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Abstract

In computational geometry, packing problems ask whether a set of rigid pieces can be placed

inside a target region such that no two pieces overlap. The triangle packing problem is a

packing problem that involves triangular pieces, and it is crucial for algorithm design in many

areas, including origami design, cutting industries, and warehousing. Previous works in packing

algorithms have conjectured that triangle packing is NP-hard. In this paper, we mathematically

prove this conjecture. We prove the NP-hardness of three distinct triangle packing problems:

(i) packing right triangles into a rectangle, (ii) packing right triangles into a right triangle, and

(iii) packing equilateral triangles into an equilateral triangle. We construct novel reductions

from the known NP-complete problems 3-partition and 4-partition. Furthermore, we generalize

that packing arbitrary triangles into an arbitrary target region is strongly NP-hard. Because

triangle packing is NP-hard, triangle packing must be determined by approximation or heuristic

algorithms rather than exact algorithms.
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1 Introduction

In a packing problem, we wish to determine whether a set of objects can be placed into a container

such that no two objects overlap. These problems have been studied extensively and are motivated

by a number of applications, including warehousing, origami design, newspaper paging, and cutting

industries. In wood, glass, or steel industries, for example, packing is involved when determining

how to cut pieces from large sheets of material.

Complexity theory involves the classification of decision problems — problems where the answer

is either yes or no — by computational hardness. Tractable problems are problems that can be

solved with efficient algorithms, or algorithms that require a number of resources that grows as a

polynomial function of the problem instance; intractable problems are ones that cannot be solved

with efficient algorithms. P is the class of decision problems with efficient algorithms for finding

solutions. NP is the class of problems with efficient algorithms for verifying solutions. Problems

that are at least as hard as the hardest problem in NP are NP-hard. Unless all problems that are

efficiently verifiable are also efficiently solvable, all NP-hard problems are intractable. Hence, if a

problem can be proven NP-hard, programmers would know to look for approximate or case-by-case

solutions rather than attempt to find an efficient exact algorithm.

Many packing problems are NP-hard. Common one-dimensional versions, such as the Knapsack

problem, are NP-hard. Several two-dimensional geometric packing problems have been proven NP-

hard, including packing squares into squares [7], packing circles into equilateral triangles or squares

[4], and packing identical simple polygons into a larger polygon [1]. Nevertheless, there do exist

two-dimensional packing problems for which a polynomial time exact algorithm has been found.

The guillotine pallet loading problem is closely related to rectangle packing but involves cutting

patterns. Tarnowski proposed a polynomial time algorithm for the guillotine pallet loading problem

[8].

We study the computational complexity of triangle packing. Triangle packing problems in

general ask this: Can a set of given triangular pieces be placed inside a given target region such

that no two pieces overlap? Chen and He [2] were the first to conjecture that “triangle packing

problem is a special case of polygon packing problem and also NP-hard.” Wang et. al [9] and Chen

et. al [3] later made similar statements. The previous literature does not provide proof for the

NP-hardness of triangle packing other the mention that triangle packing is a special case of polygon

packing, an NP-hard problem. However, the reasoning that triangle packing is NP-hard because

polygon packing is NP-hard would be conceptually flawed. Because triangle packing is a special

case of polygon packing, it follows that polygon packing is at least as hard as triangle packing; the

fact that polygon packing is NP-hard is not sufficient to conclude that triangle packing is NP-hard.

Thus, the claim that triangle packing is NP-hard requires non-trivial proof.

We prove the NP-hardness of three important triangle packing problems: (i) packing right tri-

angles into a rectangle, (ii) packing right triangles into a right triangle, and (iii) packing equilateral

triangles into an equilateral triangle. Right triangle packing is utilized in cutting industries and

origami engineering, and equilateral triangle packing has been a topic of interest since Friedman’s
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and Morandi’s work [5]. These problems are special cases of the general triangle packing problem,

which asks whether arbitrary triangular pieces can be placed into an arbitrary triangular region.

Hence, we may generalize from our NP-hardness results that triangle packing is NP-hard. We

conclude that approximation or heuristic algorithms are necessary to determine triangle packing.

