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Abstract

The most noted permutation statistics, inversion number and major index, have been studied

extensively in recent decades. Many results found regarding their joint distribution and

normality have been found. We focus on the k-major index, a natural interpolation between

the inversion number and major index, which exhibits elegant properties of equidistribution.

We generalize normality and equidistribution to words with fixed alphabet size and large

length. We then draw analogs from the fluctuation of the k-major index on a random, fixed

permutation or word as k varies to standard Brownian motion. We prove a fundamental

similarity of covariance independence, and find other connections. Finally, we observe limiting

shapes of joint distributions of other pairs of potentially promising statistics.



1 Introduction

The study of permutation statistics arose in the early 20th century and has seen extensive

research in recent years [1, 2]. Permutation statistics have interesting applications in combi-

natorics and representation theory, where some statistics are generalized to Weyl groups of

root systems other than type A [3].

A permutation statistic is a map Sn → N. Consider a permutation w ∈ Sn; we often write

it in one-line notation as w = (w1w2 · · · wn). Let the descent set be Des(w) = {i|wi > wi+1}.

With this, we look at the descent number, the inversion number, and the major index,

denoted by des(w), inv(w),maj(w), respectively. They are given by

des(w) = #{i|wi > wi+1};

inv(w) = #{(i, j)|i < j and wi > wj};

maj(w) =
∑

wi>wi+1

i.

For example, the permutation w = (1 4 3 5 2) has Des(w) = {2, 4}, so des(w) = 2, inv(w) =

3, maj(w) = 6.

Some completed work includes the computation by Corteel et al [4] of relative distribu-

tions between descent number and major index, and also the proof that cycle lengths over a

random permutation are Poisson distributed [3].

Two of the most significant statistics, major index and inversion number, have been

studied extensively [1, 2, 4, 5]. Major MacMahon [6] first identified the major index in 1913,

and then he showed it to be equidistributed with the inversion number. Explicitly, with

common notation [n]p = 1−pn+1

1−p , [n]p! = [n]p · · · [1]p; the identities hold

∑
w∈Sn

pinv(w) =
∑
w∈Sn

pmaj(w) = [n]p!. (1)
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In the present work, we focus on the natural analogues of major index and inversion num-

ber in the set of words with a fixed alphabet and fixed length. More generally, in this setting

we shall study the k-major index, a statistic that interpolates between the major index and

inversion number. Specifically, the 1-major index is the major index and the n-major index

is the inversion number. The k-major index is equidistributed with the inversion number

for all 1 ≤ k ≤ n. Moreover, it has had interesting applications in representation theory;

importantly, it has been used to provide a combinatorial proof of Macdonald positivity [5].

We introduce notation and review existing work in Section 2. In Section 3, we prove a

Central Limit Theorem for the k-major statistic in words. In Section 4, we discuss k-major

covariances as they converge across different lengths of permutations and different k’s. We

observe and conjecture on connections between k-major and Brownian motion.

2 Background

Figure 1: Joint frequency graph. The x-axis represents inversion number and the y-axis,
the major index, while the z-values indicate the number of permutations in S9 with those
statistic values.
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Results on distributions of statistics, such as the generating functions in equation (1),

were studied early on. Work on the joint distribution of statistics began with Foata [7] who

discovered in 1968 a bijection φ that proves inv(φ(w)) = maj(w) for any w ∈ Sn. Recently,

in 2011, a study by Baxter and Zeilberger [8] on the asymptotics of the joint distribution of

the inversion number and major index showed that the joint distribution of these statistics

converges to a bivariate normal distribution in the limit (see Figure 1).

Our setting is distinct from the previous work mentioned above. We work with words.

Definition 2.1. An alphabet a is a nonempty set of letters {a1, . . . , al} with a complete

ordering a1 < · · · < al. A word w over an alphabet a is a string (w1 · · · wn) of letters such

that wi ∈ a for all i. This contrasts with a multiset permutation of length n, which is a

rearrangement of a given multiset {1m1 , . . . , lml}, where the letter j appears mj times in the

permutation, and
∑l

i=1mi = n.

Observe that standard permutations are just multiset permutations with l = n and all

mi = 1. Without loss of generality, we use the ordered alphabet a = {1, . . . , l} hereinafter.

