that all the positive roots can be written as a nonnegative linear combination of simple roots.

The length, `(w) of an element of a Weyl group is the minimum number of reflections of a

root over a hyperplane required to create that element. Note that because the generators

have finite orbits, the Weyl group is finite. The area between two roots of a root system is

known as a Weyl chamber and for type A these Weyl chambers have n! isometries which

makes Wa
∼= Sn.

Definition 2.1 (Root poset). For α, β ∈ R+, define α ≤ β if β − α can be written as a

nonnegative linear combination of simple roots. This gives a partial order on all positive

roots, which form the root poset.

We now introduce the most important definitions in this paper. Also, for an unspecified

type of Weyl group, we shall write Wt.

Definition 2.2 (Bridge decomposition). Let w ∈ Wt, be an element of a certain type

Weyl group. Then w = rs1rs2 . . . rs` is called the bridge decomposition if in its root poset

s1, . . . , s` ∈ R+ and for i < j, either si ≤ sj (non-decreasing), or (si) ∩ (sj) = ∅ (disjoint).

The non-decreasing and disjoint criteria will be referred to as the bridge conditions.

Definition 2.3 (Bridge length). For w ∈ Wt, define its bridge length `t(w) to be the smallest

` such that w can be written as rs1 · · · rs` and forms a valid bridge decomposition.
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The author should refer to Appendix A for the Hasse diagrams of the root posets for

all classical types of Weyl groups. An element’s bridge decomposition is diagrammatically

represented with a bridge diagram, such as Figure 2. Each root corresponds to a horizontal

bridge (edge between white and black vertex) in the decomposition, which moves downward

until there are no more roots that satisfy the non-decreasing or disjoint property. For example,

the first bridge in Figure 2 switches 2 and 3, and corresponds to the root e2 − e3. Further,

note that by the restriction placed on by the bridge conditions, we see that once a root is

used, every root after that must have a disjoint order or larger placement in the poset.

Figure 2: A bridge diagram (Bdn) of a type A Weyl group element, specifically 1234567 7→
3542671. Counting the bridges, we see this element has bridge length 8.

Permutations and Circular Diagrams

Embedding the Bridge diagram of an element of Wa in D2 creates a plabic graph [3].

The reader should realize that the planarity of the plabic graph is a result of the disjoint

order property from the bridge condition, so no two bridges intersect anywhere except for

endpoints. To help construct these bridge diagrams, we guide the construction with a Circular

Diagram.

Given a w ∈ Wa one can construct a circular diagram by drawing each of the n elements

on the perimeter of a circle and drawing a directed chord from i to j if w(i) = j. For example
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Figure 3 is the permutation 2413 where the direction of the arrow points i → w(i). In the

case where w(i) = i, we refer it as a self-loop.

Figure 3: The permutation 2413 of CB4

Postnikov described a procedure to systematically generate these bridge decompositions

from the circular diagram [1]. It entails making crossings, which are chords that intersect, into

alignments, which are chords that don’t intersect and point in the same direction. Formally,

the uncrossing is a root, ei − ej, that takes i 7→ w(j) and j 7→ w(i). From Figure 3, 12 and

43 make an alignment, 31 and 12 form a degenerate crossing and 24 and 31 form a crossing.

This procedure of exchanging the elements so that a crossing becomes an alignment forms

a bridge in the diagram corresponding to a root in the root poset for type A. The process is

depicted in Figure 4.

Figure 4: A crossing turned into an alignment through a transposition of i and j. This would
represent a bridge in the bridge decomposition of the permutation.

Finding the bridge length with the circular diagram amounts to using appropriate roots

in the root poset for type A satisfying the bridge conditions of w until the circular diagram
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has only self-loops (w(i) = i) referring back to itself (the identity permutation). These loops

become fixed points and must have a specified direction, called decoration, as the direction

of the loops can affect the number of alignments. One can alternatively look at a loop as a

degenerate chord that begins and ends at the same point to look at alignments more easily.

Additionally, note that a counterclockwise (ccw) and clockwise (cw) decoration makes an

alignment.

Total Positivity of the Grassmannian

Let Gr(k, n) be the grassmannian of k-dimensional subspaces of an n-dimensiona space.

Its elements are rank k homomorphisms modulo action on GL(k), which makes Gr(k, n) =

GLk/Mat×kn, where Mat×n is the space of k×nmatrices of rank k. This leaves the dimGr(k, n) =

k(n− k).