Most noteworthy of our triangle packing problems is equilateral triangle packing. This problem

has been previously studied in the form of an optimization problem. Friedman and Morandi [5]

studied the unit equilateral triangle packing problem, which asks: Given a set of k unit equilateral

triangles, what is the minimum side length s of an enclosing equilateral triangle? Non-trivial cases

include k = 5, for which which s has been proven by Friedman in 1997 to be 1 +
√

3 ≈ 2.732, and

k = 6, for which s has been found but not proven to be 13/8+3
√

13/8 ≈ 2.977. Though reasonable

bounds have been found for cases up to k = 30, most non-trivial cases have not been proven or are

difficult to find. We prove that the problem of packing equilateral triangles into equilateral triangles

is NP-hard. Because equilateral triangles scale in two dimensions, it is particularly difficult to

construct formations that constrain equilateral packing. Thus, our NP-hardness proof of equilateral

triangle packing utilizes novel gadgets and requires techniques different from previous proofs in

packing other objects.

In Section 2, we discuss the methods and concepts with which we prove NP-hardness. In

Section 3, we prove that packing right triangles into a rectangle is NP-hard. In Section 4, we prove

that packing right triangles into a right triangle is NP-hard. In Section 5, we show that packing

equilateral triangles into an equilateral triangle is NP-hard. Finally, in Section 6, we summarize

our work and present directions for further research.

2 Definitions and Concepts

Reductions allow us to classify the hardness of problems relative to other problems. We prove the

NP-hardness of triangle packing problems using reductions.

Definition 2.1. A polynomial reduction from problem ΠA to problem ΠB is a function f(x) that

transforms in polynomial time an instance xA of problem ΠA to an instance xB = f(xA) of problem

ΠB with polynomial size such that xA is a “yes” instance of ΠA if and only if xB is a “yes” instance

of ΠB. We say that ΠB is as hard as ΠA, and we write ΠA ≤p ΠB.

Suppose we wish to show that a problem ΠB is NP-hard. We do this in three steps: (1) Select a

known NP-hard problem ΠA; (2) Construct a reduction from ΠA to ΠB. Prove that the reduction

is a polynomial transformation; (3) Show that xA is a “yes” instance of ΠA if and only if xB is a

“yes” instance of ΠB. Likewise, to show that a problem ΠA is easy, we reduce from a problem ΠA

to a known tractable problem ΠB. We then know that problem ΠA can be solved in polynomial

time by first converting to problem ΠB and then solving with the algorithm for ΠB.

In our packing proofs, we reduce from the NP-hard problems 3-partition and 4-partition.

Definition 2.2. 3-Partition. Given a set A of 3m integers with sum mt and a bound on each
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elements ai ∈ A such that t/4 < ai < t/2, a 3-partition is a partitioning of A into m disjoint subsets

A1, A2, . . . , Am such that the sum of the elements in each Ai is equal to t.

Garey and Johnson [6] proved that 3-partition is strongly NP-hard. A strongly NP-hard prob-

lem remains hard even when its parameters are bounded by a polynomial function, rather than

exponential function, of the input size. To show that a problem is strongly NP-hard, we reduce

from a known strongly NP-hard problem.

We also reduce from 4-partition, which is analogous to 3-partition but forms m quadruples of

the same sum from a set of 4m integers, and each element ai ∈ A is bounded by t/5 < ai < t/3.

The 4-partition problem is known to be strongly NP-hard by a fairly standard reduction from

3-partition.

3 Packing Right Triangles into a Rectangle

We prove that packing right triangles into a rectangle is strongly NP-hard.

Theorem 3.1. It is strongly NP-hard to decide whether n specified right triangular pieces can be

packed into a rectangular region.

Proof. The NP-hardness proof is a reduction from 3-partition. Suppose we are given a set A =

{a1, a2, . . . , a3m}. Let σ =
∑3m

i=1 ai be the sum of all elements in A and t = σ
m be the target sum. We

construct the set of triangular pieces and a target rectangular region as follows: for each integer ai

in A, create two congruent right triangles with legs of lengths 1 and ai+24m+σ, and call these 6m

pieces the slim pieces. Let the target region be an m×(t+72m+3σ) rectangle. This transformation

from an instance of 3-partition to right triangle packing is shown in Figure 1. Because all quantities

are polynomial functions of m and t, the reduction is a polynomial transformation.

Figure 1: Reduction from 3-partition to packing right triangles into a rectangle.

We show that if there exists a 3-partition of set A, then there exists a way to pack the triangles.

For each pair of congruent slim triangles, we place them together to a 1×(ai+24m+σ) rectangular
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unit. For every triple (aj , ak, al) of the 3-partition that sums to t, we fill a row of the target rectangle

with the corresponding 1× (aj + 24m+ σ), 1× (ak + 24m+ σ), and 1× (al + 24m+ σ) rectangular

units. Each row fills length (aj + 24m + σ) + (ak + 24m + σ) + (al + 24m + σ) = t + 72m + 3σ,

which is exactly the length of the target rectangle. There are m triples, so we can fill all m rows

of the box given a 3-partition assignment, as shown in Figure 2. Note that the packing is an exact

packing because the total area of the triangular pieces equals the area of the target rectangle.