The joint normality for permutations was generalized by Thiel in 2013 [2] to multiset

permutations. These joint distribution proofs used a limit approximation of mixed moments.

The proof assigned Xn to be the z-score for inversion number centralized on its own mean and

standard deviation over the sample space of Sn, and assigned Yn as the equivalent measure

for major index. It was shown that as n → ∞, E[Xr
nY

s
n ] approaches the joint moments of

E[N r
1N

s
2 ], where N1, N2 are two independent normal random variables, thus proving that

Xn, Yn are asymptotically independently normal.

In 2008, Sami Assaf [5] introduced the k-major index, a value that interpolates between

the inversion number and major index, by combining the k-inversion set and the k-descent

set, defined below.

Definition 2.2. For a word w, we define the d-descent set, Desd(w), as the set of pairs of

3



indices (i, i + d), such that wi > wi+d. Also, the k-inversion set, Invk(w) is the union of

all the d-descent sets, for d < k, Invk(w) =
⋃
d<k Desd(w).

With these ingredients, we introduce the k-major index statistic.

Definition 2.3. Given a word w, let the k-major index, or just k-major, of w be

majk(w) = |Invk(w)|+
∑

(i,i+k)∈Desk(w)

i.

Notice that the 1-major index is the major index defined in Section 1. On the other hand,

the n-major index is the inversion number.

We denote by P[V ] the probability of an event V and by 1V the indicator variable of V .

Definition 2.4. Two statistics f and g are equidistributed over the set of words Ω, if for

all m, we have P[f(w) = m] = P[g(w) = m] for a word w ∈ Ω chosen uniformly at random.

Assaf [5] showed in 2008 that any k-major index is equidistributed with the inversion

number, over any set of multiset permutations. In the next section, we consider the distri-

bution of majk(w), for a fixed k. We shall sample a random word from the set Wn of words

of length n and letters from the alphabet a = {1, . . . , l}. Then |Wn| = ln.

3 Fixed k Distributions

3.1 Equidistribution

Proposition 3.1. If two statistics f, g are equidistributed over all multisets of size n, they

are equidistributed over the set of words Wn.

Proof. Let M be the family of all multisets {1m1 , . . . , lml} where
∑l

i=1mi = n. Note that

together, the multiset permutations of each T ∈M account for every possible word of length
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n, since each word has n letters from the alphabet {1, . . . , l}. For any m,

P[f(w) = m] =
∑
T∈M

P[f(w) = m|w ∈ ST ]P[w ∈ ST ]

=
∑
T∈M

P[g(w) = m|w ∈ ST ]P[w ∈ ST ]

= P[g(w) = m].

Here ST denotes the set of multiset permutations of multiset T .

With Assaf’s conclusions [5] on the equidistribution of all k-major indices over multisets

of size n, we can apply Proposition 3.1 to say each k-major index is equidistributed identically

over the set of words of length n.

In the next section, we prove a Central Limit Theorem for the k-major statistic on words.

As a first step, we find here explicit expressions for the mean µn and variance σ2
n of the

inversion statistic inv (and therefore of any k-major statistic). In a word w, let Xi,j = 1wi>wj

be the indicator random variables for the pair (i, j). Observe that
∑

1≤i<j≤nXi,j = inv(w).

Proposition 3.2. The distribution of inv(w) over w ∈ Wn has mean µn = l−1
2l

(
n
2

)
and

variance σ2
n = l2−1

72l2
n(n− 1)(2n+ 5).

Proof. Each Xi,j has a probability
(
l
2

)
/l2 = l−1

2l
of being 1, dependent only on the elements

at indices i, j. This means E[Xi,j] = l−1
2l

, and so

E[inv(w)] =
∑
i<j

E[Xi,j] =

(
n

2

)
l − 1

2l
.

The variance of a Bernoulli variable with parameter p is p(1− p), so
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Var(Xi,j) =
l − 1

2l

l + 1

2l

Var(inv(w)) = Var

(∑
i<j

Xi,j

)

=
∑
i<j

Var(Xi,j) + 2
∑

(i,j)<L(i′,j′)

Cov(Xi,j, Xi′,j′)

=

(
n

2

)
l − 1

2l

l + 1

2l
+ 2

∑
(i,j)<L(i′,j′)

Cov(Xi,j, Xi′,j′).

