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Abstract

An action, known as rowmotion, defined on the order ideals of posets created by Duchet is

analyzed in posets arising from the minuscule representations of complex simple Lie algebras.

We consider the homomesies on this action in all minuscule posets from a combinatorial

perspective through the use of a slope-based representation. We examine the cardinality

statistic defined on the size of the order ideals in each rowmotion orbit and prove that

the cardinality statistic is homomesic in all minuscule posets. A uniform characterization of

rowmotion is given by investigation of a bijection between the weights of the minuscule poset

and its corresponding sign word, in all classical minuscule posets. The cardinality homomesy

is also shown through the uniform characterization.

Summary

We look at the behaviors of certain types of grids through specific rearrangements. These

types of grids model real world quantum systems. We examine properties that stay con-

stant regardless of what types grids these rearrangements are performed on. Examining the

properties of these rearrangements on these grids can aid in the creation of a topological

quantum computer, which are based on these grids. We also provide a uniform classification

that explains why the certain properties are constant by analyzing the origins of these grids.



1 Introduction

The study of rowmotion on the order ideals of a poset has flourished ever since its orig-

inal introduction by Duchet in 1974 [1].This topic has been studied by authors including

Fon-der-Flaass [2], Cameron [2], Brouwer [3], Schrijver [3], Striker [4], and Williams [4]. In

particular, rowmotion on minuscule posets, which originate from the representations of Lie

algebras, have been of particular interest. A useful application of this work is in the creation

of topological quantum computers.

A quantum computer is one that uses quantum-mechanical effects to perform computa-

tions, usually much faster than current supercomputers. A topological quantum computer

is built using anyons, quasi-particles, as threads and relying on braid theory to form stable

logic gates. These anyons have topological bases that are directly connected to Lie algebras.

Minuscule posets have been seen to exhibit a variety of constant properties under the

action of rowmotion. In particular, a property that has been extensively examined is the car-

dinality statistic which is equivalent to the average size of an order ideal as it goes through

a rowmotion orbit. This cardinality statistic has been shown to be constant over all orbits

of rowmotions in the minuscule poset of types An by Jim Propp and Tom Roby [5].

We extend the work of [5] and prove that this cardinality statistic stays constant under

classical rowmotion in all other types of minuscule posets: Bn, Cn, Dn, E6, and E7 [6].

In Section 2 we present a more rigorous formulation of constant properties as homome-

sies. In addition, we introduce basic relations and definitions used in our results. In Section

3 an alternative definition of classical rowmotion is given in terms of the toggle group.

In Section 4, we prove the homomesy property in all types of minuscule posets. In Section

5 we outline two characterizations of rowmotion in type An and show that there exists a

bijection between the two. Section 6 extends one of these characterizations of rowmotion

across the classical minuscule posets: An, Bn, Cn, and Dn based on their weights in their
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corresponding weight poset. We illustrate that the weights also have a bijection to the sign-

word. Section 7 demonstrates that the cardinality statistic is constant as a result of this

characterization.

2 Background

2.1 Homomesy and Posets

The notion of a constant function can be made rigorous with a property called homomesy.

Definition 1. Given a set S, an invertible map τ from S to itself such that each τ -orbit is

finite, and a statistic f : S → k taking values in some field k of characteristic zero, we say

the triple (S,τ ,f) exhibits homomesy if there exists a constant c ∈ k such that for every

τ -orbit P ⊂ S
1

|P|
∑
x∈P

f(x) = c.

We call the function f : S → K homomesic under the action of τ on S, or more specifically

c-mesic.

Before moving on, we must first define what a poset is.

Definition 2. A set P is called a poset if there exists a binary relation ≤ over the set P

which satisfies the following criteria:

1. x ≤ x (reflexivity)

2. If x ≤ y and y ≤ x then x = y (antisymmetry)

3. If x ≤ y and y ≤ z then x ≤ z (transitivity)

for all x, y, z ∈ P .
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If x, y ∈ P , then we say that x covers y, denoted by xm y, if x > y and there exists no

element k ∈ P that satisfies x > k > y. Define an order ideal of a poset P to be a subset

I ⊆ P such that if we have an element k ∈ I and there exists an element m ≤ k, then m ∈ I.

The set J(P ) is the poset whose elements are all the order ideals of the poset P , ordered by

inclusion. So, an order ideal I is ≥ an order ideal I1 if I1 ⊆ I. A maximal element of an

order ideal I is an element m ∈ I such that if m ≤ i , then m = i. The minimal element is

defined using the opposite binary relation.

Now we define the rowmotion on the order ideals of a poset P :

Definition 3. Let M be the set of minimal elements of P\I. Given a poset P and its

corresponding set of order ideals J(P ), the rowmotion Φ is a map on J(P ), where the

minimal elements of P\I are now the maximal elements of Φ(I).

Additionally, define ΦJ to be an orbit of rowmotions Φ on an order ideal in J(P ). Likewise,

let |ΦJ | to be the number of distinct order ideals within a rowmotion orbit on J(P).