Combinatorially, the basis vectors form the columns of an element as a matrix, we define

the matroid associated with the grassmannian, M ⊆
(
[n]
k

)
. For a given I ∈ M and for

V ∈ Gr(k, n), A is the associated matrix with columns as the basis vectors of the matroid

generated by MV such that ∆I(A) 6= 0, where ∆I(A) is the minor with column indices

specified by the elements in I. Formally, we can create a correspondence between spaces of

the Grassmannian and partitions of the matroid, such that:

SM = {V ∈ Gr(k, n) :MV =M}. (1)

Flag Varieties of a Combinatorial Object

Let Gr(1,Rn) be the space of lines passing through the origin in n-dimensional Euclidean

space. Suppose we have a set of flags F(Rn), 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Rn. For a

given Vp, we can look at the basis vectors of a subspace and the position of the pivots of the

basis creates a unique permutation w ∈ Sdim(Vp)
∼= Wa. Each of these permutations forms a
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single cell structure, known as the Schubert cell, Ωw. These Schubert cells are subcomplexes of

the Grassmannian and are locally homeomorphic to R`A(w) (recall `a(w) is the bridge length

of w ∈ Wa
∼= Sn [1]. This decomposition results in the following: Gr(k, n) =

⋃
w∈Sdim(Vp)

Ωw
∼=⋃

w∈Sdim(Vp)
R`A(w). The Grassmannian is also a variety structure since it is the intersection

of multiple projective hypersurfaces (through the Plücker embedding). In fact, this is also

apparent from the minors of an element.

Definition 2.4. (Positive Grassmannian) The Positive Grassmannian, Grp(k, n), is the

Grassmannian whose entire image under the Plücker embedding is greater than 0.

Currently, these positive Grassmannians are only known to be in equivalence with the

bridge length of type A Weyl group elements, so an aim of this project is to find their

relationships with other types of Weyl groups.

Previous Work

Most combinatorial work with the Grassmannian is due to Postnikov. We summarize

the relevant results below. Note that codimSpM = dim(Grp(k, n)) − dim(SpM), and SpM =

SM ∩ Grp(k, n), so dimSpM = dimGrp(k, n)−codimSpM. The analog of these dimensions to

the bridge length of permutations are represented by a flag within this stratification.

Theorem 2.5 (Postnikov). For a Weyl group element of type A, dimSpM = `a(w) = k(n−

k) − A(w), where A(w) is the number of alignments in the circular diagram of w, and k is

|{i |w−1(i) < i}|.

Proof. Recall that the Grassmannian, Gr(k, n) has dimension k(n − k). Additionally, the

Grassmannian is expressible as a decomposition of Schubert cells, which are in bijection

with permutations. From this decomposition, we can generate an entire set of flags F(Rn) =⊔
w∈Sn

Ωw. One can construct a bijection [1] between the permutations present in the sym-

metric group by constructing flags with bases given by the rows of the matrix equal to the
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Schubert cell. By the decomposition presented in Section 1.3, we can reconstruct the Grass-

mannian, but this union still preserves the bijection between the cells and the stratifications

so we are done.

Example 2.6. In Figure 3, we see that n = 4, k = 2, and A(w) = 1. So through computation

of Theorem 2.5, `A(2413) = 3.

3 Results for types B and C

Weyl groups of type B and C

Wb is the group of all permutations w of {±1, . . . ,±n} such that w(i) = −w(−i) for

1 ≤ i ≤ n. From the Dynkin diagrams, the only difference between type Bn and Cn are

the relative lengths of the roots, and by linearty of the reflection maps, they form the same

group (i.e., Wb
∼= Wc.) although their root posets are different.

A Bridge diagram for Types B, C, and D

Figure 5: This is a permutation of the Weyl group type C on three elements. Note the
similarities to that of Wa on 2n elements. From first to last, we see e1− e2, e2 + e3, 2e2, and
e1 + e2. We know this decomposition is of type C, since it is the only type to have a root
that switches 2 and -2 (2e2) that is larger than the rot that switches the 2 and -3.