Here we used the fact that the variance of a sum is the sum of the variances plus the sum of

twice the mutual covariances. The notation (i, j) <L (i′, j′) uses the lexicographical ordering

L of the ordered pairs: comparing i and i′, then j and j′ if necessary. Now we compute using

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])], where X, Y are arbitrary random variables. Note

that if {i, j} ∩ {i′, j′} = ∅, then Xi,j and Xi′,j′ are independent, since all indices are chosen

separately. Therefore we consider three cases of dependence, or cases where indices overlap.

Case 1 i = i′ and j < j′: This configuration appears
(
n
3

)
times in a word of length n, since

we choose the set of indices {i, j, j′}:

Cov(Xi,j, Xi,j′) = E[(Xi,j −
l − 1

2l
)(Xi,j′ −

l − 1

2l
)]

= E[Xi,jXi,j′ ]−
l − 1

2l
(E[Xi,j] + E[Xi,j′ ]) +

(
l − 1

2l

)2

.

We evaluate the first and middle terms of this expression

E[Xi,jXi,j′ ] =
1

l3

l∑
t=1

(t− 1)2

=
(l − 1)l(2l − 1)

6l3
=

(l − 1)(2l − 1)

6l2
; (2)

E[Xi,j] = E[Xi,j′ ] =
l − 1

2l
.

We therefore conclude
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Cov(Xi,j, Xi,j′) =
(l − 1)l(2l − 1)

6l3
− 2

(
l − 1

2l

)2

+

(
l − 1

2l

)2

=
l2 − 1

12l2
.

Case 2 i < i′ and j = j′: This is symmetric with Case 1, considering a reversal. This

configuration occurs in
(
n
3

)
ways, and takes covariance l2−1

12l2
.

Case 3 j = i′: This again occurs
(
n
3

)
times. We perform the same expansion,

Cov(Xi,j, Xj,j′) = E[Xi,jXj,j′ ]−
l − 1

2l
(E[Xi,j] + E[Xj,j′ ]) +

(
l − 1

2l

)2

= E[Xi,jXj,j′ ]−
l − 1

2l

(
l − 1

l

)
+

(
l − 1

2l

)2

.

We have E[Xi,jXj,j′ ] = 1
l3

(
l
3

)
. This comes out to Cov(Xi,j, Xj,j′) = 1−l2

12l2
. Combining these

cases, we have

Var(inv(w)) =

(
n

2

)
l2 − 1

4l2
+ 2

(
n

3

)(
l2 − 1

12l2
+
l2 − 1

12l2
− l2 − 1

12l2

)
=
l2 − 1

72l2
n(n− 1)(2n+ 5).

3.2 Central Limit Theorem

In this section, we prove a CLT for the k-major statistic on words. Our main tool is a variant

of the CLT, similar to the one proposed by Lomnicki and Zaremba [9] for triangular arrays

of random variables; refer to Appendix A for the original statement.

Proposition 3.3. Let Vi,k with i = 1, 2, . . . ; k = i+1, i+2, . . . be random variables satisfying

1. Any two finite sets of variables Vi,k have the property that no value taken by either

index of any element of one set appears among the values of the indices of the elements
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of the other set, then these two sets are mutually independent;

2. E[Vi,k] = 0 and E[V 2
i,k] = µ2, a constant for all i = 1, 2, . . . ; k = i+ 1, i+ 2, . . .;

3. E[Vi,kVi,j] = E[Vi,jVk,j] = c and E[Vi,kVk,j] = −c, where c is another constant, for all

integer triples i < k < j;

4. The random variables Vi,k have collectively bounded moments up to some order m.

Now, given

V̄N =
2

N(N − 1)

N−1∑
i=1

N∑
k=i+1

Vi,k,

We have, for any r ≤ m,

lim
N→∞

N r/2 E(V̄ r
N) =


2r/2r!
(r/2)!

(
c
3

)r/2
if r is even;

0 if r is odd.

Proof. The proof of our statement is identical to the proof of Lomnicki and Zaremba’s

theorem, except for one adjustment. The original statement requires E[Vi,kVi,j] = E[Vi,jVk,j] =

E[Vi,kVk,j] = c, while our statement requires instead that E[Vi,kVk,j] = −c, but the rest is the

same. By following the proof of their theorem, it is not hard to see that we obtain a similar

formula for the (normalized) limit of moments of V̄N , with c
3

instead of c.