Figure 1 illustrates rowmotion Φ on a minuscule poset, where the large dots indicate

the new maximal elements that have been added through Φ, and the smaller dots indicate

elements of the order ideal that are preserved through each successive application of Φ. The

Figure 1: Rowmotion on a Type A Minuscule Poset

minuscule posets are types of posets that originate from the representation theory of Lie

algebras. We elaborate on some background to help give a better understanding of where

these minuscule posets come from.
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2.2 Lie algebras and Minuscule Representations

A Lie algebra is defined to be a vector space g over some field F together with a binary

operation [·, ·] : g× g→ g called the Lie bracket, which satisfies the following axioms:

1. [x, x] = 0

2. [ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y]

3. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for all x, y, z in g. We define a subspace h ⊆ g to be an ideal if x ∈ g, y ∈ h implies

[x, y] ∈ h. Additionally, we define a subspace h ⊆ g to be a subalgebra iff x ∈ h, y ∈ h

implies that [x, y] ∈ h. A Lie algebra g is considered to be simple iff the only ideals that

g has are trivial and that g is non-abelian. Define the dual space, k∗ of a space k defined

over some field F to be the set of linear functionals φ : k → F . For the rest of this paper, let

g denote a complex simple Lie algebra. A representation of a Lie algebra g is a function

ρ : g→ End(V ), where End(V ) is the set of endormorphisms of a vector space V , such that

ρ[x,y] = [ρx, ρy] = ρxρy − ρyρx. Additionally, we define an adjoint representation of a Lie

Algebra is to be a representation whose function is the adjoint action, defined below.

Definition 4. Given an element x of a Lie algebra g, the adjoint action of x on g is the

map adx : g→ g with adx(y) = [x, y] for all y ∈ g.

Given a Lie Algebra g, and corresponding vector space and representation V : g →

End(V ), we define the weight space of a linear functional λ ∈ g∗ to be the space Vλ = {v ∈

V : ∀ξ ∈ g, ξ · v = λ(ξ)v}. The linear functional is considered to be a weight iff the space

Vλ is non-empty.

We define h to be the Cartan subalgebra if it is the subalgebra of g that is maximal

and abelian. The adjoint representation is preserved to the Cartan subalgebra h. The weights
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of the adjoint representation restricted to h are called roots, and the set of roots is called

the root system. From this we write g in a form called the Cartan Decomposition:

g = h⊕
⊕
α∈h∗

Vα.

Each root in a root system Φ can be characterized as either simple, positive, or negative.

Definition 5. The set of positive roots, Φ+, is a subset of the root system Φ such that

• For each root α ∈ Φ, exactly one of the roots α, -α is contained in Φ+.

• For any two distinct roots α, β ∈ Φ+ such that α + β is a root, α + β ∈ Φ+.

Naturally the set of negative roots is the set -Φ+. An element of Φ+ is called a simple

root if it cannot be written as a sum of two elements of Φ+.

We now give the definition of a simple reflection:

Definition 6. A simple reflection of a weight λ is a mapping that takes λ to λ− 2(λ,α)
(α,α)

α,

where (x, y) is the inner product of the vector space and α is a simple root.

The Weyl Group W is defined as the group generated by the simple reflections of all

the simple roots of the corresponding Cartan Subalgebra h. Note that the simple reflections

must satisfy the Coxeter relations and thus are also considered a Coxeter Group. From this,

we define the root order to be a partial order on the roots, where λmµ if λ−µ is a simple

root. We can now define a minuscule representation.

Definition 7. A representation is considered minuscule if every weight is of the form wλ,

where w ∈ W , the corresponding Weyl Group of the representation, and λ is the maximal

weight with respect to the root order.

This type of representation is equivalent to saying that the Weyl group acts transitively

on the weights.
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Definition 8. An irreducible minuscule lattice or the weight poset is the set of weights

of some minuscule representation of a simple Lie algebra that are ordered based on the root

order.

Let an element l of a lattice L be called join-irreducible if there does not exist s and t

such that l m s and l m t.

Definition 9. The minuscule poset P is the poset of the join-irreducibles of the irreducible

minuscule lattice ordered by inclusion.

Note that in a minuscule poset P , there is an isomorphism of posets between the weight

poset and J(P ).

3 The Toggle Group

It is well known that rowmotion can be characterized in terms of the toggle group of a

finite poset. We give some definitions and highlight the toggle definition of rowmotion.

Definition 10. Given an element p in a poset P , the toggle operation σp : J(P )→ J(P ) is

defined on an order ideal as

σp(I) =


I ♦ {p} if I ♦ {p} ∈ J(P );

I otherwise,

where X♦Y denotes the symmetric difference X\Y ∪ Y \X.

Proposition 1. ([2]) Let P be a poset.

(a) For every p ∈ P , σp is an involution, i.e., σ2
p = 1, the identity.

(b) For every a, b ∈ P where neither a covers b nor b covers a, the toggles commute, i.e.,

σaσb = σbσa.
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We call listing of elements of a poset P a linear extension on P if it is order-preserving.

Note that there exists multiple linear extensions within all minuscule posets.

Proposition 2. ([2]) Let a1, a2, . . . , ak be a linear extension of a poset P . Then the composite

map σa1σa2 · · ·σak is equivalent to the rowmotion operator Φ.

The linear extension that is often used when describing the toggle definition of rowmotion

is toggling by rows from top to bottom.

4 Homomesy of the Cardinality Statistic in all Cartan

Types

In this section, we show that the cardinality statistic is homomesic on all types of minuscule

posets. For the rest of the paper we use the notation Sn to refer to the symmetric group of

order n.