We will use Figure 5 to describe how to construct such a bridge diagram. We introduce a
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new representation of a bridge decomposition that is analogous to that of type A. Order the

elements from 1 . . . n and backward −n · · ·−1. A root of the form ei−ej switches the i and j

and −i and −j. A root of the form ei+ ej switches i and −j and −i and j, and finally a root

of the form 2ei switches i and −i. Most importantly, however, is that this decomposition of

roots follows the bridge decompositions. We shall prove this more rigorously next, though

it is immediately clear if one changes w ∈ W from the definition presented above (in the

Preliminaries) to w ∈ W o Z2

Note that this decomposition follows the order ideal criteria by having no crossings from

smaller bridges. The edges intersecting in the middle of 3 and −3 are demonstrative of the

roots higher in the Hasse diagram for type A root poset. In the decomposition, that root is

e2 + e3, but because of the w(i) = −w(−i) condition, we construct this dual bridge. This

idea of the dual bridge is what makes this diagram a valid representation.

Revisiting the Circular Diagrams

For other Weyl group types, there is a similar way to construct the bridge diagram from

their circular diagrams. Laying {1, . . . , n} on one half and with opposites directly across

{−n, . . . ,−1}, the alignments and crossings are then defined exactly as they are for type A.

Therefore, the standard procedure Postnikov detailed to form the bridge diagrams applies

exactly here with the additional roots presented by the higher structure of Weyl groups for

type B and C.

Bounds of lengths

From our bridge decomposition construction, we can provide an exact bound that details

the lengths.

Theorem 3.1. Let `
′
c(w) be a length of a type C Weyl group element satisfying the bridge
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conditions but using only R+/{ei + ej}. Then `
′
c(w) = n2−A(w)+|{i>0 | w(i)<0}|

2
, where n is the

number of positive values in w and A(w) is the number of alignments in the circular diagram

of w.

Proof. Consider an element of the Weyl group of type C. We will construct a bridge de-

composition of this element that only uses root types ei − ei+1 and 2en. Suppose we have a

decomposition that is represented similarly as the bridge diagram of types B and C. Suppose

that there were a root in this valid decomposition of the form ei − ej that couldn’t validly

represent such a decomposition. Then there must have been a root above that is nondisjoint

since the less than condition can’t apply as the root appears after. This would imply that

there was a fixed point which directly contradicts the existence of this invalid ei− ej root, so

these roots can validly form a decomposition. Similarly, for 2ei roots, the elements must be

nondisjoint, which once again contradicts the existence of these invalid 2ei roots. Therefore,

such a decomposition exists.

Recall that constructing the bridge decomposition from the circular diagram requires that

in the end there are only self-loops that represent the identity permutation. This means for

type C, all elements on the circular diagram are fixed. These fixed points must be decorated

by specifying a direction, and because w(i) = −w(−i), there must be an equal number of

clockwise (cw) points as counterclockwise (ccw) points. Without loss of generality, suppose

all positive n are cw and all negative n are ccw. This forms a total of n2 alignments, which

implies there must be exactly n2 − A(w) new alignments formed by the last transposition

that makes idn. Whenever we make a crossing an alignment through a root ei− ej, we must

make sure that all elements in between are fixed points. Suppose not, then after the crossing

is made into an alignment, for all i ≤ k ≤ j, there must eventually be a root that transposes

k to a fixed point. But by our bridge conditions, this would mean However, this would mean

there is a root, ek − eq or 2ek that are larger than ei − ej, or if the transposition is (i,−i),

2ei, both of which contradict i < k, which implies that the roots are non-disjoint so all k
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must be fixed.

Notice that this means for every simple uncrossing with ei− ej the number of alignments

increases by 2, one for (i, j) and one for (−i,−j). Similarly, the number of alignments incrases

by 1 using a 2ei root. Call the set of all uncrossings by ei−ej, T and the set of all uncrossings

by 2ei, T̃ . In the reduced decomposition of w = t1t2 . . . t`, there is no specified interval for T

and T̃ , so there is no way to partition the sizes easily. However, notice that a root of the form

(ei− ej) cannot move i < 0 7→ i > 0, so asymptotically, {i > 0 | w(i) < 0} = o(|T̃ |). Further,

note that there can be a maximum increase in A(w) by 1, from 2ei and that ` = |T | + |T̃ |.

Now, notice that 2|T |+ |T̃ | ≥ n2 −A(w) and |T̃ | = |{i > 0 |w(i) < 0}|. Adding the two, we

get `c(w) = n2−A(w)+|{i>0 | w(i)<0}|
2

.

