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Abstract

The Erdős–Szekeres theorem states that given a sequence of N real numbers, there exists a
monotonic subsequence of length at least N1/2. By applying this theorem to N points in the
unit square, we observe that there exists a function f which passes through at least N1/2

of the given points that is Lipschitz continuous, or that has a bounded first derivative. We
extend this result by determining the maximum number of the given points Nβ, 0 < β < 1,
that a function can contain while maintaining α–Hölder continuity, a more general form of
Lipschitz continuity.

Summary

Often, in computer science and statistics, we must construct a curve for a set of points,
nodes, or data values to satisfy some parameter. Consider a function that travels through
a subset of given points in the unit square. If the absolute slope between any two points
on the function is bounded above by some constant, the function satisfies a strict form of
continuity, 1–Hölder continuity. In our problem, we wish to construct an α–Hölder continuous
curve that travels through a point subset of a given size. In particular, we ask how large the
proportion of points on the curve can be before any function traveling through a subset
of given size cannot be α–Hölder continuous. By defining new functions and considering a
grid configuration of points within the unit square, we determine bounds on the maximum
proportion of given points any α–Hölder continuous function may pass through.



1 Introduction

In many instances, we wish to determine the greatest number of points a curve can contain

while maintaining a set of desired properties; this situation is apparent in statistics and curve

fitting, where curves that best fit a given set of data points are constructed. In computer

science and mathematics, this situation also manifests itself through problems such as the

Travelling-Salesman Problem, in which we wish to construct a Hamiltonian cycle through a

given set of points of the least total distance [3]. In our paper, we explore a specific property

of a function containing some subset of N points in a unit square.

This property is Lipschitz continuity, which exists for a function if the slope between every

pair of points in the function’s domain has absolute value bounded above by some constant,

known as the Lipschitz constant. That is, if the function has a bounded first derivative, it is

Lipschitz continuous, and the bound itself is the Lipschitz constant. We can extend the idea

of Lipschitz continuity to the more general notion of α–Hölder continuity, which quantifies

the function’s rate of change through parametrization of the denominator by α.

Results regarding Lipschitz continuity can be derived from the celebrated Erdős–Szekeres

theorem, which states that given any sequence length N of real numbers, there exists a

monotonic subsequence of length at at least N1/2 [2]. First published in 1935, this result

quickly attracted mathematicians and generated alternative proofs using techniques from the

Pigeonhole Principle to the greedy algorithm [6]. We examine this theorem in context of N

points in the unit square, where given N points, there exists a nonincreasing or nondecreasing

function that contains at least N1/2 points.

In general, various results have been found concerning α–Hölder mappings to the unit

square. In 1996, Buckley [1] determined the bound on α for which there existed Peano curves

that were α–Hölder continuous and found α to be at most 1
2
. A year later, Matoušek [4] used

the Erdős–Szekeres theorem to prove that for any subset of a plane with positive Lebesgue

1



measure, there exists a Lipschitz mapping onto the unit square. In this work, we determine

the maximum proportion of given points in the unit square a function can pass through

while still maintaining α–Hölder continuity.

Our paper proceeds as follows: In Section 2, we define the basic terms surrounding our

problem. Then in Section 3.1, we start with a result derived from the Erdős–Szekeres theorem

by Matoušek [4]:

Theorem (Matoušek). Given N random points in the unit square, there exists a function f

passing through N1/2 points that has Lipschitz constant satisfying ||f ||C1 < 1.

Next in Section 3, we expand to a more general result, determining and proving the tight-

ness of the upper bound for the value of the Lipschitz constant. In Section 4 we prove several

important properties of a more flexible function φ, including its Lipschitz and α–Hölder con-

stants when the points are chosen from a grid in the unit square. We introduce a grid point

configuration to show our main result, bounds on the maximum proportion of given points

the function can pass through to guarantee α–Hölder continuity. Lastly, we generalize one

of the bounds to any arbitrary configuration of points given.