4.1 Type An: [a]× [b]

Figure 2: Structure for A4

Figure 2 gives an example of the structures An, which are rectangles rotated 45 degrees

counterclockwise. Jim Propp and Tom Roby [5] proved that the cardinality statistic is ho-

momesic on the minuscule posets An for all positive integers n.
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4.2 Type Bn: ([n]× [n])/S2

Figure 3 gives an example of the structures Bn, which are the halves of an n× n diamond.

Note that we can assign coordinates to the vertices of the squares. We define the bottom

vertex of the minuscule poset to be (0, 0), and every half-diagonal of a square is considered

to be unit length on the coordinate plane. To prove the Bn case, we must first provide some

definitions.

Figure 3: Structure for Type B3

Definition 11. For each order ideal I ∈ ([n]× [n])/S2, we associate a lattice path of length

n, as a line that joins a distinct point that is part of the symmetric line of Bn, the line x = 0,

and the right most vertex (n, n), such that the line traces over the top border of the order

ideal.

As an example, the lattice path of the empty order ideal and the order ideal of cardinality

1 for B3 is shown in Figure 4 where each element is now represented by a square. This is

different than the representation of B3 in Figure 3.

Definition 12. The lattice path that takes (n, n)→ (0, k) for some even integer k ∈ [0, 2n]

is equivalent to the graph of the (real) piecewise-linear function hI which outputs the y-

coordinate of each point on the lattice path. We call hI the height function representation

of the order ideal I.

For a particular height function, we associate a word, a sequence of +1′s and −1′s, whose

ith term for 1 ≤ i ≤ n is hI(i)− hI(i− 1) = ±1; we call this the sign-word associated with
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Figure 4: Examples of Lattice Path

Type B3: Empty Order Ideal Type B3: Order Ideal of Cardinality 1

the order ideal I. Note that this sign-word simply describes the slopes of a lattice path as

it goes from (n, n) to the symmetric line, and that this sign-word uniquely determines order

ideal associated with it. Figure 5 illustrates the sign words associated with the lattice paths

in Figure 4.

Figure 5: Corresponding Sign Word of Lattice Paths

Sign Word: {−1,−1,−1} Sign Word: {−1,−1,+1}

Proposition 3. Let I ∈ ([n]×[n])/S2 be characterized by the height function hI : [n, n]→ R.

Then
0∑

k=n

hI(k) =
n(n+ 1)

2
+ 2|I|. (1)
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The proof is essentially only a matter of examining an invariant. As such, it is deferred

to Appendix A.

Because there exists a bijection between the size of the order ideal and the height function

sum, to prove that the cardinality statistic of the order ideal I is homomesic it suffices to

show that the sum hI(k) + hI(k − 1) + . . .+ hI(1) + hI(0) is homomesic.

There is a very nice representation of the rowmotion orbit ΦJ in terms of the sign words.

We show in Section 6 that this representation is also bijection.

Figure 6: Order Ideal of Cardinality 3 on B3

Given an order ideal and its corresponding sign-word, complete the square by reflecting

the order ideal over the symmetric line, and extend the corresponding sign-word. The op-

eration just described is shown through the order ideal in Figure 6. The resulting figure is

shown in Figure 7.

The sign-word of Figure 6, {+1,−1,−1}, becomes {+1,−1,−1,+1,+1,−1}, the sign

word of Figure 7, which we denote as the extended sign word.

Lemma 1. The number of individual +’s and −’s is invariant in the extended sign word.

The proof can be found in Appendix B.1. We define a block to be of the form {−1,+1},

and a gap to be every sequence of numbers between these blocks. We give a definition of

rowmotion in terms of blocks and gaps.
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Figure 7: Reflected Order Ideal of Cardinality 3 on B3

Lemma 2. Rowmotion acts by the following rules:

1. Every block {−1,+1} becomes {+1,−1}.

2. Every gap sequence is completely reversed.

The proof can be found in Appendix B.2.

Following these rules, the sign word of Figure 7, {+1,−1,−1,+1,+1,−1}, becomes

{−1,+1,+1,−1,−1,+1}. We give a lemma to describe the conjugate sign word across all

rowmotion orbits.

Lemma 3. The second half of the extended sign-word is always the conjugate to the first

half, and this is conserved through the action of ΦJ .

The proof is provided in Appendix B.3.

Note that the rules illustrate that ΦJ is equivalent to applying a 180◦ rotation on each

lattice-path segment that corresponds to a block or a gap in the sign-word. Truncating

the resulting extended sign word at the symmetric line gives us {−1,+1,+1}, which is our

desired sign word that describes the next order ideal. However, note that we only need to

truncate the extended sign-word if we want to see the order ideal. We now provide the proof

of the cardinality homomesy in the case of Bn.
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Theorem 1. The cardinality statistic is homomesic under the action of rowmotion ΦJ on

Bn, with all averages equal to n(n+1)
4

.

Proof. To show that #I is homomesic under the rowmotion, it is sufficient to prove that all

increments hI(i)−hI(i−1) are homomesic. Theorem 1.5 from Rush and Shi [7] demonstrates

that the |ΦJ |, the number of distinct order ideals in ΦJ , divides the Coxeter number of the

corresponding Coxeter group. Note that the irreducible minuscule lattice of these minuscule

posets are formed from the generators of its corresponding Weyl group, which is considered

a Coxeter group. Therefore, because the Coxeter number of Bn is 2n, it follows that |ΦJ |

divides 2n. The proof of Theorem 1 is now equivalent to showing that any single element of

the extended sign-word is independent of the order ideal I under the action of ΦJ .