However, since this was for a specific construction, we can’t conclude that this length is

definteively minimal. For that we need to prove a lower bound. We prove this by looking at a

minimal and ideal bridge diagram representation. We can look at the number of alignments

needed to be formed as once again n2 − A(w), but this time, we can’t guarantee that the

number of alignments increases by exactly 2 or 1 this time, since it could still be ideal to

make an alignment a crossing to use a different root (effectively reducing the number of

alignments). This implies that for our set T , the number of alignments increases by at most

2, and T̃ , at most 1. This means that for a given |T | times we apply a root of the form

ei − ej, the alignments increase by at most 2|T | times and similarly |T̃ |, exactly |T̃ | more

alignments. Then we get 2|T |+ |T̃ | ≥ n2 −A(w). Now since we can’t give a precise amount

number of |T̃ |, we must say that |T̃ | ≥ |{i > 0 |w(i) < 0}|. Adding the preceding inequalities

gives our lower bound.

One might wonder if because of the similar root posets of type B and C, there may be a

relationship between their lengths, and that is precisely so:

Lemma 3.2. Deleting any r ∈ R+ maintains the hierarchy in a root system.
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Proof. Recall the generation of the Hasse Diagram from a root system. Since the first layers

are all simple roots, their deletion must result in erasing everything above it, so the hierarchy

is preserved.

Next, consider a positive root. Since this is a nonnegative linear combination of simple

roots, look at an ordering of these elements, a1la2la3l· · ·lan, and consider a 3-progression,

a1 · · · l am−1 l am l am+1 . . . an and delete am. The hierarchy doesn’t break since as roots

they must be expressible as unique combinations. Therefore, if (am+1) ∩ (am) = ∅, then the

am+1 root can’t be written as a unique combination without am. And if it is smaller in the

poset, then if it wouldn’t be possible to express am+1 without appending a root of am, so am

would have to exist. In the case we delete it, then am and {ai|amlai} must also be deleted as

to not make a larger non disjoint exist in the root system, so the hierarchy is preserved.

Corollary 3.3. For w ∈ Wa−c, `b(w) = `c(w) for Π = {ei − ej, 2ei}.

Proof. Let Hb and Hc denote the hasse diagrams for types B and C, respectively. Further,

for r ∈ R+ let {r} denote the set of all roots of that form. From Lemma 3.2, deletion will

construct a valid root poset, then
⋂
r∈{ei+ej}Hb ∩Hc ≡ Ha ∪{2ei}. Since the ei and 2ei roots

are in the same hiearchy after the deletion of the {ei+ej} roots, distinguishing between them

is only geometrically different. So we can conclude that with the same w ∈ Wa,Wb, andWc,

`b(w) = `c(w).

4 Equalities among types A, B, and C

Recall that the root systems of B and C are larger than that of A, so we can form an

inclusion Ha ↪→ Hb, which allows us to see for w ∈ Wa, `a(w) ≥ `b(w) = `c(w). Note that

here, even though w is a type A Weyl group, one can look at it’s bridge length using roots

of a type B or C root system. This could make the bridge length smaller, and consequently,

the process of simplifying the circular diagrams more ’efficient,’ in the sense it will require
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less roots. Of more interest is when w ∈ Wa has equal lengths for all bridge types (i.e.,

`a(w) = `b(w) = `c(w)).

Theorem 4.1. In the reduced decomposition of the minimum length w ∈ Wa, the first root

in the decomposition cannot be a simple root.

Proof. Suppose for some w ∈ Wa, `a(w) > `c(w). Let S be the set of all w such that

`a(w) > `b(w). By the Well-Ordering Principle, S must have a least element. Let r be the

smallest element in S, by measure of its length. Decomposing r, we get r = t1t2 . . . t`c(w).

Then t−11 r = t2t3 . . . tl and `c(t
−1
1 r) = l − 1. Furthermore, note that since t−1w ∈ Sn, and

`c(t
−1
1 w) < `c(r), by the minimality of r, `a(t

−1
1 r) = `c(t

−1
1 r) = l − 1. From the beginning,

`a(r) ≥ `c(r) + 1 = l + 1, which further implies that `a(r)− `(t−1r) ≥ 2.

Now consider when t1 is a simple transposition (i, i + 1) from its CBn, we know that it

either forms a crossing from an alignment or an alignment from a crossing. In the former,

the length increases by 1 and in the latter it decreases by 1. In either, case ±1 < 2, so t1

cannot be a simple transposition.

