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Abstract

Let E be an elliptic curve over Q and p be an odd prime. Assume that E does not
have a p-adic point of order p, i.e. E(Qp)[p] = 0. For each positive integer n, define Kn :=
Q(E[pn]). Finding the class number of general number fields is a difficult problem in number
theory, and we investigate the specific case of the class number of Kn. There is an injective
homomorphism mapping Gal(Kn/Q) to GL2(Z/pnZ). We determine a lower bound on the
order of the p-Sylow subgroup of the class group of Kn in terms of the Mordell-Weil rank of
E in cases where this homomorphism is not necessarily surjective.

Summary

Elliptic curves are special curves in the plane, and their study has fascinated mathemati-
cians in the last century. Number fields are sets of numbers where one can add, subtract,
multiply, and divide numbers in the field. The class number is an important property of
number fields. It is an interesting and difficult problem to compute the class number of
general number fields. These mathematical objects can be linked by studying number fields
associated with certain elliptic curves. Given an elliptic curve satisfying certain conditions,
we show a constraint on the class numbers of the associated number fields.



1 Introduction

The study of elliptic curves arose from the study of Diophantine equations, or polynomial

equations solved over the integers or the rational numbers. The study of cubic Diophantine

equations in two variables is of particular interest, as they are among the simplest nontrivial

examples of Diophantine equations. An early example is the Diophantine equation

y2 − x3 = c, (1)

where c is a fixed integer. Equation (1) was extensively studied by Bachet in the early 1600s

[7], and in 1621 he discovered a duplication formula, which allows one to take a rational

solution to Equation (1) and obtain another rational solution.

The study of these equations was revolutionized by Descartes’ development of analytic

geometry in the seventeenth century. Analytic geometry gives us a natural geometric inter-

pretation of equations such as Equation (1). In particular, we consider the set of solutions to

Equation (1) as a curve in the xy-plane. Bachet’s duplication formula manifests by drawing

the tangent line to the curve at the point corresponding to our original rational solution,

and taking the other intersection of this line and the curve.

Significant progress has been made on the solution of these Diophantine equations in the

last century. In 1923, Mordell [5] showed that the group E(Q) of rational points of an elliptic

curve E with rational coefficients is finitely generated; that is, there exists a finite set of

points on E(Q) such that every point on E(Q) can be expressed as a linear combination of

points in this set. Even so, the behavior of integer and rational solutions to cubic equations

is not fully understood.

Define Kn to be the number field generated by adjoining the coordinates of the pn-torsion

points E[pn], i.e. points that become the identity when multiplied by pn, to Q. We denote this

by Kn := Q(E[pn]). We look at the class number of this number field, which measures how

far the ring of integers is from satisfying unique factorization. For example, the Fundamental
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Theorem of Arithmetic states that Z has unique factorization, so its field of fractions Q has

class number 1. On the other hand,

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

so Z[
√
−5] does not satisfy unique factorization, and its field of fractions Q(

√
−5) has class

number 2. In general, number fields whose rings of integers do not satisfy unique factorization

will have class numbers greater than 1. Due to a relative lack of techniques for computing

effective bounds, class numbers are difficult to compute for general number fields, so it is

useful to have a nontrivial bound on the class number of certain number fields. In 2018,

Hiranouchi [2] showed a lower bound on the class number of Kn when the conditions

(Full) Gal(K1/Q) ' GL2(Z/pZ), and

(Tor) E(Qp)[p] = 0

are satisfied. We investigate the behavior of Kn when (Full) does not hold, and attempt

to derive a result similar to Hiranouchi’s in cases where Gal(K1/Q) is instead a proper

subgroup of GL2(Z/pZ).

The study of elliptic curves is not without applications, and has been applied to fields such

as cryptography. For example, Lenstra’s algorithm to factor large numbers utilizes elliptic

curves and is one of the best factoring algorithms known.