Create a rectangular array with 2n rows and 2n columns (2n for the length of the sign-

word and its corresponding conjugate). The rows contain the sign-words of I and its conjugate

and each successive row is the image of the entire extended sign-word under the action of Φ.

Now consider any two consecutive columns of the array, and the width-2 sub-array they form.

There are only four possible combinations of values in each row of the sub-array: (−1,−1),

(−1,+1), (+1,−1), (+1,+1). By Lemma 2 any sequence {−1,+1} gets sent to {+1,−1}.

The reverse occurs as a result of the toggle definition of rowmotion and the shape of the

extended Bn structure. As a result, we have that the number of {+1,−1} is the same as

the number of {−1,+1} between any two consecutive columns. Thus, the sum of any two

consecutive columns is identical because the other two possible values increments the column

sums by the same value, hence conserving the both column sums. Thus, all the columns have

the same column sum. However, Lemma 3 implies that the sum of every row is 0. Thus, the

total sum of the 2n × 2n array is 0 · 2n = 0. As a result, the sum of each column is also 0.

Since this is independent of which rowmotion orbit we are in, we have proved homomesy for

elements of the sign-word of I as I varies over ([n]× [n])/S2, and this finishes the homomesic

part of Theorem 1. The computation of the average cardinality can be found in Appendix
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D.

4.3 Type Cn: [2n− 1]

Figure 8: Structure for Type C3

Figure 8 gives an example of the structures Cn, which are right triangles with sides of n

vertices without their hypotenuses.

Theorem 2. The cardinality statistic is homomesic under the action of rowmotion ΦJ on

Cn, with all averages equal to 2n−1
2

.

Proof. To go through all the order ideals of Cn, we only need one rowmotion orbit that

starts with the empty order ideal. The cardinality of the order ideal at each successive step

increments by one, so the general formula for the sum of the cardinalities of each order ideal

on this orbit is

2n−1∑
i=0

i = 2n2 − n.

The cardinality statistic is the average of the cardinalities of the order ideals over an

orbit. Thus, the average is 2n2−n
2n

= 2n−1
2

. Because there is only one orbit, the cardinality

statistic for Cn is homomesic.
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Figure 9: Structure for Type D5

4.4 Type Dn: ([n− 1]× [n− 1])/S2

Figure 9 gives an example of the structures Dn, which are 1× 1 diamonds with two arms of

length n− 3 off the top and bottom vertices of the diamond.

Theorem 3. The cardinality statistic is homomesic under the action of rowmotion ΦJ on

Dn, with all averages equal to n− 1.

Figure 10: Starting Order Ideal for Second Orbit for D5

Proof. There are two possible orbits for each structure Dn for some n to cycle through all

possible order ideals of the structure Dn. One orbit starts with the empty order ideal which

we will refer to as orbit 1, while the other orbit, which we will refer to as orbit 2, starts with

the order ideal in Figure 10.

We start by examining orbit 2. The rowmotion orbit ΦJ corresponding to orbit 2 is

illustrated in Figure 11.
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Figure 11: Rowmotion on Orbit 2

Starting Order Ideal Successive Order Ideal

For D5 the average cardinality of the order ideal through orbit 2 is simply 4+4
2

= 4.

Note that for all n, there exists an orbit similar to orbit 2, that contains two order ideals

in Dn. This orbit’s path is identical to the orbit path illustrated in Figure 11. The average

cardinality of the order ideal in this type of orbit is simply 2(n−1)
2

= n− 1, since the size of

each order ideal is n− 1.

We now examine orbit 1. The cardinality of the order ideal as it goes through the first

orbit increments by one at each step until we reach the bottom vertex of the diamond in the

structure Dn. At this step, we increment the cardinality of the order ideal by two, and at

each successive step we increment by the cardinality of the order ideal similar to the way in

which the cardinality was incremented in the first part of the orbit before the bottom vertex

of the diamond was reached. So, for a general Dn, the total sum of the cardinalities of the

order ideals over the first orbit is simply:

(
2n−2∑
i=0

i

)
− (n− 1) = (n− 1)(2n− 2).

Note that |Φ1| in Dn is simply 2n−2 so, our average is (n−1)(2n−2)
2n−2 = n− 1, which is identical

to the average obtained in the second orbit. Thus for any structure in Dn, we have that the

cardinality statistic is homomesic.
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4.5 Types E6: J(([4]× [4])/S2), E7: J
2(([4]× [4])/S2)

Theorem 4. The cardinality statistic is homomesic under the action of rowmotion ΦJ on

E6, with all averages equal to 8.

Theorem 5. The cardinality statistic is homomesic under the action of rowmotion ΦJ on

E7, with all averages equal to 13.5.

The proofs of Theorems 4 and 5 can be found in Appendix C.