Lemma 4.2. For all four classical root systems A, B, C, and D the maximum increase in

alignments from an ei − ej root is 4n− 6.

Proof. Consider a circular diagram on 2n vertices. Since for Bn—Dn we must have w(i) =

−w(−i), we look at the case presented in Figure 6. Note that for any transposition, we must

have 1 ≤ i < j ≤ n. Note that a single transposition, ei − ej can only form more than one

alignment if there are chords that begin i < k < j and end w(i) < w(k) < w(j). This means

that in order to form the most alignments, one must have the most chords lying in between

the values i and j. To optimize this, we allow for the largest difference between i and j that

is possible so that more ks can fit in between. From above, we see that this bound is when

i = 1 and j = n. This accounts for a difference of j − i− 1 = n− 1− 1 = n− 2.
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This means there can be a maximum of n − 2 chords lying in between that can form

alignments when we apply ei − ej. Suppose all these chords take k 7→ −k. After we apply

ei − ej, two more horizontal chords are formed that take i 7→ −i and j 7→ −j. Call them I

and J , respectively. To enumerate, we note that there are n − 2 alignments formed with I

and likewise with J . In addition, we must account for the alignment created between I and

J and the additional alignments created by w(i) = −w(−i), which doubles the total. The

total is then 2(1 + 2(n− 2)) = 4n− 6.

Figure 6: Left: Before transposition. Right: After transposition.

Corollary 4.3. `D(w) ≤ n2−A(w)
4n−6

Proof. This follows from Lemma 4.2.

5 Cyclic Shifts for Extending the Grassmannian

Grassmannian construction for B and C

From the tight connection with decorated permutations above, it is natural to ask whether

there is a nontrivial connection for types outside of type A. We sketch out a constructive

method to arrive at exact bounds: Observe that the Weyl groups for type B and C are
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specific sub-cases of type A, with the added constraint that for a w ∈ WB,C , w(i) = −w(−i).

Therefore, for a stratification of the positive Grassmannian, we can extend the results from

A to types B and C. Consider a function, f in with a zero locus defined to be precisely the

length of a Weyl group element of types B, C, and D. Recall from type A that dimSpM =

k(n− k)−A(w) = dimGrp(k, n)− codimSpM. Since SpM(v.l.) ⊂ SpM ⊂ Grp(k, n) ↪→ RP( n
k−1),

we can construct similar bijections between the stratification of the Grassmannian under

zero locus of the between the lengths of other types of Weyl groups and the stratificatios.

Cyclic Shifts are invariant for the Grassmannian

We conjecture a natural bijection between dimSpM under the vanishing locus and the

bridge lengths. Less formally, we will attempt to elucidate its existence by showing that

there is a similar intersection as present in type A between the Schubert cells and the

Grassmannian.

Definition 5.1 (Cyclic shift). Let c̃ : Grp(k, n)→ Grp(k, n) be the map such that [v1, . . . , vn] 7→

[v2, v3, . . . , vn, (−1)k−1v1].

In [1], Postnikov was able to show that such a cyclic shift leaves the coordinates of the

Grassmannian invariant, but more interestingly, we note that

Lemma 5.2. The cyclic shift induces a free action of Z/nZ on Grp(k, n)).

From [1], we know that the positivity of the Grassmannian is closed under action of

cycling, and the action cycles through the Grassmannian 2n times before it stabilizes again.

This action 2n is repeated, however, with the negative component of the last element after a

cycle (i.e., (−1)k−1), and the Grassmannian’s Plücker relations are not invariant under sign

changes, so the cyclic shift actually forms an action on Z/nZ. The action is free because

the Grassmannian is only invariant if all the signs of its Plücker relations change, which is

trivially an identity.
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This implies the action is free on characteristic n or 2n, so the cyclic action is free on

higher exterior powers of the Plücker relations. Recall that Bn is the wreath product of P2

and Sn (±), so positive shifts correspond to positive shifts and negative shifts correspond to

negative shifts. Then by free action a positive shift of a class must equal the inverse of the

negative class, which is exactly the invariance present in type Bn and Cn. Systematically,

looking at the cyclic shifts of the rows of each elements will rearrange the ordering of the

pivot columns of the Schubert cell, we form the following proposition.

Proposition 5.3. The Schubert decomposition is invariant under the action of a cyclic shift.