Figure 2: Existence of packing given existence of 3-partition

We now show if there exists a packing, then there exists a 3-partition of set A. Consider the

leftmost available 90◦ corner at any step in the packing. We show that this corner must be exactly

packed by a rectangular unit formed by two slim triangles. Suppose a slim triangle placed in this

right angle corner has dimensions 1 × (ai + 24m + σ). This triangle is placed on one of its three

sides. The slim triangle cannot be placed vertically on its side of length 1 because the other leg

of the triangle has length ai + 24m + σ, which is greater than the height m of the rectangular

region. Because the triangle cannot be placed vertically, it must be placed on its longer leg or on

its hypotenuse. The only four possible configurations of the placement are shown in Figure 3.

Figure 3: Four ways to place a slim triangle in 90◦ corner

The hypotenuse of this triangle has length
√

1 + (ai + 24m+ σ)2. Let x be the fractional part

of the length of the hypotenuse. We have

(ai + 24m+ σ) + x =
√

1 + (ai + 24m+ σ)2
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=⇒ (ai + 24m+ σ)2 + 2(ai + 24m+ σ)x+ x2 = 1 + (ai + 24m+ σ)2

=⇒ 2(ai + 24m+ σ)x+ x2 = 1

=⇒ 2(ai + 24m+ σ)x < 1

=⇒ x <
1

2(ai + 24m+ σ)
<

1

2(24m+ σ)
.

There are 6m triangles, which have a total fractional part of less than 6m
2(24m+σ) < 1. Hence, the

lengths of hypotenuses cannot sum to an integer. The length of the target rectangle is an integer,

so the length of the rectangle cannot be partitioned by the length of a hypotenuse. Thus, the only

two possible configurations are Cases 1 and 2 in Figure 3.

In both cases, there must be at least one triangle that lies along the hypotenuse of the bottom

triangle. No triangle may be placed on its side of length 1 along a hypotenuse because the slope of

the hypotenuse is close to 0. Suppose two triangles are placed along the hypotenuse of the bottom

triangle, as shown in Figure 4. Then their combined length is at least ak + aj + 48m+ 2σ for some

ak and aj . However, the length of the bottom triangle’s hypotenuse is
√

1 + (ai + 24m+ σ)2 <

ai + 24m+σ+ 1 < ak +aj + 48m+ 2σ. Hence, we can place only one triangle on top of the bottom

one. This means that the top triangle must fully cover the bottom triangle; the top and bottom

triangles must be congruent.

Figure 4: It is not possible in a packing for two triangles to be placed completely on top of one triangle.

There are two possible ways to place a congruent triangle on top, as shown in Figure 5. In Case

1, the triangles are placed to form a rectangle, and in Case 2, the triangles are placed to form a

kite.

Figure 5: Two ways to place congruent triangles on top of each other

Because we chose the leftmost 90◦ angle, the kite in Case 2 is either packed against the left wall

or in a nub and facing either left or right, as shown in Figure 6. If the kite is packed against the
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left wall and facing left, then a slim triangle must be placed vertically in the angle formed by the

wall and the kite. The vertical placement causes the triangle to protrude out of the boundary, so

this case is not possible.

If the kite is packed facing right, either against the wall or in a nub, then the angle in the left

corner cannot be packed by slim triangles. Let θi denote the smallest angle of a 1× (ai + 24m+ σ)

triangle. As we show independently in Section 4, the θi angles are too small to exactly pack a

90◦ corner. Furthermore, we can construct the slim triangular pieces such that no 90◦ − θj angle

is small enough to pack a 90◦ − 2θi corner. If the pieces are not already scaled such that all

90◦ − 2θi < 90◦ − θj for all θi, θj , we can lengthen each long leg of a slim triangle by a large

constant B such that all θ are arbitrarily close and adjust the length of the target rectangle by 3B.

Then 2θi > θj =⇒ 90◦ − 2θi < 90◦ − θj for all θi, θj . Hence, the against wall (right) and in nub

(left) configurations are not possible. Finally, if the kite is placed in a nub facing left, then its top

piece would overlap with a rectangle from the top. Thus, Case 2 is also not possible.