5 Novel Characterization of Rowmotion on the Weights

of An

Minuscule Poset A4

s2

s1

s2

s3

s3

s4

Weight Poset A4 with Generators

s2

e

s1s3s2

s3s2

s4s1s3s2

s4s3s2

s1s2

s2s1s3s2

s4s2s1s3s2

s3s4s2s1s3s2

Figure 12: Structures for A4

The minuscule poset An that was illustrated in Figure 2 has a corresponding weight

poset based on the order ideals of the minuscule poset An. The elements of An are the

join-irreducibles of its weight poset, but the minuscule poset is usually drawn with the

generators of its corresponding Weyl Group, Sn, as its elements. The minuscule poset An

with its elements and its corresponding weight poset is given in Figure 12.
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ε1 + ε3

ε1 + ε2

ε2 + ε4

ε1 + ε4

ε2 + ε5

ε1 + ε5

ε2 + ε3

ε3 + ε4

ε3 + ε5

ε4 + ε5

Figure 13: The Weight Poset A4

Each sequence of generators in the weight poset of An is a sequence of simple reflections

under the corresponding simple root. The simple roots, αi, of An are of the form αi = εi+1−εi

(1 ≤ i < n), and a generator si corresponds to the simple reflection under the simple root

αi. However, the simple reflection can be simplified.

Lemma 4. In any minuscule poset P , concatenating a generator si with an weight λ, which

corresponds to taking the weight λ to the weight λ − 2(λ,αi)
(αi,αi)

αi, is equivalent to adding the

simple root αi, where αi is the corresponding simple root for generator si.

The proof is given in Appendix E.1.

Combining the fact that the maximal weight in the weight poset of A4 is ε4 + ε5 [6] with

Lemma 4, we recreate the weight poset in terms of the positive roots. The resultant weight

poset is shown in Figure 13. Using the roots of the weight poset of any minuscule poset of

type An, we characterize rowmotion by a set of simple rules on the weights.

Theorem 6. Given a weight εα1 + εα2 + · · ·+ εαk
, in An where the sequence α1, α2, . . ., αk

is strictly increasing, the action of rowmotion Φ on it can be described as follows.

Start with the leftmost term in the weight and apply the following steps.

1. Given a term εαi
, increment αi by 1.
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2. For i < k, if αi + 1 = αi+1, then αi becomes 1, otherwise αi → αi + 1. If i = k and

αk + 1 > n, then αk gets sent to 1.

3. For 2 ≤ i < k, if the new αi is not greater than αi−1, then keep incrementing αi by 1

until the sequence α1, α2, . . ., αk is strictly increasing again. If i = 1 skip this step.

4. Move on to the next term in the weight.

The proof is essentially applying the toggle definition of rowmotion. As such, it is deferred

to Appendix E.2. Applying Theorem 6 to Figure 13, we get the following two orbits:

ε1 + ε2 ⇒ ε1 + ε3 ⇒ ε2 + ε4 ⇒ ε3 + ε5 ⇒ ε4 + ε5 (2)

ε2 + ε3 ⇒ ε1 + ε4 ⇒ ε2 + ε5 ⇒ ε3 + ε4 ⇒ ε1 + ε5 (3)

which is what we expect from the application of rowmotion on the minuscule poset A4.

We now give the other characterization of rowmotion. For each weight of the weight poset

in Figure 13, add the sum 1
2
(−ε1− ε2− ε3− ε4− ε5). The weight poset in Figure 13 becomes

the resulting weight poset in Figure 14. Notice that if one takes the signs of each εi from right

to left, we obtain a sign word on the minuscule poset A4 where each element represents a

square. If we take the starting point of the sign word to be the rightmost vertex, we see that

there exists a bijection between the transformed weights and the sign word on the minuscule

poset A4. In general, adding 1
2
(−ε1−ε2−· · ·−εn) to each weight in An gives us this bijection

as well. Figure 15 shows the bijection using the empty order ideal.

We now extend this bijection between the sign word and the weights to all classical types

of minuscule posets.
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1
2
(+ε1 − ε2 + ε3 − ε4 − ε5)

1
2
(+ε1 + ε2 − ε3 − ε4 − ε5)

1
2
(−ε1 + ε2 − ε3 + ε4 − ε5)

1
2
(+ε1 − ε2 − ε3 + ε4 − ε5)

1
2
(−ε1 + ε2 − ε3 − ε4 + ε5)

1
2
(+ε1 − ε2 − ε3 − ε4 + ε5)

1
2
(−ε1 + ε2 + ε3 − ε4 − ε5)

1
2
(−ε1 − ε2 + ε3 + ε4 − ε5)

1
2
(−ε1 − ε2 + ε3 − ε4 + ε5)

1
2
(−ε1 − ε2 − ε3 + ε4 + ε5)

Figure 14: Transformed Weight Poset A4

ε1 + ε2 ⇒ 1
2
(+ε1 + ε2 − ε3 − ε4 − ε5)

Figure 15: The positive root ε1 + ε2 gets sent to 1
2
(+ε1 + ε2 − ε3 − ε4 − ε5) through the

addition of 1
2
(−ε1 − ε2 − ε3 − ε4 − ε5). When the signs of the resulting expression are taken

from right to left, the obtained sign word is {−,−,−,+,+} which is the sign word shown in
the minuscule poset.
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6 Extending the Bijection

Theorem 7. There exists a bijection between the sign word and the weights in all classical

types of minuscule posets.

Proof. The bijection has already been shown to exist in type An. We now show the bijection

in Bn.