In Section 2, we recall the theory of elliptic curves and define a field extension Ln of

Kn, building up to the result of Hiranouchi [2]. In Section 3, we provide examples showing

that Hiranouchi’s result no longer holds when the condition (Full) is dropped. Section 4

contains bounds on the class number of K1 when Gal(K1/Q) contains certain subgroups

of GL2(Z/pZ). In Section 5, we show a bound on the class number of Kn for any positive

integer n, assuming that Gal(Kn/Q) contains all diagonal matrices in GL2(Z/pnZ). Section

6 describes some avenues of future research to improve or build on the results of this paper.
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2 Preliminaries

2.1 Addition and Torsion Points on Elliptic Curves

An elliptic curve over the rational numbers Q is a smooth plane curve that can be defined

by an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai are rational numbers. Examples are shown in Figure 1.

Figure 1: Various elliptic curves [8]

Consider an elliptic curve E with rational coefficients. The points of E are equipped

with an addition operation, shown in Figure 2. To add points A and B on E, draw the line

through A and B, and reflect the third intersection of this line with E over the x-axis. The

third intersection must exist because an elliptic curve has degree 3, but it may lie in the

projective plane. This gives the point C = A + B. This addition operation is commutative,

associative, and has identity O, the point at infinity in the vertical direction. Furthermore,

any point and its image upon reflection about the x-axis are inverses.

Let K be a field, and let E(K) denote the set of points on E with coordinates in K.

Using Vieta’s formulae, one can show that the sum of two points in E(K) must also be in

E(K). Thus, the points of E(K) form an additive group.
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Figure 2: Adding two points on an elliptic curve

By Mordell’s theorem [5], E(Q) is finitely generated, so there exists a unique nonnegative

integer r and prime powers q1, . . . , qm such that

E(Q) ' Zr ⊕ Z/q1Z⊕ · · · ⊕ Z/qmZ.

We define the rank of E to be r.

For an odd prime p and positive integer n, let E[pn] be the set of pn-torsion points, i.e.

the points R, possibly with complex coordinates and including the identity O, satisfying

[pn]ER := R + · · ·+R︸ ︷︷ ︸
pn times

= O.

It is well known (Proposition 6.4 of [7]) that as additive groups,

E[pn] ' (Z/pnZ)⊕ (Z/pnZ).

Therefore, we can identify the automorphisms of E[pn] with the group GL2(Z/pnZ) of in-

vertible 2× 2 matrices with entries in Z/pnZ.

2.2 The Fields Kn and Ln

The field Kn is defined as Q(E[pn]), and is a Galois extension of Q (Proposition 6.5(b)

of [7]). In other words, every field homomorphism σ : Kn → C that fixes Q has image equal

to Kn. This allows us to consider Gal(Kn/Q), the group of all such homomorphisms. Then
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the following theorem on the structure of this group holds ([7], Theorem 6.7).

Theorem 2.1. There is an injective group homomorphism Gal(Kn/Q) ↪→ GL2(Z/pnZ).

Let E(Q)tors be the subgroup consisting of the torsion points of E(Q), that is, the points R

such that [m]ER = O for some nonzero integer m. As before, [m]E denotes the multiplication-

by-m map on E. Since E(Q) is finitely generated with rank r, it has a subgroup A such that

A ' Zr and

A+ E(Q)tors = E(Q).

Let P1, . . . , Pr be generators of A. For each 1 ≤ j ≤ r, let Tj be a point on E(C) such that

[pn]ETj = Pj.

We now define the field extension Ln = Kn(T1, . . . , Tr) to be the field generated by adjoining

the coordinates of T1, . . . , Tr to Kn. An element σ of Gal(L1/K1) has an action on points of

E(L1) defined by σ(x, y) := (σ(x), σ(y)). There exists an injective homomorphism

Φn : Gal(Ln/Kn)→ E[pn]r

sending σ to (σT1 − T1, . . . ,
σ Tr − Tr). Thus, the degree [Ln : Kn] is a power of p.