2 Preliminaries

Given some function, the Lipschitz constant is the upper bound of the absolute slope between

any two points on the function. More formally, the Lipschitz constant ||f ||C1 can be expressed

as the minimum such that the inequality
∣∣f(x1)− f(x2)

∣∣ ≤ ||f ||C1|x1−x2| holds for all pairs

x1, x2 in the domain of f. We further expand this definition to a general α to examine the

α–Hölder constant ||f ||Cα , formally defined below:

Definition. For a function f containing a given set of points, the α–Hölder constant
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||f ||Cα is the minimum value such that the expression

∣∣f(x1)− f(x2)
∣∣ ≤ ||f ||Cα|x1 − x2|α (1)

is satisfied for all x1, x2 in the domain of f, where α ∈ (0, 1]. The Lipschitz constant

||f ||C1 is a specific case of the α–Hölder constant where α = 1. If a function has a Lips-

chitz or α–Hölder constant, then it is Lipschitz continuous or α–Hölder continuous,

respectively.

GivenN points in the unit square and α where we can choose orthonormal coordinates, we

aim to find bounds on β for which there exists an α–Hölder continuous function f throughNβ

points with 0 < β < 1. To increase flexibility in our analysis, we introduce another function

φ: [0, 1] → [0, 1]2, where the quantity
∣∣φ(xi) − φ(xj)

∣∣ is the Euclidean distance between

the images of the mappings onto the unit square, and |xi − xj| is the distance between the

two inputs on the unit interval. Thus, the Lipschitz constant for φ can be interpreted as

the maximum stretch factor for any segment mapped from the unit interval onto the unit

square. Note that since the expression for φ relies on Euclidean distances, the freedom to

choose orthonormal coordinates has no effect on ||φ||Cα .

3 Lipschitz Continuity

We begin by considering f : [0, 1] → [0, 1], a continuous and differentiable function within

the unit square. Specifically, we analyze the Lipschitz constant ||f ||C1 which occurs when

α = 1, or when ||f ||C1 represents the maximum absolute value of slope on f .
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3.1 Results from the Erdős–Szekeres theorem

Using the Erdős–Szekeres theorem, we prove a bound on ||f ||C1 to give the same result as

Matoušek [4]:

Theorem 3.1 (Matoušek). Given N random points in the unit square, there exists a function

f passing through N1/2 points that has Lipschitz constant satisfying ||f ||C1 < 1.

Proof. Set initial coordinates such that no two points share an x-coordinate or y-coordinate.

By the Erdős-Szekeres theorem, for any N points in the unit square, it is possible to choose

N1/2 monotonic points. Assume without loss of generality that these points are monotonically

increasing. Thus the segments which connect consecutive points of increasing abscissae form

N1/2−1 segments. The slope of each segment is nonnegative, so the angle from the horizontal

lies in the interval (0, π
2
).

By rotating the coordinate system counterclockwise π
4
about the origin, the angle from the

horizontal now lies in the interval (−π
4
, π
4
), and thus the slope of each segment has absolute

value less than 1, as seen in Figure 1.

With this coordinate system, we can construct f with Lipschitz constant less than 1 that

passes through the N1/2 initially monotonically increasing points. A similar argument exists

if the points are monotonically decreasing. Therefore the Lipschitz constant ||f ||C1 < 1.

Next, we extend our result to the α–Hölder constant for f.

Corollary 3.1. For N random points in the unit square, there exists a function f passing

through N1/2 points that has α–Hölder constant ||f ||Cα <
√

2
1−α

for any given α ∈ (0, 1].

Proof. We begin by rearranging the α–Hölder expression
∣∣f(x1)− f(x2)

∣∣ ≤ ||f ||Cα|x1− x2|α
as

| tan θ|
(
|x1 − x2|

)1−α
≤ ||f ||Cα
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Figure 1: Counterclockwise rotation by π
4
for N = 14 random points

for all x1, x2, and θ such that tan θ is the slope between the points with abscissae x1 and x2.

As proven in Theorem 3.1, we know that for N random points and β ≤ 1
2
, max | tan θ| < 1

with a π
4
rotation, and it follows that max |x1 − x2| =

√
2. Thus we obtain

||f ||Cα <
√

2
1−α

.

It follows that for f , Lipschitz continuity implies α–Hölder continuity.

Thus, we find that for any given set of N points, there will always exist an α–Hölder

continuous function through at least N1/2 points for all α ∈ (0, 1].