The simple roots, αi, of Bn are of the form α1 = ε1, αi = εi − εi−1 (2 ≤ i ≤ n) [6]. The

maximal weight in the weight poset of Bn is given to be 1
2
(ε1 +ε2 + · · ·+εn). If one takes the

signs of εi as one goes across this maximal weight, one gets the sign word that corresponds

to the full order ideal based on the sign word associated with the lattice path defined in

Definition 11. Note that the weight poset can also be written in terms of the generators of

the corresponding Weyl Group, and that subtracting a generator from a generator sequence is

the same as toggling out at the corresponding generator in the minuscule poset. Additionally,

toggling out at each generator is equivalent to the rowmotion rule that sends every {−,+}

sub-word to the sub-word {+,−}. Toggling out at s1 sends the {−,+} sub-word that joins

the conjugate sign word and the original sign word to {+,−}, which is equivalent to changing

the sign of ε1. Likewise, toggling out at si sends the {−,+} sub-word that corresponds to

the signs of εi−1 and εi respectively to {+,−}. If we toggle by the reverse linear extension

that is defined by going up the rows starting with the bottom vertex, by Proposition 2,

its equivalent to a reverse rowmotion orbit. Since the action of toggling out by the reverse

linear extension is equivalent to the reverse rowmotion rules on the weights and the reverse

rowmotion rules on the sign word, there is a 1 − 1 correspondence between the sign word

and weights in Bn.

We now show the bijection in Cn. The simple roots, αi, of Cn are of the form α1 = 2ε1,

αi = εi − εi−1 (2 ≤ i ≤ n) [6]. The maximal weight in the weight poset of Cn is given by

εn. The weight poset of Cn is one line that has the sequence {εn, εn−1, . . . , ε1, ε−1, . . . , ε−n}
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starting from the top vertex and going down by row. For the first half of the weight poset,

{εn, εn−1, . . . , ε1}, we add the sum 1
2
(−ε1−ε2−· · ·−εn), and for the second half of the weight

poset {ε−1, . . . , ε−n}, we add the sum 1
2
(+ε1 + ε2 + · · · + εn). This creates two bijections

between differently defined sign words on the minuscule poset Cn where each element is now

a square. Examples of the bijections in C5 are shown in Figure 16.

ε3 ⇒ 1
2
(−ε1 − ε2 + ε3 − ε4 − ε5)

−ε3 ⇒ 1
2
(+ε1 + ε2 − ε3 + ε4 + ε5)

Figure 16: The Two Bijections in Cn

For each bijection, the corresponding sign word for each weight follow the rowmotion

rules. Although there are two bijections, the weights still have a 1−1 correspondence to sign

words.

For Dn the two bijections are analogous to those in Cn. An example of the bijections is

shown in Figure 19 in Appendix E.3.
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7 Showing the Homomesy using the Uniform Bijection

For type An, there exists a bijection between the sign word, defined on the lattice path that

starts from the rightmost vertex and travels to the leftmost vertex along the top border of

an order ideal, and the roots in the weight poset of An. We apply the rowmotion rules on

the signs of the weights and each resulting weight corresponds to the next order ideal after

the rowmotion Φ has been applied. Using a technique similar to that used in the proof in

Theorem 1, where we put the signs of each εi from right to left in a row, we show that each

row sum is b− a. This makes the grand sum (a + b)(b− a), and each column sum b− a no

matter which rowmotion orbit is taken. Therefore, the homomesy can be shown in type An.

Since there exists a bijection between the sign word and the weights in Bn, where the

sign word is identical to taking the signs of the εi’s from right to left in each weight, we can

apply the same proof that was used in Theorem 1, where each row will now contain the signs

of the εi’s.

Since there exists a bijection between the first half of the weights and a sign word in

Cn, we apply a reasoning similar to that used in the proof of Theorem 1 and show that the

column sums are all the same in the array corresponding to first half of the orbit. Likewise,

since there exists another bijection between the second half of the weights and a sign word

in Cn, the column sums in the array corresponding to the second half of the orbit are the

same. Therefore, if we combine the two arrays by placing the array of the first half of the

orbit on top of the array of the second half of the orbit, we also have that each column sum

is the same. By reasoning similar to that used in the proof of Theorem 1, the cardinality

statistic in Cn is homomesic as well.

The proof of the homomesy in Dn is analogous to the proof of Cn because in both distinct

orbits of Dn, we can split the array that describes the entire rowmotion orbit into two

arrays; one array that describes rowmotion on the positive roots, and another that describes
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rowmotion on the negative roots. Likewise, we can show that the column sums in each array

are the same and therefore, the columns sums in the original array are also all the same.

Hence the homomesy of the cardinality statistic can be proven from the roots of Dn.

8 Concluding Remarks

We have shown that the cardinality statistic is homomesic in all existing minuscule posets,

through a variety of methods. Using the sign word as a motivation, we characterized row-

motion uniformly across the classical minuscule posets, An, Bn, Cn, and Dn, in terms of the

weights of each Cartan type. We plan to attempt to extend the characterization of rowmotion

to the exceptional minuscule cases, E6 and E7, and once a totally uniform characterization

is complete, we can investigate not only the cardinality homomesy but perhaps other types

of homomesies that appear in rowmotion as well.
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A Proof of Height Function Formula

Proposition 3. Let I ∈ ([n]×[n])/S2 be characterized by the height function hI : [n, n]→ R.

Then
0∑

k=n

hI(k) =
n(n+ 1)

2
+ 2|I|.

Proof. When the order ideal has size 0, the height function is summing the y-coordinates of

the lattice points on the lattice path that takes the point (n, n) to (0, 0) in a straight line.

This sum is
n∑
i=0

i =
n(n+ 1)

2
.