Remark. In the statement of the proposition of their theorem, Lomnicki and Zaremba

omitted the requirement E[Vi,kVk,j] = c, but it is clear from their proof that this is required.

Theorem 3.4. For any 1 ≤ k ≤ N , the k-major statistic is asymptotically normally dis-

tributed over words w ∈ WN . Explicitly,

lim
n→∞

P

(
majk(w)− µn

σn
≤ x

)
=

1√
2π

∫ x

−∞
e−s

2/2ds,

8



where µn, σ
2
n are the mean and variance of the permutation w ∈ Sn that is chosen uniformly

at random.

Proof. It suffices to show that inv(w) is normally distributed, since Theorem 3.1 guarantees

that every other majk(w) will be identically distributed for any k.

We use the same indicators Xi,j as in Proposition 3.2. The inversion number is then a

sum of these
(
n
2

)
identically distributed random variables.

Consider an infinite sequence S = s1, s2, . . . of letters from the alphabet a = {1, . . . , l}.

Each si is defined independently, with P[si = t] = 1
l

for any letter 1 ≤ t ≤ l. For an integer N ,

let w be the word representing the first N letters of the sequence S, and let ZN = inv(w)−µN
σN

,

where ZN depends solely on S and N . We show that as N →∞, the ZN ’s approach N (0, 1)

in distribution as we consider all sequences S.

We use the variation of the Central Limit Theorem for the dependent variables stated in

Proposition 3.3. We consider the adjusted variables Yi,j = Xi,j − l−1
2l

. Here we check that all

four conditions are satisfied.

1. Two variables in the sum Yi,j, Yk,h are independent when {i, j}∩{k, h} = ∅. This holds

since the indices i, j, k, h are each determined independently;

2. E[Yi,k] = 0, since E[Xi,k] = l−1
2l

by Proposition 3.2. For each i < k, we compute

µ2 = E[Y 2
i,k] = Var(Yi,k) + E[Yi,k]

2 = l−1
2l

l+1
2l

;

3. We show E[Yi,kYi,j] = E[Yi,jYk,j] = c and E[Yi,kYk,j] = −c when i < k < j. We

evaluate the left side and show it is constant as i, j, k vary. We are given three fixed

indices i < k < j, and we have E[Yi,kYi,j] = E[(Xi,k − l−1
2l

)(Xi,j − l−1
2l

)] = E[Xi,kXi,j]−
l−1
2l

(E[Xi,k] + E[Xi,j]) +
(
l−1
2l

)2
= E[Xi,kXi,j]−

(
l−1
2l

)2
. We take from (2) in Proposition

3.2 that E[Xi,kXi,j] = (l−1)(2l−1)
6l2

. This means E[Yi,kYi,j] = (l−1)(2l−1)
6l2

−
(
l−1
2l

)2
= l2−1

12l2
.

Observe that E[Yi,jYk,j] can be computed similarly. Now E[Xi,kXk,j] =
(
l
3

)
/l3, so from

above E[Yi,kYk,j] =
(
l
3

)
/l3 −

(
l−1
2l

)2
= − l2−1

12l2
, so we fulfill conditions with c = l2−1

12l2
;
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4. |Yi,j| < 1 for all i < j. Then for anym, and anym1, . . . ,mk < m, we have E[|Y m1
i1,j1
· · ·Y mk

ik,jk
|] <

1 for all m1, . . . ,mk ∈ N.

With all conditions satisfied, Proposition 3.3 implies that for any r,

lim
N→∞

N r/2 E(Ȳ r
N) =


2r/2r!
(r/2)!

(
c
3

)r/2
if r is even;

0 if r is odd.

Now

ȲN =
1(
N
2

) ∑
i<j≤N

(
Xi,j −

l − 1

2l

)
=

1(
N
2

)(inv(w)− µN).

Using this interpretation of ȲN , we have

N r/2E[Ȳ r
N ] = E

[(
inv(w)− µN

σN

N1/2σN(
N
2

) )r]

= E

[(
inv(w)− µN

σN

σN√
N(N − 1)/2

)r]
= E[Zr

N ]

(
2σN

N3/2 −N1/2

)r
.