2.3 The First Cohomology Group

Consider a group G and a G-module M . Define the 1-cocycles Z1(G,M) to be the additive

group of maps f : G→M satisfying

f(ab) = f(a) + a · f(b)

for all a, b ∈ G, and the 1-coboundaries B1(G,M) to be the additive group of maps f : G→

M such that for some m ∈M ,

f(a) = a ·m−m

for all a ∈ G. The first cohomology group H1(G,M) is the quotient Z1(G,M)/B1(G,M).

The following result on the first cohomology group is Theorem 5.1 of [3].
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Theorem 2.2. Let G be a group and let M be a G-module. Let α be in the center of G.

Then H1(G,M) is annihilated by the map x 7→ αx − x on M . In particular, if this map is

an automorphism of M , then H1(G,M) = 0.

In particular, letting G = Gal(Kn/Q) and M = E[pn], if α = ( 2 0
0 2 ) is in G, then the map

x 7→ αx− x is the identity. This map is clearly an automorphism of M , so H1(G,M) = 0.

2.4 Bounding the Class number of Kn Assuming (Full)

Suppose E is an elliptic curve with rank r satisfying (Full). The following theorem is

Corollary 2.5 in [6].

Theorem 2.3 (Sairaiji & Yamauchi). The map Φn : Gal(Ln/Kn) → E[pn]r sending σ to

(σT1 − T1, . . . ,
σ Tr − Tr) is an isomorphism for all positive integers n. In particular, the

equation [Ln : Kn] = p2nr holds for all n.

Given a number field K, a fractional ideal I of its ring of integers OK is an OK-submodule

of K, which has the form I = 1
α
J , where J is an ideal in OK and α is a nonzero element

of OK . A principal fractional ideal is a fractional ideal that is generated by exactly one

nonzero element. Let JK denote the multiplicative group of fractional ideals of OK , and let

PK denote the subgroup of principal fractional ideals. Then the class group of K is defined

as the quotient JK/PK , and the class number of K is the order of the class group.

Denote by # Clp(Kn) the size of the p-Sylow subgroup of the class group of Kn. In

particular, # Clp(Kn) = pκn is the largest power of p that divides the class number of Kn.

Now let E be an elliptic curve with minimal discriminant ∆ satisfying (Full) and (Tor). Let

ordp denote the p-adic valuation, and define
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ν` :=


min{ordp(ord`(∆)), n}, if E has split multiplicative reduction at `,

n, if E has additive reduction at `, and c` = 3,

0, otherwise,

where c` is the Tamagawa number at `. In Theorem 3.3 of [2], Hiranouchi proved the

following.

Theorem 2.4 (Hiranouchi). For all n ∈ Z≥1, the exponent κn of # Clp(Kn) = pκn satisfies

κn ≥ 2n(r − 1)− 2
∑

`6=p, `|∆

ν`.

The following lemma is used in the proof of Theorem 2.4.

Lemma 2.5.

# Clp(Kn) · p2n · p2
∑

6̀=p,`|∆ ν` ≥ [Ln : Kn]

for any elliptic curve satisfying (Tor).

A direct substitution of Theorem 2.3 into Lemma 2.5 implies Theorem 2.4.

3 Examples Showing (Full) is Necessary

We now give an example in which Theorem 2.4 does not hold when (Full) is not satisfied.

The following computations are given by SAGE. Consider the elliptic curve defined by y2 =

x3−x2−935133x−397141863, with Cremona label 50700b2, satisfying (Tor) but not (Full).

It has rank 2, and letting p = 3 and n = 1,

2n(r − 1)− 2
∑

`6=p, `|∆

ν` = 2,

but the class number of K1 is 192, so κ1 = 1. This contradicts the bound given by

Theorem 2.4.
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Let

b = 2n(r − 1)− 2
∑

`6=p, `|∆

ν`.