Each time the size of an order ideal increases by 1, there exists either a 3-point sub-line in the

lattice path, say (i, j)→ (i−1, j−1)→ (i−2, j+1), or a 2-point sub-line, (i, j)→ (i−1, j−1),

that gets changed to (i, j)→ (i−1, j+1)→ (i−2, j+1), or (i, j)→ (i−1, j+2), respectively.

In both cases, the overall sum of hI(k) is increased by 2. Thus, the total sum of the height

function increments by 2 every time the cardinality of |I| increases by 1 and equation 1 is

obtained.

B Rowmotion through the Extended Sign Word

B.1 Proof of Lemma 1

Lemma 1. The number of individual +’s and −’s is invariant in the extended sign word.

Proof. The lattice path that the extended sign word describes is a path that travels from the

leftmost vertex to the rightmost vertex of a [n]× [n] Type An poset. If we rotate the diamond

45◦ clockwise, we see that the lattice path is equivalent to getting to the bottom-right corner

of a n× n square from the upper-left one, moving only down or right. In any such path, the

number of down and right movements must always be equal to n. Hence, since the down and
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right moves are bijective to − and + moves, the proof is complete.

B.2 Proof of Lemma 2

Lemma 2. Rowmotion acts by the following rules:

1. Every block {−1,+1} becomes {+1,−1}.

2. Every gap sequence is completely reversed.

Proof. Note that every sub-word {−1,+1} represents a minimal element, and every sub-word

{+1,−1} represents a maximal element, of the order ideal corresponding to total sign-word.

Therefore, by Definition 3, every {−1,+1} sub-word must become {+1,−1} which proves

Rule 1. Now we only have to consider the maximal elements in the original order ideal.

Note that every maximal element that exists in the original order ideal must exist within

a gap sequence. Additionally, only one maximal element can be in a gap sequence or else

there must exist a place within the gap sequence where the sub-word {−1,+1} appears which

contradicts the definition of a gap sequence. Therefore, a gap sequence must be a nonnegative

number of +’s followed by a nonnegative number of −’s. If a gap sequence contains only

either +’s or −’s, there exists no maximal element within this gap and therefore this type

of gap sequence is preserved, which follows Rule 2. If there is a maximal element in the

gap sequence, by Definition 3 every maximal element in the original order ideal cannot be

maximal anymore, so the {+1,−1} sub-word in the gap sequence must change. The three

possible sub-words that it can become are {+1,+1}, {−1,−1}, or {−1,+1}. However, the

first two contradicts Lemma 1. Hence it must become {−1,+1}. This is equivalent to toggling

out the maximal element. However, this creates other {+1,−1} sequences that also need to

be changed. Therefore, the way to eliminate all maximal elements in a gap sequence is to

successively change each {+1,−1} to a {−1,+1}, until there exists no {+1,−1} sub-words

anymore. Note that this action will not terminate until following every + is another +. The
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only possible sequence where this is possible is a sequence that has a nonnegative number

of −’s followed by a nonnegative number of +’s. Note that this action has to be finite or

it implies that there exists an infinite number of maximal elements that can be toggled out

in a finite poset which is a contradiction. This transformation of the original gap to such a

sequence is identical to Rule 2 and the proof is complete.

B.3 Proof of Lemma 3

Lemma 3. The second half of the extended sign-word is always the conjugate to the first

half, and this is conserved through the action of ΦJ .

Proof. Note that the action of rowmotion sends symmetric order ideals to other symmetric

order ideals. This can be seen if we divide the symmetric order ideal along its symmetric

line. If a minimal or maximal element exists on one side of or on the symmetric line, then

another minimal or maximal element also exists correspondingly on the other side of or on

the symmetric line. Hence, rowmotion acts identically on both sides of the symmetric line

and conserves the symmetry of the order ideal. Since the extended sign word is defined to be

the reflection of an order ideal in Bn over the symmetric line of Bn, the order ideal formed is

symmetric, and is always symmetric through any rowmotion orbit. Hence, since the second

half’s conjugation is representative of the symmetry, it is also conserved.

C Appendix: Proof of E6 and E7

C.1 Proof of Type E6

Theorem 4. The cardinality statistic is homomesic under the action of rowmotion ΦJ on

E6, with all averages equal to 8.
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Proof. This section was solved by hand by drawing out all three possible orbits that suc-

cessfully covered all 27 possible order ideals. The average cardinality is 8 and the size of the

orbits are 12, 12, and 3 respectively.

C.2 Proof of Type E7

Theorem 5. The cardinality statistic is homomesic under the action of rowmotion ΦJ on

E7, with all averages equal to 13.5.

Proof. This section was solved by hand by drawing out all four possible orbits that success-

fully covered all 56 possible order ideals. The average cardinality is 13.5 and the size of the

orbits are 18, 18, and 18, and 2 respectively.

D Computation of Average Cardinality in Bn

0
0 + 1
0 + 1 + 1
0 + 1 + 1 + 2
0 + 1 + 1 + 2 + 2
0 + 1 + 1 + 2 + 2 + 3
0 + 1 + 1 + 2 + 2 + 3 + 2
0 + 1 + 1 + 2 + 2 + 3 + 2 + 2
0 + 1 + 1 + 2 + 2 + 3 + 2 + 2 + 1
0 + 1 + 1 + 2 + 2 + 3 + 2 + 2 + 1 + 1

Figure 17: Sizes on Odd Orbit Defined by Empty Order Ideal in B5

The average cardinality of n(n+1)
4

is derived from the orbit defined by the empty order

ideal. We can prove this average cardinality by splitting Bn into cases with even or odd n.