3.2 Tightness of Lipschitz Bound

From Theorem 3.1, we know that there exists a Lipschitz continuous function (||f ||C1 < 1)

through N1/2 of the points. We wish to see if a function f passing through more than N1/2

points can be Lipschitz continuous. To verify the strictness of the Lipschitz bound ||f ||C1 < 1
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Figure 2: Rotation by θ in a triangle

for β ≤ 1
2
, we first prove the following lemma:

Lemma 3.1. Let there be 3 points a, b, c, and let the angles formed by the connecting

segments be γ1, γ2, and γ3. Then for any function f through a, b, and c, the Lipschitz

constant ||f ||C1 = min
i=1,2,3

cot
(γi

2

)
.

Proof. Suppose without loss of generality that the initial ordering by increasing abscissae is

a, b, c, as depicted in Figure 2, and the set of initial absolute slopes is S1 = {tan γ1, 0, tan γ3}.

Rotate by an angle θ such that the order by abscissae remains the same. The set of new

absolute slopes is thus S2 = {tan (γ1 − θ), tan θ, and tan (γ3 + θ)}. Note that the Lipschitz

constant is interpreted as the minimum-maximum absolute slope over all pairs of points on

the domain of the function. The minimum of maxS2 occurs when tan (γ1 − θ) = tan (γ3 + θ),

so ||f ||C1 = tan γ1+γ3
2

= cot γ2
2
. Applying this over all possible orderings of a, b, and c, we

find that ||f ||C1 = min
i=1,2,3

cot
(γi

2

)
.

We apply this result to special cases involving right angles, where ||f ||C1 = 1 :

Corollary 3.2. If f passes through any three points which form a right triangle or any 2

pairs of points which form orthogonal segments, then ||f ||C1 = cot π
4

= 1.
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In the next theorem, we introduce function g to determine whether our upper bound,

||f ||C1 < 1 is tight for β ≤ 1
2
.

Theorem 3.2. Let g(n) be the largest possible N such that there exists a configuration of

N points where Lipschitz constant ||f ||C1 ≥ 1 for any subset of n points. Then if n > 2, we

have g(n) = (n− 1)2.

Proof. Consider the grid arrangement of (n−1)×(n−1) points within the unit square, where

we select subset size n. By the pigeonhole principle, there must be at least 2 points in one

column and 2 points in one row. Thus there exist 2 orthogonal segments, and our result from

Corollary 3.2 gives us ||fC1 || ≥ 1. By Theorem 3.1, for (n− 1)2 + 1 points, ||fC1|| < 1 for at

least one subset of n points. Thus g(n) < (n−1)2+1, and it follows that g(n) = (n−1)2.

Therefore, our Lipschitz bound ||f ||C1 < 1 for β ≤ 1
2
is tight. That is, a function f which

passes through more than N1/2 points is not guaranteed to be Lipschitz continuous or has

Lipschitz constant greater than 1. Later in Section 4.1, we show tightness of the bound β ≤ 1
2

for which any greater value does not guarantee Lipschitz continuity for f.

4 α–Hölder continuity

In this section, we determine bounds on β which guarantee an α–Hölder continuous function.

Through Corollary 3.1, we see that given N points, there exists an α–Hölder continuous

function f through some N1/2 points. We wish to see if we can incorporate more than N1/2

points on both f and a new function φ. Specifically, we consider a grid configuration of k×k

points within the unit square where, by finding bounds on β for which α–Hölder continuity

exists for a function through the grid, we can generalize the bounds on β for an α–Hölder

continuous function through any configuration of points.
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4.1 Properties of the curve φ

Aside from function f : [0, 1]→ [0, 1] we examine another more flexible function φ : [0, 1]→

[0, 1]2 which maps from the unit interval onto the unit square. First, we show that φ is

α–Hölder continuous for all β ≤ 1
2
. We then determine whether we can incorporate more

than N1/2 points onto φ while still preserving α–Hölder continuity, thus showing tightness

of our bound on β from Section 3.

Theorem 4.1. Given N points in [0, 1]2, there exists some φ containing at least N1/2 points

such that ||φ||Cα < 2.

Proof. Divide the unit square into
√
N congruent, nonoverlapping vertical strips of width

1√
N
. By the pigeonhole principle, at least

√
N points must fall in one strip. Let us examine

the path within this strip that passes through all
√
N points in order from bottom to top.