Table 1 lists some elliptic curves satisfying (Tor) but not (Full) such that κn < b when

p = 3 and n = 1. Therefore, Theorem 2.4 is no longer necessarily true when the condition

(Full) is not satisfied.

Cremona label b κn

50700b2 2 1

63075n2 2 1

145200bp3 2 1

145200bp4 2 1

Table 1: Elliptic curves satisfying (Tor) but not the bound given in Theorem 2.4

4 The Class Number of Kn When n = 1

Other than the exceptional subgroups, every subgroup of GL2(Z/pZ) is contained in one

of five subgroups: Borel, split Cartan, normalizer of the split Cartan, non-split Cartan, and

normalizer of the non-split Cartan [1]. The split Cartan subgroup is contained within the

Borel and normalizer of the split Cartan subgroups, and the non-split Cartan subgroup is

contained within the normalizer of the non-split Cartan subgroup.

4.1 The Split Cartan Subgroup

Let Cs(p) denote the split Cartan subgroup of GL2(Z/pZ), that is, the subgroup of

diagonal matrices of GL2(Z/pZ). In the case that Gal(K1/Q) ' Cs(p), the matrix ( 2 0
0 2 ) is

in Gal(K1/Q). It follows from Theorem 2.2 that

H1(Gal(K1/Q), E[p]) = 0. (2)
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We now obtain the following bounds on the degree of the extension [L1 : K1].

Theorem 4.1. If Gal(K1/Q) ' Cs(p), we have pr ≤ [L1 : K1] ≤ p2r.

Proof. We follow the method of the proof given by Sairaiji & Yamauchi in Theorem 2.4 of

[6]. Recall that A is defined as the free subgroup of E(Q) with rank r. For each P in A,

take T ∈ E(L1) such that [p]ET = P , and define the map δP : Gal(L1/K1) → E[p] by

σ 7→ σT − T .

We show that δP is trivial if and only if P is in [p]EA. Clearly the reverse implication is

true. Now suppose δP is trivial. Then T is in E(K1), so the map

Gal(K1/Q)→ E[p] : σ → σT − T

is an element of H1(Gal(K1/Q), E[p]). By Equation (2), there exists T ′ in E[p] such that

σT − T = σT ′ − T ′

for each σ ∈ Gal(K1/Q). Therefore, T − T ′ is in E(Q).

Note that

P = [p]E(T − T ′).

Since T − T ′ ∈ E(Q), we can write T − T ′ = Q1 + Q2, where Q1 ∈ A and Q2 ∈ E(Q)tors.

However,

[p]E(T − T ′) = [p]EQ1 + [p]EQ2 ∈ A,

so [p]EQ2 = 0 and P = [p]E(T − T ′) ∈ [p]E(A). Therefore, δP is trivial if and only if P is in

[p]E(A), so ker(P 7→ δP ) = [p]E(A).

Consider the injective map δ : A/[p]EA ↪→ H1(Gal(L1/Q), E[p]) defined by P 7→ δP . By

Equation (2), H1(Gal(L1/Q), E[p]) ' HomGal(K1/Q)(Gal(L1/K1), E[p]). In particular, the

image of δ lies in HomGal(K1/Q)(Gal(L1/K1), E[p]), so

# HomGal(K1/Q)(Gal(L1/K1), E[p]) ≥ #A/[p]EA = pr.

Since E[p] is Gal(K1/Q)-isomorphic to F2
p, E[p]r is Gal(K1/Q)-isomorphic to F2r

p . Fp is

irreducible, and F2r
p is a semisimple Gal(K1/Q)-module, so the image of Φ1 is Gal(K1/Q)-
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isomorphic to Fsp for some nonnegative integer s ≤ 2r. Now

HomGal(K1/Q)(Gal(L1/K1), E[p]) ' HomGal(K1/Q)(Fsp,F2
p)

' HomGal(K1/Q)(Fp,F2
p)
s,

where the action of Gal(K1/Q) ' Cs(p) on Fp is given by

( a 0
0 b ) · x = ax.