Figure 6: Four ways to place congruent triangles according to Case 2.

Because each ai ∈ A is bounded by t/4 < ai < t/2, any filled row must contain exactly

three rectangular units. The packing is exact, so the lengths of the rectangular units in each row

determine a 3-partition of A.

Hence, there exists a polynomial time conversion of the set A into a specific instance of the

packing problem such that the packing problem is solvable precisely if the set A has a 3-partition.

This concludes our NP-hardness proof of packing right triangles into rectangles.
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4 Packing Right Triangles into a Right Triangle

We extend Theorem 3.1 for packing right triangles into a right triangle.

Theorem 4.1. It is strongly NP-hard to decide whether n specified right triangular pieces can be

packed into a right triangular region.

Proof. We reduce from 3-partition. Given an instance of 3-partition, we construct 6m + 2 pieces

pieces for packing: one isosceles right triangle with legs of length t+ 72m+ 3σ, one isosceles right

triangle with legs of length m, and 6m slim pieces corresponding to the 3-partition set integers as

constructed in the proof of Theorem 3.1. Let the target right triangle be an isosceles right triangle

with legs of length t + 73m + 3σ. Any packing must be an exact packing because the area of the

target triangle is equal to the sum of areas of the 6m + 2 packing pieces. Similar to before, this

transformation is a polynomial transformation.

In any packing, the two isosceles right triangle pieces must each be in one of the 45◦ corners of

the target triangle (Figure 7). We prove this by showing the slim pieces cannot pack a 45◦ corner.

Let θi be the smaller acute angle in a slim triangle with dimensions 1× (ai + 24m+ σ). We have

θi = tan−1
(

1
24m+ai+σ

)
< tan−1

(
1

24m

)
. Because tan−1(n) < n for all n > 0, where n is in radians,

tan−1
(

1
24m

)
< 1

24m < π
24m . Then θi <

π
24m and the sum of the smallest angles for all slim triangles

is less than 6m( π
24m) = π

4 radians.

Figure 7: Either placement of the isosceles right triangle packing pieces forms m× (t+ 72m+ 3σ) rectangle.

Because the sum of all small acute angles is less than π
4 , the small acute angles together cannot

exactly pack a 45◦ corner of the isosceles target triangle. Furthermore, neither the large acute angle

nor the right angle of a slim piece can be placed at a 45◦ corner because they are greater than 45◦.

Thus, the 45◦ corners of the target triangle must be packed with the two isosceles triangle pieces

as shown in Figure 7. Once the two isosceles pieces are placed inside the target triangle, there is

8



a leftover m × (t + 72m + 3σ) rectangular region. The remaining 6m slim pieces must be packed

inside this rectangular box. We have already shown in Theorem 3.1 that these slim pieces can be

packed into the rectangle if and only if there exists a 3-partition. Hence, the problem of packing

right triangles into a right triangle is also NP-hard.

5 Packing Equilateral Triangles into an Equilateral Triangle

In this section we prove the NP-hardness of packing equilateral triangular pieces into an equilat-

eral triangular target region. This reduction requires different techniques than those used in the

reductions for packing right triangles.

In our previous reductions, we scaled each right triangular piece in exactly one dimension; we

constructed the length of each right triangle to match an integer in a three-partition set, while the

heights remained constant. We were able to scale in exactly one dimension because right triangles

are not constrained to be similar. Hence, the constructed right triangular pieces behaved like

one-dimensional objects.

However, because equilateral triangles are constrained to be similar, they must scale in two

dimensions. As a result, equilateral pieces behave as two-dimensional objects. Similar to square

packing [7], it is much more difficult in equilateral packing than in right triangle packing to construct

an exact and determined packing from partition pieces alone. Thus we present a novel reduction

in which we construct helper pieces as gadgets to force a determined packing of the pieces.

Theorem 5.1. It is strongly NP-hard to decide whether n specified equilateral triangles can be

packed into a target equilateral triangle.

Proof. We reduce from 4-partition. Let A = {a1, a2, . . . , a4m} be a set of 4m positive integers and

t =
∑
ai
m be the target sum. Let B = 4mt2. Let the target region be an equilateral triangle with

side length (3B + 2t)2m+ (4B + 3t).