By the triangle inequality, the maximum length of this path is less than

(
1√
N

)
(
√
N − 1) + 1 = 2.

We then have ||φ||Cα < 2.

Thus, we know that for all β ≤ 1
2
, the function φ is α–Hölder continuous. Corollary 4.1

immediately follows:

Corollary 4.1. Given N points in [0, 1]2, there exists φ passing through at least N1/2 points

such that ||φ||C1 < 2.

Since ||φ||C1 can be interpreted as the maximum stretch factor for any segment from the

unit interval to the unit square, we see that when φ = (x
√

2, f(x
√

2)), the length of the

segment can only be stretched by a maximum factor of 2 for its corresponding image in the

unit square.
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Figure 3: Example path Imφ1 through all points in the (s+ 1)× (s+ 1) grid

4.2 Bounds for α–Hölder continuity

Using the grid configuration, we now generalize bounds on β for which α–Hölder continuity

is guaranteed for a function φ passing through any Nβ points.

First, we develop reasoning necessary for Theorem 4.2 by examining the lower bound of

||φ1||Cα in the grid configuration, where φ1 passes through all (s+ 1)2 points.

Lemma 4.1. For all φ which passing through all (s+1)2 grid points, we have ||φ||Cα ≥ s2α−1.

Proof. The minimum Euclidean distance between any pair of points in the grid is 1
s
. Further,

for every φ, by the averaging principle, the length of a subinterval between some xi, xi+1

must be of length of order at least 1
s2
. Thus the lower bound for the α–Hölder constant is

1
s(
1
s2

)α = s2α−1.

Next, we determine whether φ can contain more than N1/2 points while remaining

α–Hölder continuous, showing in the context of the k × k unit square grid that as k2 = N

approaches infinity, such a function becomes α–Hölder discontinuous.

Theorem 4.2. For any α ∈ (0, 1] and k × k unit square grid where k2 = N, if β > 1
2α
,

then any function φ that passes through more than Nβ points has α–Hölder constant at least

N2αβ−1.
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Proof. For any N = k2 points, we wish to see if there exists a α–Hölder continuous function

φ that passes through any k1+ε points where ε > 0. Consider a grid of k2 points. Then, with

the same reasoning used for Lemma 4.1, we obtain

||φ||Cα ≥
1
k
1(

k1+ε
)α = kα+αε−1. (2)

Then because k2 = N, we can see that 1 + ε = 2β. Note that if α+ αε− 1 > 0, the function

φ is not α–Hölder continuous as N becomes sufficiently large. Thus we get

α(1 + ε)− 1 > 0

β >
1

2α
,

where ||φ||Cα ≥ N2αβ−1.

Because the exponent of the lower bound α–Hölder constant is positive when β > 1
2α
,

for sufficiently large N arbitrarily configured points, any φ passing through more than N
1
2α

points is not guaranteed to be α–Hölder continuous. From this result, we obtain the following

corollary for the Lipschitz case:

Corollary 4.2. Given any unit square grid of N points where N is sufficiently large, there

does not exist φ which contains more than N1/2 points and is Lipschitz continuous.

Since any function f corresponds to a function φ through φ(x) = (x, f(x)), we deduce

the following result from Corollary 4.3:

Corollary 4.3. Given any unit square grid of N points where N is sufficiently large, there

does not exist f which passes through more than N
1
2α points and is Lipschitz continuous. In

particular, there does not exist Lipschitz continuous f which passes through more than N1/2

points.

10



Figure 4: S1, S2, S3 of fractal

Thus by the grid configuration, Corollary 4.3 proves the tightness of our bound β ≤ 1
2

from Section 3.2 that guarantees existence of a Lipschitz continuous function f through Nβ

points.

Next, we wish to determine the strictness of bound β < 1
2α

from Theorem 4.2. In the

following result, we construct a fractal within the grid to show that a α–Hölder continuous

function can still exist for β = 1
2α
. We arrive at the following theorem:

Theorem 4.3. For a unit square grid of N points where N is sufficiently large and α = log5 3,

there exists φ that passes through N
1
2α points and is α–Hölder continuous.