We evaluate the limit for part of this product

lim
N→∞

(
2σN

N3/2 −N1/2

)r
= lim

N→∞

2
√

l2−1
72l2

N(N − 1)(2N + 5)

N3/2 −N1/2

r

= lim
N→∞

(
2

√
l2 − 1

72l2

√
N(N − 1)(2N + 5)

N3/2 −N1/2

)r

.
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The inner right fraction converges to
√

2 as we take this limit, and we are left with

lim
N→∞

(
2σN

N3/2 −N1/2

)r
=

(
2

√
l2 − 1

36l2

)r

=

(√
l2 − 1

3l

)r
.

Because l > 1, this quantity is positive and finite. We proceed to use the limit from the

conclusion, so for even r we have

(
lim
N→∞

E[Zr
N ]
)(√l2 − 1

3l

)r
=

2r/2r!

(r/2)!

( c
3

)r/2
.

This means for even r,

lim
N→∞

E[Zr
N ] =

2r/2r!

(r/2)!

( c
3

)r/2 ( 3l√
l2 − 1

)r
=

2r/2r!

(r/2)!

(
l2 − 1

36l2

)r/2 (
3l√
l2 − 1

)r
=

r!

2r/2(r/2)!
.

For odd r, we conclude

(
lim
N→∞

E[Zr
N ]
)(√l2 − 1

3l

)r
= 0

lim
N→∞

E[Zr
N ] = 0.

The r-moments of the ZN ’s exhibit the limit behavior E[Zr
n] → r!

2r/2(r/2)!
for even r and

E[Zr
n] → 0 for odd r. Knowing that the moments of these random variables approach the

moments of the normal distribution, we apply a convergence theorem such as Theorem 30.2

in Probability and Measure by Billingsley [10]. It follows that
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lim
N→∞

E[Zr
N ] = E[N (0, 1)r], convergence of moments, implies,

lim
N→∞

P[ZN ≤ x] = P[N (0, 1) ≤ x], convergence in distribution.

The values of ZN take on a normal distribution centered at 0 with variance 1. This shows that

the inversion statistic is normally distributed across all words with mean µn and standard

deviation σn, and therefore the k-major index is normally distributed across words for all

individual k.

4 Varying the k Parameter

Figure 2: Given a fixed permutation w ∈ S100, we plot k on the x-axis and a corresponding
majk(w) on the y-axis. Observe the gradually stabilizing, seemingly random graph.

If we analyze the value of majk(w) on a fixed w ∈ Wn as k ranges from 1 to n, the

k-major index varies widely and then stabilizes near inv(w), as shown in Figure 2. We find

that this k-major progression has much in common with Brownian motion.

Let Mw be the function defined by Mw(k) = majk(w) (w is fixed) and k varies from 1 to

n. Define C(h, k) = E[majh(w) majk(w)], where w ∈ Sn is random, for all relevant h, k.
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Theorem 4.1. Consider the probability space Sn, where each w ∈ Sn is equally likely. The

covariance Cov(majh(w),majk(w)) depends only on min(h, k). In other words,

Cov(majh(w),majk(w)) = Cov(majh+1(w),majk(w)) for all h > k.

Proof. By definition,

Cov(majh(w),majk(w)) = E[majh(w) majk(w)]− E[majh(w)] E[majk(w)].

Observe that all k-major statistics are equidistributed, so they all have the same mean. Thus

to prove the theorem, it suffices to show that E[majh(w) majk(w)] is constant if h varies over

the numbers k, k + 1, . . ..

Let C = E[majk+1(w) majk(w)]. We want to show that each value of h in the expectation

will evaluate to C.

We do so by induction. Given h > k, we assume E[majh(w) majk(w)] = C. Given indices

i < j, we use indicator Xi,j to evaluate wj > wi, i.e., whether the letter at position j is

greater than the one at i. Now, given a permutation w, observe

majh =
∑
s−r<h

Xr,s +
∑
i

iXi,i+h

majh+1 =
∑

s−r<h+1

Xr,s +
∑
i

iXi,i+h+1

majh+1−majh =
∑
r

(1− r)Xr,r+h +
∑
s

sXs,s+h+1.

Note that in summing these indicator products, we incorporate every pair in the valid range.