We define the following equilateral triangular pieces for packing as shown in Table 1. The names

of the pieces describe their individual functions. Of the outer triangles, the blocking triangle blocks

off most of the target equilateral triangle, the wedge triangles force the blocking triangle into a

corner, the container triangles pack such that they create disjoint containers for inner triangles,

and the filler triangles fill in these disjoint containers to make them parallelograms. Of the inner

triangles, the partition triangles correspond to the integers in a 4-partition, the support triangles fill

up the space in between partition triangles and force them against the sides, and the unit triangles

are equilateral triangles of side length 1 that fill up the remaining space.

The total number of pieces for packing is bounded by the area of the target region, which is on

the order of B2 = 16m2t4. Hence, the reduction is a polynomial transformation.

We show that if there exists a 4-partition of A, then there exists a packing. We arrange the

outer pieces such that the remaining space consists of m disjoint (2B + t)× (B + t) parallelograms

(Figure 8-a). In each parallelogram, we pack the partition triangles corresponding to the integers in

a 4-partition quadruple with the support triangles sandwiched between pairs of partition triangles
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Side Length Quantity Category
Partition B + ai ∀ai ∈ A Inner
Support t 2m (2B/t) Inner
Wedge 4B + 3t m+ 1 Outer

Container 3B + 2t 3m Outer
Filler B + t m Outer

Blocking (3B + 2t)2m 1 Outer
Unit 1 remaining space Inner

Table 1: This table defines the seven types of equilateral triangle pieces for packing. We separate the pieces into two
categories, outer and inner pieces, depending on their functions in the packing.

(Figure 8-b). We fill the remaining space with unit triangles. Note that the packing is an exact

packing because the total area of the triangular pieces equals the area of the target rectangle.

Figure 8: (a) Arrangement of the outer triangles to form m disjoint empty (2B + t) × (B + t) parallelograms. (b)
Arrangement of inner triangles within each parallelogram.

Furthermore, we can show that if there exists a packing of the pieces, then there exists a 4-

partition of the set A (Lemma 5.2). The proof of Lemma 5.2 requires many steps and is deferred

to Subsection 5.1.

We have constructed a polynomial transformation from 4-partition to equilateral packing. There

exists a 4-partition of a set A if and only if there exists a packing of the equilateral triangles. Thus,

the problem of packing equilateral triangles is NP-hard.

5.1 Existence of a 4-Partition

In this subsection, we prove Lemma 5.2, which we used in the proof of Theorem 5.1
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Lemma 5.2. If there exists a packing of the pieces defined by Table 1 into a target equilateral

triangle of side length (3B + 2t)2m+ (4B + 3t), then there exists a 4-partition of the set A.

Before we prove this lemma, it is necessary to prove some preliminary results. We first define

the terms with which we refer to the packing.

Definition 5.1 (a× b parallelogram). An a× b parallelogram is a parallelogram with two adjacent

sides of lengths a and b. The sides of the parallelogram intersect at 60◦ angles.

Definition 5.2 (a × b trapezoid). An a × b trapezoid is an isosceles trapezoid with non-parallel

sides of length a and a longer base of length b. The non-parallel sides intersect the longer base at

60◦ angles. Note that we must have a < b.

Figure 9: a× b parallelogram and a× b trapezoid

We define the length of an a × b parallelogram to be the length b and the length of an a × b
trapezoid to be the length b.

The isometric grid is the grid formed by tiling the plane regularly with unit equilateral triangles.

We define area by the number of units in the isometric grid. We place the vertices of the target

equilateral triangle at lattice coordinates of the isometric grid. Then all vertices of the packing

pieces are at lattice coordinates of the isometric grid. This is because the packing is an exact

packing, and at any step of the packing, the remaining space in target region consists of all 60◦ and

120◦ corners. Inductively, the equilateral triangular pieces must exactly fill in these corners and

have vertices on lattice points. Hence, all pieces in the packing point either upward or downward.

Now, we prove Propositions 5.3, 5.4, 5.5, and 5.6 to show how the outer triangles must be

packed.

Proposition 5.3. Trapezoidal Strip: The blocking triangle must be placed inside the target

triangle such that the remaining space is a [4B + 3t]× [(3B + 2t)2m+ (4B + 3t)] trapezoid.

Proof. The blocking triangle has side length (3B + t)2m, and each wedge triangle has side length

4B + 3t, so the sum of their side lengths is exactly the side length of the target triangle. Because
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Figure 10: Placing the outer triangles: (a) The blocking triangle must be in a corner of the target triangle, leaving a
trapezoidal strip. (b) Without loss of generality, we place the wedge triangles next to each other, leaving the joined
region. (c) The container triangles must be placed in the joined region in the blocked pattern, leaving m disjoint
smaller trapezoids. (d) Each disjoint trapezoid must contain exactly one filler triangle.

there are m+ 1 ≥ 2 wedge triangles, the wedge triangles force the blocking to be rigidly in a corner

of the target triangle. The remaining space is a [4B + 3t] × [(3B + 2t)2m + (4B + 3t)] trapezoid.