Suppose f ∈ HomGal(K1/Q)(Fp,F2
p) maps 1 to 〈u, v〉. Then for any x, a, b ∈ Fp,

〈axu, bxv〉 = f (( a 0
0 b ) · x) = ( a 0

0 b ) · f(x) = 〈axu, axv〉,

so v = 0. Therefore, f(x) = 〈ux, 0〉 for all x. Since u can be any element of Fp,

HomGal(K1/Q)(Fp,F2
p)
s ' (Z/pZ)s,

so s ≥ r. Since [L1 : K1] = ps, the result follows.

It is possible that Gal(K1/Q) has Cs(p) as a proper subgroup, for example, if Gal(K1/Q)

is isomorphic to the Borel subgroup B(p) of upper triangular matrices in GL2(Z/pZ). In

this case, the above argument still holds. This is because HomGal(K1/Q)(Gal(L1/K1), E[p]) is

a subgroup of HomCs(p)(Gal(L1/K1), E[p]), and since

ps = # HomCs(p)(Gal(L1/K1), E[p])

≥ # HomGal(K1/Q)(Gal(L1/K1), E[p])

≥ #A/[p]EA = pr,

we can still conclude s ≥ r. Recall that [L1 : K1] = ps, so the following corollary holds.

Corollary 1. If Cs(p) is a subgroup of Gal(K1/Q), then pr ≤ [L1 : K1] ≤ p2r.

The combination of Theorem 4.1 and Lemma 2.5 gives the following result, analogous to

Thereom 2.4:

Theorem 4.2. Assume (Tor). If Gal(K1/Q) contains Cs(p), the inequality

κ1 ≥ r − 2− 2
∑

`6=p, `|∆

ν`

holds.
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Proof. By Theorem 4.1 and Lemma 2.5,

κ1 + 2 + 2
∑

` 6=p, `|∆

ν` ≥ r,

which is what we wanted to prove.

4.2 The Non-split Cartan Subgroup

Define the non-split Cartan subgroup Cns(p) of GL2(Z/pZ) to be the subgroup consisting

of matrices of the form x εy

y x

 ,

where x and y are not both zero and ε is the smallest positive integer generating (Z/pZ)×.

Assume that Cns(p) is a subgroup of Gal(K1/Q). Note that Cns(p) contains the matrix

( 2 0
0 2 ), so by Theorem 2.2, Equation (2) still holds. We obtain results similar to those proved

in Section 4.1 using the same methods.

Theorem 4.3. Suppose Gal(K1/Q) contains the subgroup Cns(p). Then pr ≤ [L1 : K1] ≤ p2r.

Proof. By the same argument given in the proof of Theorem 4.1,

# HomGal(K1/Q)(Gal(L1/K1), E[p]) ≥ #A/[p]EA = pr.

Suppose that E[p] has a Gal(K1/Q)-submodule generated by 〈a, b〉. In order for

( x εyy x ) 〈a, b〉 = 〈ax+ εby, ay + bx〉

to lie in the span of 〈a, b〉, we must have

b(ax+ εby) = a(ay + bx)⇔ εb2 = a2,

assuming y 6= 0. Since ε generates (Z/pZ)×, it is not a quadratic residue modulo p, so this

cannot happen. Therefore, E[p] is an irreducible Gal(K1/Q)-module.

We have that E[p]r is a semisimple Gal(K1/Q)-module ([4], Chapter XVIII, Lemma 12.1).

Therefore, the image of Φ1 is Gal(K1/Q)-isomorphic to E[p]s for some nonnegative integer

11



s ≤ r. In particular, [L1 : K1] ≤ p2r. We have

HomGal(K1/Q)(Gal(L1/K1), E[p]) ' HomGal(K1/Q)(E[p]s, E[p])

' EndGal(K1/Q)(E[p])s.