We can examine the summation in easier terms if we arrange the size of the order ideal in a

bottom left triangle arrangement like in Figure 17 and Figure 18, where each successive row
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0
0 + 1
0 + 1 + 1
0 + 1 + 1 + 2
0 + 1 + 1 + 2 + 2
0 + 1 + 1 + 2 + 2 + 2
0 + 1 + 1 + 2 + 2 + 2 + 1
0 + 1 + 1 + 2 + 2 + 2 + 1 + 1

Figure 18: Sizes on Even Orbit Defined by Empty Order Ideal in B4

represents the next order ideal in the rowmotion orbit starting with the empty order ideal.

In Figure 17, each number from 1 to n−1
2

appears symmetrically twice by column on both

sides of the column with entries n+1
2

, where n = 5. If we look at the columns immediately

before and after the the column with entries n+1
2

and count the number of entries we see that

it is 10 or 2n, where n = 5. In general for odd n, the number of entries in two columns that

are symmetric across the column with entries n+1
2

, always is 2n. Additionally, the number

of times the entry n+1
2

appears is n in the case of odd n. Therefore, for odd n the sum is

(4n)(1 + 2 + . . . + n−1
2

) + (n)(n+1
2

). The sum simplifies to (n)2(n+1)
2

. Since the total number

of order ideals in the odd case is 2n the average cardinality is (n)(n+1)
4

as desired. We look

at the even case through the bottom left triangle arrangement in Figure 18. In Figure 18

we see that a similar symmetric structure to that in Figure 17 appears. From this, we can

deduce that for even n our sum is (4n)(1 + 2 + . . . + n−2
2

) + (3n)(n
2
). The sum simplifies to

(n)2(n+1)
2

, the same sum in the odd case. The total number of order ideals in the even case is

also 2n, and thus the average cardinality is (n)(n+1)
4

as desired, which proves the second part

of Theorem 1.
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E Showing the Representation Theory

E.1 Proof of Lemma 4

Before we begin the proof we must first give a crucial definition:

Definition 13. A subgroup of W , say WJ , is a maximal parabolic subgroup stabilizing

λ, where λ is the maximal weight when the weights of W are ordered by the root order, if

WJ ⊂ W and if for all elements wJ ∈ WJ , wJλ = λ. The standard notation for a maximal

parabolic subgroup stabilizing λ is WJ .

We can now give the proof of the lemma.

Lemma 4. Applying the generator si that corresponds to taking a weight λ to the weight

λ− 2(λ,αi)
(αi,αi)

αi, is equivalent to adding the simple root αi.

Proof. Through Definition 7, Definition 13, and Proposition 4.1 from [8], we can give an

alternate description of the weight poset in Definition 8.

Let WJ be the maximal parabolic subgroup of W stabilizing λ, and let W J be the set

of minimum-length coset representatives for the quotient W/WJ . Then there exists bijection

such that

W J → Wλ.

This bijection implies that there exists a map that takes ω 7→ ω0ωλ, where ω is an element

of W , and ω0 is the longest element of W . This mapping is an isomorphism between the root

order on Wλ and strong Bruhat order on W restricted to W J . For more information on the

Bruhat order the author refers the reader to [8].

Therefore, there exists an isomorphism between the weight poset in Figure 12 and the

weight poset in Figure 13, and hence the covering relations between the posets are isomorphic.

The covering relation in Figure 12 is defined on by the strong Bruhat order where siw m w,

only if both w and siw are reduced words. The covering relation in Figure 13 is defined
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on the root order, where λ m µ if λ − µ is a simple root. Because of the isomorphism, the

concatenation of a generator si to a reduced word in the Bruhat lattice, is equivalent to

adding the corresponding simple root to the corresponding root in the minuscule lattice and

the proof is complete.

E.2 Proof of Theorem 6

Theorem 6. Given a weight εα1 + εα2 + · · ·+ εαk
, in An where the sequence α1, α2, . . ., αk

is strictly increasing, the action of rowmotion Φ on it can be described as follows.

Start with the leftmost term in the weight and apply the following steps.

1. Given a term εαi
, increment αi by 1.

2. For i < k, if αi + 1 = αi+1, then αi becomes 1, otherwise αi → αi + 1. If i = k and

αk + 1 > n, then αk gets sent to 1.

3. For 2 ≤ i < k, if the new αi is not greater than αi−1, then keep incrementing αi by 1

until the sequence α1, α2, . . ., αk is strictly increasing again. If i = 1 skip this step.

4. Move on to the next term in the weight.

Proof. The set of rules described in Theorem 6 is equivalent to toggling across the diagonals

of the minuscule poset An starting with the top vertex. Note that this path is a linear

extension as it is order-preserving. By Proposition 2, this toggling is equivalent to an action

of rowmotion Φ on an order ideal and the proof is complete.

E.3 Bijections in Dn

This section illustrates the bijections that occurs in Dn. The bijections are almost identical

to Cn, except for the extra element that is included in the order ideals corresponding to the

positive roots in Dn.
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ε3 ⇒ 1
2
(−ε1 − ε2 + ε3 − ε4 − ε5)

−ε3 ⇒ 1
2
(+ε1 + ε2 − ε3 + ε4 + ε5)

Figure 19: The Two Bijections in Dn
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