We call this region the trapezoidal strip (Figure 10-a).

The placement of the m + 1 wedge triangles divides the trapezoidal strip into m + 2 smaller

disjoint regions, not necessarily of positive area. If the wedge triangles are placed adjacent to each

other, with one wedge triangle adjacent to the side of the trapezoidal strip, then the remaining

space is a single continuous region. This region is a trapezoid if m is odd, and the region is a

parallelogram if m is even. We call this the joined region (Figure 10-b). Because we can connect

the m+2 arbitrarily formed disjoint regions to form the joined region, there always exists a packing

of the remaining pieces into the joined region if there exists a packing into the m+2 disjoint regions.

Hence, it suffices to show how the container and filler triangles are packed into the joined region.
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Proposition 5.4. The 3m container triangles must pack inside the joined region such that they

alternate between pointing up and pointing down.

Proof. We define the middle strip of the joined region to be the strip of height 2B + t along the

horizontal center line of the joined region (Figure 11. Each container triangle overlaps the entire

height of the middle strip, so we may enumerate the container triangles by their order of appearance

along the middle strip.

Figure 11: Each container triangle overlaps the entire height of the middle strip. This figure shows the middle strip
divided into middle spans.

Let us define the middle span of every three consecutive container triangles to be the space

within the middle strip bounded by the lines passing through the left edge of the first triangle and

the right edge of the third triangle of the triple. For our packing of 3m container triangles, there

are m middle spans. Because each container triangle fills the full height of the middle strip, none

of the middle spans overlap.

By the Pigeonhole Principle, at least two container triangles in each middle span point in the

same direction. The left sides of these two triangles form a pair of parallel sides, and the right sides

form another pair. At least one of their pairs of parallel sides is at least 3B + 2t apart. Thus, the

space in the middle strip between the outer sides of these two triangles is at least a (2B+t)×(5B+3t)

trapezoid. It follows that each middle span is at least the area of a (2B + t)× (5B + 3t) trapezoid.

However, the area of the middle strip is exactly the area of m (2B + t)× (5B + 3t) trapezoids.

Hence, each middle span must be a (2B+t)×(5B+3t) trapezoid. This can happen if and only if the

container triangles within a middle span alternate between pointing up and down. Furthermore,

no two consecutive container triangles belonging to different middle spans may point in the same

direction because this creates a gap in the middle strip and wastes space. Thus, the 3m container

triangles alternate between pointing up and pointing down.

Proposition 5.5. The 3m container triangles must be packed inside the joined region such that

the remaining space consists of m disjoint (B + t)× (3B + 2t) trapezoids.

Proof. We proceed by induction. When m = 1, the joined region is a (4B+3t)×(6B+4t) trapezoid.

The three container triangles must be packed as shown in Figure 12.
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When m = k, the joined region is a (4B + 3t) × k
2 (8B + 5t) parallelogram, for k even, or a

(4B + 3t)× [k−12 (8B + 5t) + (6B + 4t)] trapezoid, for k odd. Suppose for m = 3k, the 3k container

triangles must be packed in the blocked pattern into this joined region, as shown in Figure 12, and

that they cannot be packed into any region of shorter length. We now show that the container

triangles must also be packed in the blocked pattern when m = k + 1.

Figure 12: Blocked pattern for placement of container triangles.

Let us define the span of three consecutive container triangles to be the space within the joined

region bounded by the lines passing through the left edge of the first triangle and the right edge

of the third triangle, for every three consecutive container triangles (Figure 13). In a packing of

3(k + 1) container triangles, there are k + 1 spans. By Proposition 5.4, the container triangles

alternate between pointing up and pointing down, so each span is a trapezoid. Because at least

one pair of parallel sides of the first and third triangles are at least 3B + 2t apart, the length of

each span is at least (3B+ 2t) + (3B+ 2t) = 6B+ 4t. Because the triangles alternate (Proposition

5.4), the right side of the third triangle in the nth span is always parallel to and to the left of the

left side of the first triangle in the (n+ 1)th span. Hence, none of the spans overlap.

But the area of the joined region is exactly the area of m (4B + 3t)× (6B + 4t) trapezoids, so

each span must be a (4B+3t)× (6B+4t) trapezoid. Moreover, there cannot be any space between

the spans or between the leftmost and rightmost spans and the sides of the joined region.