Call this last difference expression δ. This means

E[majh+1(w) majk(w)] = E[(majh(w) + δ) majk(w)]

= E[δmajk(w)] + C.
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We hope to show that E[δmajk(w)] = 0.

Lemma 4.2. Given any fixed c, k, and h > k,

E[Xc,c+k

∑
sXs,s+h+1] = E[Xc,c+k

∑
(r − 1)Xr,r+h],

as w ranges over Sn. Note that there are n− h− 1 nonzero terms on either side.

Proof. We consider the sums in pairs. Any given p produces a pair of elements consisting of

Lp = E[Xc,c+k pXp,p+h+1] on the LHS and Rp = E[Xc,c+k pXp+1,p+h+1] on the RHS. Notice

that showing
∑
Lp =

∑
Rp for 1 ≤ p ≤ n− h− 1 would adequately determine the relation.

The sets F = {c, c+ k} and T = {p, p+ 1, p+ h+ 1} can have at most 1 collision, unless

k = 1 (which we will consider separately). Consider the values of p for which there are 0

collisions between F, T . Then the multiplied indicators are independent and Lp = Rp = 1
4
p.

These pairs can all be disregarded, since they are equal between LHS and RHS.

Next, consider when F ∩T = {p+h+ 1}. Then either c+ k = p+h+ 1 or c = p+h+ 1.

The probability distributions for both of these cases are identical for Lp and Rp, so this case

can, too, be disregarded.

We are left with four cases of |F ∩ T | = 1: p + 1 = c, p = c, p + 1 = c + k, p = c + k.

We show that the sums of Lp and Rp are equivalent over these scenarios.

Case 1: p+ 1 = c. The expectance E[Xc,c+kXp,p+h+1] = 1
4
, so Lp = 1

4
(c− 1). Meanwhile,

E[Xc,c+kXp+1,p+h+1] = 1
3
, so Rp = 1

3
(c− 1).

Case 2: p = c. We have E[Xc,c+kXp,p+h+1] = 1
3

and therefore Lp = 1
3
c. On the other hand,

E[Xc,c+kXp+1,p+h+1] = 1
4
, so Rp = 1

4
c.

Case 3: p + 1 = c + k. The expectance E[Xc,c+kXp,p+h+1] = 1
4
, so Lp = 1

4
(c + k − 1).

Meanwhile, E[Xc,c+kXp+1,p+h+1] = 1
6
, so Rp = 1

6
(c+ k − 1).

Case 4: p = c + k. We have E[Xc,c+kXp,p+h+1] = 1
6

and therefore Lp = 1
6
(c + k). On the

other hand, E[Xc,c+kXp+1,p+h+1] = 1
4
, so Rp = 1

4
(c+ k).
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Summing over all of these, we have

∑
Lp = c+

5k

12
− 1

2
=
∑

Rp.

This proves the equality of the overall expression as p ranges over all 1 ≤ p ≤ n− h− 1.

The same computation results for k = 1, with the alteration that Cases 2 & 3 are combined.

The lemma is proved.

Note that

majk =
∑

Xi,i+1 +
∑

Xi,i+2 + · · ·+
∑

Xi,i+k−1 +
∑

i Xi,i+k.

Also note that, from Lemma 4.2, for any c′, k′, t′ where h′ > k′,

E[t′ Xc′,c′+k′

∑
s′ Xs′,s′+h′+1] = E[t′ Xc′,c′+k′

∑
(r′ − 1)Xr′,r′+h′ ].

Applying this equality numerous times for k′ taking on 1, . . . , k and c′ becoming 1, . . . , n−k,

we have the sum of equations that yield

E[majk
∑

s Xs,s+h+1] = E[majk
∑

(r − 1)Xr,r+h].

Maneuvering the terms, we have

E[majk
∑

s Xs,s+h+1] + E[majk
∑

(1− r)Xr,r+h] = 0

E[majk(
∑

s Xs,s+h+1 +
∑

(1− r)Xr,r+h)] = E[majk δ] = 0.

This is what we need to complete the induction. Therefore

C = E[majh+1 majk] = · · · = E[majn majk], and so, as seen,

15



Cov(majh+1,majk) = · · · = Cov(majn,majk).

Theorem 4.1 is proved.

Suspecting the same claim for words rather than permutations, we verify that for n ≤ 8

and a range of l, identical results hold true.