However, EndGal(K1/Q)(E[p]) consists of all matrices ( a bc d ) which commute with all elements

of Gal(K1/Q). Note thata b

c d


x εy

y x

 =

ax+ by εay + bx

cx+ dy εcy + dx

 ,

x εy

y x


a b

c d

 =

ax+ εcy εdy + bx

cx+ ay by + dx

 ,

and the two can only be equal for all x, y not both zero if a = d and b = εc. This leaves at

most p2 choices of a, b, c, d, so

pr ≤ # HomGal(K1/Q)(Gal(L1/K1), E[p]) ≤ p2s.

Therefore, [L1 : K1] = p2s ≥ pr, as desired.

Theorem 4.4. Assume (Tor). If Gal(K1/Q) contains Cns(p), the inequality

κ1 ≥ r − 2− 2
∑

`6=p, `|∆

ν`

holds.

Proof. Substitute Theorem 4.3 into Lemma 2.5 and repeat the proof of Theroem 4.2.

4.3 Examples

Let E be the elliptic curve with rank 3 and Cremona label 398325j1, and let p = 3.

Gal(K1/Q) is isomorphic to B(p), so by Theorem 4.2, κ1 ≥ 1, so the class number of K1

must be divisible by 3. According to SAGE, K1 is the splitting field of the polynomial

x12−1280x11−2461247x10+2234131300x9+2914089708235x8−1034113846347200x7−1691228805630598535x6

−140927700780592081850x5+332736846178888003949965x4+138392314137207700354025850x3

+23571694539266354840335215483x2+1908113469772910231763941149710x+60998173288017105615445560829284,
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and has class number 5184, which is indeed divisible by 3. Thus, the bound given in Theo-

rem 4.2 is nontrivial.

The following computations given by SAGE show that the bound given in Corollary 1 is

tight. Let p = 3 and E be the elliptic curve of rank 1 with Cremona label 528g1. Gal(K1/Q)

is isomorphic to B(p), which has Cs(p) as a subgroup. The x-coordinate of T1 is a root of

the polynomial

x9+54x8+912x7+6496x6+81408x5+695808x4+2805760x3+19046400x2+121307136x+252444672,

which factors as

(x3 − 2x2 + 16x+ 192)(x6 + 56x5 + 1008x4 + 7424x3 + 69376x2 + 522240x+ 1314816).

Therefore, [L1 : K1] < 9. However, [L1 : K1] must be a power of p, so [L1 : K1] = 3 = pr.

This shows that the bound [L1 : K1] ≥ pr cannot be improved without imposing further

constraints.

5 Finding Bounds for all n

We obtain results analogous to Theorem 4.1 and Theorem 4.2 for any positive integer n.

The proof method is similar.

Theorem 5.1. Suppose Gal(Kn/Q) contains all diagonal matrices of GL2(Z/pnZ). Then

pnr ≤ [Ln : Kn] ≤ p2nr.

Proof. Note that

H1(Gal(Kn/Q), E[pn]) = 0

by Theorem 2.2. We repeat the argument given in the proof of Theorem 4.1, replacing L1

and K1 with Ln and Kn and replacing p with pn. This gives that

# HomGal(Kn/Q)(Gal(Ln/Kn), E[pn]) ≥ #A/[pn]EA = pnr.

Recall that Φn is an injective map from Gal(Ln/Kn) to E[pn]r ' (Z/pnZ)2r, which has
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size p2nr, so [Ln : Kn] ≤ p2nr follows immediately. Also,

# HomGal(Kn/Q)(Gal(Ln/Kn), E[pn]) = # HomGal(Kn/Q)(Im Φn, E[pn]).

A diagonal matrix ( a 0
0 b ) in Gal(Kn/Q) acts on an element 〈x1, y1, . . . , xr, yr〉 of E[pn]r by

( a 0
0 b ) · 〈x1, y1, . . . , xr, yr〉 = 〈ax1, by1, . . . , axr, byr〉.