For a span to have a length of exactly 6B+ 4t, at least one of the first or third triangle must be

adjacent to the base of the span trapezoid. In the first span, the third triangle cannot be above the

first triangle; otherwise, the second triangle would not be able to fit between them. Thus, the third

triangle of the first span must be adjacent to the base. The remaining 3k container triangles must

then pack entirely to the right of the dividing line. By the inductive hypothesis, the remaining

3k container triangles pack in the blocked pattern, with the fourth container triangle of the joined

region in the top left corner of the space to the right of the dividing line. In order for the second

and fourth container triangles to not overlap, the sides of the second and third container triangles
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Figure 13: The leftmost six container triangles are shown. They are divided into spans along the dotted lines. The
length of each span must be at least 6B + 4t.

must entirely overlap. This forces the first container triangle to also be adjacent to the base of the

span. Hence, the first three triangles are packed as depicted in the m = 1 case (Figure 12). This

packing yields the blocked pattern for m = k + 1. Therefore, the 3m container triangles always

pack in the blocked pattern, and the remaining space of the joined region comprises m disjoint

(B + t)× (3B + 2t) trapezoids.

Proposition 5.6. There must be exactly one filler piece in each of the m disjoint (B+t)×(3B+2t)

trapezoids.

Proof. Suppose there exists an unpacked (B+ t)× (3B+ 2t) trapezoid with two filler pieces. After

placing one of the filler pieces, the remaining space can be joined to a (B+t)×(2B+t) parallelogram.

We make the other filler piece act as a partition piece with side length B + t. As we show in the

proof of Proposition 5.8, the length of a parallelogram containing this partition piece must be at

least 2B+t+ai+aj+ak > 2B+t, for some positive ai, aj , ak, a contradiction. Hence, no unpacked

(B + t) × (3B + 2t) trapezoid may contained more than one filler piece, so each contains exactly

one filler piece, and the remaining space can be joined to a (B + t)× (2B + t) parallelogram.

The remaining space in each of the m disjoint (B + t)× (3B + 2t) trapezoids can be connected

to each other to form a (B + t) × (2B + t) parallelogram. Hence, if there exists a packing of the

inner pieces into any frame formed by the outer pieces, then there exists a packing of the inner

pieces into m disjoint (B + t) × (2B + t) parallelograms. Thus, it suffices to prove that if there

exists a packing of the inner pieces into m disjoint (B + t) × (2B + t) parallelograms, then there

exists a 4-partition of the set A. We prove Propositions 5.7 and Proposition 5.8 to show how the

inner triangles must be packed.

Proposition 5.7. The number of unit equilateral triangles is bounded by 4mt2.

Proof. The area in which to pack the inner pieces is equal to the area of m disjoint (2B+t)×(B+t)

parallelograms. Each of these parallelograms has an area of 2(B + t)(2B + t) = 4B2 + 6Bt + 2t2,

so the total area for packing inner pieces is 4mB2 + 6mBt+ 2mt2
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We now find a lower bound to the total area taken up by the partition and support pieces. An

equilateral triangle of side length s has area s2, so the partition pieces have area (B+ ai)
2 for each

ai ∈ A, and each support piece has area t2. The partition and support pieces fill a total area of

2mt2
(

2B

t

)
+
∑
ai∈A

(B + ai)
2

= 4mBt− 2mt2 +

4mB2 + 2mBt+
∑
ai∈A

a2i


> 4mB2 + 6mBt− 2mt2.

Hence, the amount of empty space in which to fill unit equilateral triangles must be less than

(4mB2 + 6mBt+ 2mt2)− (4mB2 + 6mBt− 2mt2) = 4mt2.

Proposition 5.8. If there exists a packing of the inner triangles into m disjoint (2B+ t)× (B+ t)

parallelograms, then there exists a 4-partition of A.

Proof. The area of each parallelogram is of order 4B2, so no parallelogram can contain five or more

partition triangles. Thus, each parallelogram must contain exactly four partition triangles. The

four partition triangles in each target parallelogram must be arranged in two pairs with one in each

pair pointing upward and one in each pair pointing downward.

Suppose a (2B + t) × (B + t) parallelogram contains triangles of side lengths B + ai, B + aj ,

B + ak, and B + al. Without loss of generality, suppose the B + ai and B + aj triangles form the

top pair and the B+ak and B+al triangles form the bottom pair. Suppose the B+ai and B+ak

triangles point upward, and the B + aj and B + al triangles point downward.