The positive part of the Plücker coordinates in the matroid structure, referred to as its

positroid has a nontrivial intersection of the Schubert cells (after the cyclic shift) and the

positive Grassmannian, which is indicative of the dimSpM(v.l.) = `b(w).

More formally, [1] and [4] described this intersection once again in terms of a (positroid)

cell complex, ΠM:

ΠM =
n−1⋂
i=0

c̃i(ΩIi ∩Gr≥0(k, n)),

where c̃i is the cyclic shift applied i times. And because of this nontrivial intersection, we

know that a function exists.

6 Discussion and Future Work

In addition, we pose the two following open conjectures based on the work presented in

this paper.

Conjecture 6.1. There is a bijection g : Ωλ → `(W ) between the dimension of the Schubert

cells that decompose the totally positive Grassmannian and the bridge lengths of other types.

Conjecture 6.2. Using an ei + ej root in a type B or C element cannot reduce the bridge

length from what was presented in Theorem 3.1. In other words, Theorem 3.1 is the bridge
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length for type B and C Weyl groups.

In the future, we will work on a dictionary of lengths which entails finding the number of

elements with bridge length x where x is any of the possible lengths. Additionally, there are

applications in the Quantum Field Theory of scattering amplitudes of particle wave lengths

and the Grassmannian that can be explained by the bridge length, which are left out because

of the page limit, though [4] and [5] are deferred to the reader for clear applications.
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A Root Systems for (An — Dn)

Type An−1

• R = {ei − ej : i 6= j},

• R+ = {ei − ej : i < j},

• Π = {ei − ei+1},

• W = Sn,

• rei−ej = (i, j).

The root poset looks like the following (n = 5):

•
e1 − e2

•
e2 − e3

•
e3 − e4

•
e4 − e5

•
e1 − e3

•
e2 − e4

•
e3 − e5

•
e1 − e4

•
e2 − e5

•
e1 − e5

Type Bn

• R = {ei − ej : i 6= j} ∪ {±(ei + ej) : i 6= j} ∪ {±ei},

• R+ = {ei − ej : i < j} ∪ {ei + ej : i 6= j} ∪ {ei},

• Π = {ei − ei+1} ∪ {en},

• W = {w ∈ S1,...,n,−n,...,−1 : w(i) = −w(−i)},

• rei−ej = (i, j)(−i,−j), rei+ej = (i,−j)(j,−i), rei = (i,−i).

The root poset looks like the following (n = 4):
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•
e1 − e2

•
e2 − e3

•
e3 − e4

•
e4

•
e1 − e3

•
e2 − e4

•
e3

•
e1 − e4

•
e2

•
e1

•
e1 + e4

•
e1 + e3

•
e1 + e2

•
e2 + e4

•
e2 + e3

•
e3 + e4

Type Cn

• R = {ei − ej : i 6= j} ∪ {±(ei + ej) : i 6= j} ∪ {±2ei},

• R+ = {ei − ej : i < j} ∪ {ei + ej : i 6= j} ∪ {2ei},

• Π = {ei − ei+1} ∪ {2en},

• W = {w ∈ S1,...,n,−n,...,−1 : w(i) = −w(−i)},

• rei−ej = (i, j)(−i,−j), rei+ej = (i,−j)(j,−i), r2ei = (i,−i).

The root poset looks like the following (n = 4):

•
e1 − e2

•
e2 − e3

•
e3 − e4

•
2e4

•
e1 − e3

•
e2 − e4

•
e3 + e4

•
e1 − e4

•
e2 + e4

•
e1 + e4

•
e1 + e3

•
e1 + e2

•
2e1

•
e2 + e3

•
2e2

•
2e3
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Type Dn

• R = {ei − ej : i 6= j} ∪ {±(ei + ej) : i 6= j},

• R+ = {ei − ej : i < j} ∪ {ei + ej : i 6= j},

• Π = {ei − ei+1} ∪ {en−1 + en},

• W = {w ∈ S1,...,n,−n,...,−1 : w(i) = −w(−i) and w(j) < 0 for an even number of j >

0},

• rei−ej = (i, j)(−i,−j), rei+ej = (i,−j)(j,−i).

The root poset looks like the following (n = 4):

•
e1 − e2

•
e2 − e3

•
e3 − e4

•
e3 + e4

•
e1 − e3

•
e2 − e4

•
e2 + e4

•
e1 − e4

•
e1 + e4

•
e2 + e3

•
e1 + e3

•
e1 + e2
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