Proof. By constructing a fractal within the unit square, we obtain a curve which passes

through more than N
1
2α points and is α–Hölder continuous. Construction of the fractal

(Figure 4) is as follows: The base case S1 consists of a square containing 5 segments of length

1
3
, with orientation right, up, right, down, right. For each successive stage Si, construct a

square of side length 1
3i

within the middle of each segment from the previous stage.

We assume that the fractal consists of a large number of iterations and thus fits in a large

grid, where a point lies at each 90 degree turn. First, we note at Si where i is sufficiently large,

the fractal passes through 5i points out of 9i total points, so Nβ =
(
5
9

)i
, and β = log9 5 > 1

2
.

To satisfy β = 1
2α
, we set α = log5 3 and show that the fractal is log5 3–Hölder continuous.

We now consider any pair of points on the fractal and denote the difference in horizontal
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and vertical distances as h and v, respectively. Observe that for any two points separated by

a horizontal distance of 1
3n
, the path between passes through at least

( 1

5n
)
(5i) = 5i−n points.

Then by definition, h = 1
3n
, and substitution gives 5i−n = 5i+log3 h. So given the horizontal

distance h between two points, the number of points on the path between them is at least

5i+log3 h. We can apply similar reasoning to v, and we obtain the following result for our

α–Hölder constant:

||φ||Cα ≤
√
h2 + v2(

max{5i+log3 h,5i+log3 v}
5i

)α =

√
h2 + v2(

max{5log3 h, 5log3 v}
)α .

Note that 0 ≤ h ≤ 1, and 0 ≤ v ≤ 1
2
. Assuming that h ≥ v, we have

||φ||Cα ≤
√
h2 + v2

(5log3 h)log5 3
≤ 2h

h
= 2.

Assuming h < v gives the same bound.

Now, we consider the case where two points are horizontally separated by h = r
3n

and r

is an integer greater than 1. Since r > 1, we are still guaranteed at least 5i+log3 h points along

the curve between the two points, so our original bound holds. Thus our fractal exemplifies

a φ that passes through N
1
2α points and is α–Hölder continuous.

Thus α–Hölder continuity can still be achieved when β = 1
2α
, more specifically when

α = log5 3. By considering a second curve through the grid, we deduce a lower bound for

the maximum number of points an α–Hölder continuous function can pass through, with the

bound specific to a grid configuration of N points. Thus we arrive at our main result:

Theorem 4.4. Let hα(N) be the maximum number of points that any α–Hölder continuous

function φ can pass through in the grid with N points. Then the following bounds hold for

hα(N) :

Ω
(
N1−α

2

)
= hα(N) = O

(
N

1
2α

)
. (3)
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Figure 5: Function through kε+1 points in a k × k grid

Proof. Consider a grid of size k × k within a unit square with vertices at (0, 0), (0, 1), (1, 1)

and (1, 0), displayed in Figure 5. Begin at (0, 0), and move upward to point (0, kε−1). Then

move right to ( 1
k
, kε−1), and downward to ( 1

k
, 0). Continue snaking in this fashion, moving

horizontally by 1
k
at the end of every segment length kε−1. Assuming that the distances

between xi, xi+1 for all i ∈ {1, 2, . . . , k2 − 1} are equal on the unit interval, it is sufficient to

consider the α–Hölder expression with respect to the specific point (0, 0) and all other points

on the curve.

We first consider the value of the α–Hölder expression between the two points connected

by the longest straight segment, which intuitively gives a relatively large α–Hölder value.

Thus we examine (0, 0) and (0, kε−1), and we find that
|φ(x1)− φ(xkε)|

x1 − xkε
= kα+ε−1. If for the

remaining cases the α–Hölder values are lower or α = 1− ε guarantees α–Hölder continuity,

we are done.

First, introduce i and j such that i ∈ {1, 2, . . . , kε}, and j is a positive odd integer at

most k − 1.

Case 1: Point has coordinates (0, i
k
).

The α–Hölder value for (0, 0) and any point of the form (0, i
k
) reduces to i1−α

(
kαε+α−1

)
.

Note, however, that this expression cannot exceed kα+ε−1 for any α ∈ (0, 1].
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Case 2: Point has coordinates ( j+1
k
, i
k
).