Each partition triangle must have an edge adjacent to the left or right side of the parallelogram.

We prove this by contradiction. Suppose there is an upward partition triangle of side length B+ x

that is distance δ away from the left side of the parallelogram. Because all triangles pack at integer

coordinates of the isometric grid, we have δ ≥ 1, so this gap has area greater than B. By Proposition

5.7, the number of unit triangles is 4mt2, which is less than B. Hence, such a gap would be too

large to be filled by unit triangles. Furthermore, the maximum value of δ is t − x. Because all

support triangles have side length t, this gap is too narrow to fit support triangles. Thus, the gap

cannot be filled, which cannot happen in an exact packing.

In each pair, the partition triangles must be either adjacent or separated, as shown in Figure

14. Suppose the top pair is adjacent. Then the right edge of the parallelogram has length (t −
aj) + (B + aj) + (B + al) > 2B + t, a contradiction. The top pair cannot be adjacent. Similarly,

the bottom pair cannot be adjacent.

If the triangles are separated, then the space in between them must be packed by support

triangles by the same exact packing argument. Let r and s be the number of rows of support

triangles between the top pair and bottom pair of partition triangles, respectively. Then the top

pair takes up length B+ai+aj + t(r−1) along the side of the target parallelogram and the bottom
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Figure 14: (a) If the partition triangles on the top are adjacent, then they use length B + t along the right edge of
the parallelogram. (b) If the partition triangles are separated by one row of support triangles, then they use length
B + ai + aj along the right edge of the parallelogram.

pair takes up length B + ak + al + t(s− 1) along the side of the parallelogram.

We must have 2B + ai + aj + ak + al + t(r + s − 2) = 2B + t for the pieces to fit inside the

target parallelogram and not leave empty space. Because r and s are integers, this yields r = s = 1.

Hence, we have ai + aj + ak + al = t, so the four partition triangles in the packing of the disjoint

parallelograms correspond to a 4-partition quadruple.

We may now prove Lemma 5.2.

Proof of Lemma 5.2. By Propositions 5.3, 5.4, 5.5, and 5.6, any given packing out the outer trian-

gles into the target region leaves remaining space corresponding to m disjoint (2B + t) × (B + t)

parallelograms. By Proposition 5.8, any given packing of the inner triangles into these disjoint

parallelograms corresponds to a 4-partition of the set A. Therefore, if there exists a packing of the

equilateral triangular pieces, then there exists a 4-partition of set A.

This is the lemma that is used at the final step of the proof of Theorem 5.1.

6 Conclusions and Directions for Future Research

We studied three triangle packing problems: (i) packing right triangles into a rectangle, (ii) pack-

ing right triangles into a right triangle, and (iii) packing equilateral triangles into an equilateral

triangle. We showed that each problem is strongly NP-hard. Furthermore, we may generalize that

triangle packing with arbitrary triangular pieces is strongly NP-hard by a reduction to any of our

three triangle packing problems. Our results indicate that triangle packing in industrial applica-

tions presents a difficulty; there does not exist an efficient exact algorithm for triangle packing in

general or for each of our three cases of triangle packing. Because triangle packing is NP-hard,
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approximation or case-by-case algorithms rather than exact algorithms must be used to determine

triangle packing.

We present the open problem of whether these NP-hard triangle packing problems are also in

NP. If we can show that an NP-hard problem is in NP, then we may classify the problem as an

NP-complete. NP-complete problems form the class of problems that are the hardest of all NP

problems. If we can efficiently solve one NP-complete problem, then we can efficiently solve all NP

problems; in other words, NP-complete problems can be solved efficiently if and only if all problems

that are easy to verify are also easy to solve.

To show that a packing problem is in NP, we must show that it is possible to encode and

verify a solution using polynomial time and resources. At the encoding step, the tightest packing

may require irrational translation and rotation for some input triangles. Because it is not possible

to directly encode irrational numbers with polynomial resources, the encoding step presents a

difficulty. Note that if we do not allow rotations of the input pieces, then the packing problems are

NP-complete. Hence, for each of our NP-hard triangle packing problems, we have a fixed-orientation

NP-complete analog.

For future study, it would be fruitful to specify a new way of encoding the packing pieces such

that the encoding for arbitrarily rotating pieces is tractable. This may be possible by approximating

irrational numbers as terminated decimals in a way that the packing remains rigid, or by creating

special structures, such as continued fractions, for encoding irrational numbers.
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