We define

Gx := {〈x1, . . . , xr〉 | 〈x1, y1, . . . , xr, yr〉 ∈ Im Φn},

Gy := {〈y1, . . . , yr〉 | 〈x1, y1, . . . , xr, yr〉 ∈ Im Φn},

so that Gx and Gy are subgroups of (Z/pnZ)r and Im Φn = Gx ⊕ Gy. Since Gx is a finite

abelian group, it is the direct sum of cyclic groups. However, the order of Gx is a power of

p, so the order of each component cyclic group is also a power of p. Also, every element of

Gx has order dividing pn. Thus, we can write

Gx ' Z/pf1Z⊕ · · · ⊕ Z/pfmZ

for integers 1 ≤ f1, . . . , fm ≤ n. A homomorphism f : Gx → E[pn] can be treated as m

separate homomorphisms by considering each component cyclic group separately. Therefore,

# HomGal(Kn/Q)(Gx, E[pn]) =
m∏
i=1

# HomGal(Kn/Q)(Z/pfiZ, (Z/pnZ)2).

Let f ∈ HomGal(Kn/Q)(Z/pfiZ, (Z/pnZ)2), and take a generator x of Z/pfiZ. If f(x) = 〈u, v〉,

〈au, bv〉 = ( a 0
0 b ) f(x) = f (( a 0

0 b ) · x) = f(ax) = 〈au, av〉

for all a, b ∈ (Z/pnZ)×, so v = 0. Also, we must have pfiu = 0 in Z/pnZ. There are only pfi

such u, and f is completely determined by f(x), so

# HomGal(Kn/Q)(Z/pfiZ, (Z/pnZ)2) ≤ pfi .

Therefore,

# HomGal(Kn/Q)(Gx, E[pn]) ≤
m∏
i=1

pfi = #Gx.

Similarly,

# HomGal(Kn/Q)(Gy, E[pn]) ≤ #Gy.

14



Finally,

# HomGal(Kn/Q)(Im Φn, E[pn]) = # HomGal(Kn/Q)(Gx ⊕Gy, E[pn])

= # HomGal(Kn/Q)(Gx, E[pn]) ·# HomGal(Kn/Q)(Gy, E[pn])

≤ #Gx ·#Gy

= # Im Φn

= [Ln : Kn],

so [Ln : Kn] ≥ pnr as desired.

From this we obtain our main result.

Theorem 5.2. If Gal(Kn/Q) contains all diagonal matrices in GL2(Z/pnZ) and (Tor) is

satisfied, then

κn ≥ n(r − 2)− 2
∑

`6=p, `|∆

ν`.

Proof. From Lemma 2.5 and Theorem 5.1 we have

κn + 2n+ 2
∑

` 6=p, `|∆

ν` ≥ nr.

The result is now immediate.

6 Conclusion and Future Work

We discussed pn-torsion points on elliptic curves, and the number field Kn = Q(E[pn]).

We studied a previous result proving a lower bound on the class number of Kn. Using this

method, we showed a different lower bound on the class number of Kn assuming a weaker

condition than in the previous result.

There are several possible directions of future research. One such direction is to extend

the work in Section 4 to other subgroups of GL2(Z/pZ), particularly those in which Theo-

rem 2.2 does not apply. A simple example is the subgroup of Cs(3) generated by the matrix
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( −1 0
0 1 ). This subgroup does not contain the matrix ( 2 0

0 2 ), so we cannot immediately apply

Theorem 2.2.

It may also be possible to improve upon the bounds on κn given in Sections 4 and 5. An

alternative avenue of exploration would be to consider the p-isogeny field F := Q(P + Q),

where P and Q are generators of E[p]. It may be possible to derive a result analogous to

Theorem 2.4 by constructing an extension of F analogous to the extension Ln of Kn and

modifying Theorem 2.3 and Lemma 2.5.
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