Let j′ = j + 1, and assume that α = 1− ε. Then our α–Hölder expression is as follows:

√(
i
k

)2
+
(
j′

k

)2
(
j′kε+i
k1+ε

)α =

√
i2 + (j′)2

k
(
j′kε+i
k1+ε

)α =

√
i2 + (j′)2

kε
(
j′ + i

kε

)α ≤ i+ j′

kε
(
j′ + i

kε

)α .
Note that i ≤ kε, and j′ = (j′)ε(j′)α, where (j′)ε < kε and (j′)α < (j′ + i

kε
)α. Thus,

i+ j′

kε
(
j′ + i

kε

)α ≤ 2

and the α–Hölder value is bounded by a constant.

Case 3: Point has coordinates ( j
k
, i
k
).

Observe that the Euclidean distance between ( j−1
k
, i
k
) and (0, 0) is shorter than that between

( j
k
, i
k
) and (0, 0). Additionally, note that since the curve passes through ( j−1

k
, i
k
) first, the

distance between the inputs of ( j−1
k
, i
k
) and (0, 0) is smaller than the distance between the

inputs of ( j
k
, i
k
) and (0, 0). It follows that the α–Hölder value for points ( j

k
, i
k
) and (0, 0) is

strictly lower than that for ( j−1
k
, i
k
) and (0, 0).

Therefore, we see that ||φ||Cα = kα+ε−1. In order for φ to be α–Hölder continuous, α +

ε− 1 ≤ 0, and since β = 1+ε
2
, we have β ≤ 1− α

2
. Thus by this result and Theorem 4.2, we

know that

Ω
(
N1−α

2

)
= hα(N) = O

(
N

1
2α

)
.

That is, for any given α and N points in a grid, as N becomes sufficiently large, the

maximum number of given points an α–Hölder continuous function φmay contain is bounded

betweenN1−α
2 andN

1
2α . Note that 1−α

2
> 1

2
, indicating that β exceeds the value of 1

2
deduced

from the Erdős–Szekeres theorem.
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Finally, we interpret a result on path length within the unit square to give a bound for

||φ||C1 for any set of N points in the unit square. Because the Lipschitz constant ||φ||C1 rep-

resents the maximum stretch factor from the unit interval onto the unit square, we examine

the bound proposed by Verblunsky [7] for the shortest path through N points in the unit

square, determining a lower bound for ||φ||C1 for any arbitrary N points in the unit square.

Theorem 4.5 (Verblunsky). For any arbitrary N points in the unit square, the shortest path

through the points has length less than 2 + (2.8N)1/2.

Since all mappings are from the unit interval, the maximum value for the denominator

of the Lipschitz expression is 1. The lower bound follows.

Corollary 4.4. For φ that passes through N arbitrary points in the unit square, ||φ||C1 <

2 + (2.8N)1/2.

Thus we obtain an upper bound for ||φ||C1 in terms of the number of given points it

passes through, rather than β, the proportion of total given points.

5 Conclusion

Our problem, inspired by the Erdős–Szekeres theorem, asked under what conditions a curve

through some subset of N given points in the unit square would be α–Hölder continuous. We

determined that there always existed an α–Hölder continuous curve that passed through at

least N1/2 of the given points. However, we asked if we could do better than β = 1
2
; that is,

whether there would always exist an α–Hölder continuous curve that passed through more

than N1/2 of the given points. We found that when the given points were from a grid, as

N tended to infinity, the maximum β to guarantee α–Hölder continuity for our function φ

was bounded below by 1 − α
2
and above by 1

2α
. Thus, we deduced that β could exceed 1

2

while still allowing for an α–Hölder continuous function φ. However, in general for any N
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arbitrarily configured points in the unit square, as N tended to infinity, the maximum β

remained bounded below by 1
2
but also bounded above by 1

2α
.

Future work includes proving the conjecture that the bounds Ω
(
N1−α

2

)
= hα(N) =

O
(
N

1
2α

)
defined in Theorem 4.4 hold for any configuration of N points in the unit square and

not restricted to those arranged in a grid. Additional extensions include analyzing properties

of smooth α–Hölder continuous curves through a calculus-based approach, as well as applying

our results in context of probability theory.
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