Conjecture 4.3. The covariance between two major indices h, k as we range over all words

depends only on min(h, k); i.e., for some k, the value Cov(majh(w),majk(w)) is constant for

all h > k, considering all w ∈ Wn, with Wn the set of words of length n.

Moving back to the case of permutations, Theorem 4.1 shows that for h > k, covariance

Cov(majh(w),majk(w)) depends only on k, so we can express this covariance as C(k). If we

plot the adjusted C(k) as k ranges on 1 ≤ k ≤ n − 1, we obtain the plot in Figure 3; note

that we scale all domain and range values to keep them on [0, 1].

Figure 3: For several values of n, we plot the points
(

k
n−1 ,

C(k)
σn

)
for 1 ≤ k ≤ n.

Conjecture 4.4. As n approaches infinity, the adjusted points
(

k
n−1 ,

C(k)
σn

)
with 1 ≤ k ≤ n

approach a quartic polynomial function.

The regression quartic is drawn through the points in Figure 3, with very high correlation.
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We make some observations that connect to Brownian motion. Let us enumerate prop-

erties of this stochastic process B = {Bt|t ∈ [0,∞)}:

1. B0 = 0 and Bt is normally distributed with mean 0 and variance t, for each t ≥ 0;

2. B has stationary increments, the distribution of Bt −Bs is the same as Bt−s;

3. B has independent increments;

4. Bt is almost surely continuous.

Surprisingly, this type of motion shares characteristics with Mw. Namely, (1) Each Mw(k) is

asymptotically normally distributed as seen in [5] and then Theorem 3.4; (2) Both Cov(Bh, Bk)

and Cov(Mw(h),Mw(k)) are determined by min(h, k) by Theorem 4.1. We ask the following.

Problem 4.5. We can define a stochastic process X on [0, 1] by letting Xt := Mw(bntc).

Does this process converge to the Brownian motion (after suitable renormalization) on the

interval [0, 1], in some sense? We have in mind some statement like that of a simple random

walk converging to the Brownian motion.

5 Conclusion

In this paper we look at common permutation statistics in new ways, extending them to words

and characterizing novel trends. We focus on the k-major index, a meaningful interpolation

between the inversion number and the major index. We extend earlier results of normality

to words, and identify the parameters of these distributions. We identify possible relations

between k-major and Brownian motion by varying the k-index for fixed w in majk(w). We

observe similarities and then prove a fundamental mutual property of constant covariance.
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Appendix A Original variant of CLT

We reproduce the original version of the Central Limit Theorem described by Lomnicki and

Zaremba [9]. Let Vi,k with i = 1, 2, . . . ; k = i + 1, i + 2, . . . be random variables subject to

the following conditions

1. Any two finite sets of variables Vi,k have the property that no value taken by either

index of any element of one set appears among the values of the indices of the elements

of the other set, then these two sets are mutually independent;

2. E[Vi,k] = 0 and E[V 2
i,k] = µ2, a constant for all i = 1, 2, . . . ; k = i+ 1, i+ 2, . . .;

3. E[Vi,kVi,j] = E[Vi,jVk,j] = c, another constant, for all natural number triples i < k < j;

4. The random variables Vi,k have collectively bounded moments up to some order m.

Now, given

V̄N =
2

N(N − 1)

N−1∑
i=1

N∑
k=i+1

Vi,k,

we have, for any r ≤ m,

lim
N→∞

N r/2 E(V̄ r
N) =


2r/2r!
(r/2)!

cr/2 if r is even;

0 if r is odd.
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Appendix B Qualitative Comparisons

A broad search of other pairs of statistics leaves a couple smooth surfaces to examine. Com-

paring the descent and major indices results in Figure 4. For n even, two twin peaks with

lower adjacent peaks result, while for odd n, the limit shape becomes a three-peak distri-

bution with three significant peaks, one central, and two side. Figure 5b shows a decreasing

plot for fixed major index, and this may be related to the fact that the cycle length in

permutations is Poisson distributed [3].

(a) n = 8 (b) n = 9

Figure 4: Frequency plots of descent number and major index.

(a) Exceedance and inversion num-
ber for n = 8.

(b) Fixed point and major index
for n = 8.

Figure 5: Frequency plots.
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