
Angles of the Cookie Monster Problem

Leigh Marie Braswell

under the direction of
Dr. Tanya Khovanova and Mr. Benjamin Iriarte

Massachusetts Institute of Technology
Research Science Institute

January 15, 2014

Abstract

The Cookie Monster Problem supposes that the Cookie Monster wants to empty a set S of

jars filled with various numbers of cookies. On each of his moves, he may choose any subset

of jars and take the same number of cookies from each of those jars. The Cookie Monster

number of S, CM(S), is the minimum number of moves the Cookie Monster must use to

empty all of the jars. We explicitly find the Cookie Monster number for jars containing

cookies in n-nacci sequences. We also construct sequences of k jars such that their Cookie

Monster numbers are asymptotically rk, where r is any real number: 0 ≤ r ≤ 1. We find

that for a set S of m jars containing S = {s1, s2, . . . , sm} cookies to have CM(S) < m, the

set S must satisfy some equation of the form

m∑
i=1

aisi = 0

where ai ∈ Z. By modeling the problem with matrices, we recursively compute the equations

which describe CM(S) = n where S is any cookie sequence of length n + 1. We bound the

number of these equations and describe some of their coefficients using hyperplanes. We find

that using established techniques to determine whether a set S of m jars has CM(S) < m

is NP-hard. We lastly analyze a generating function and an algebra that models the Cookie

Monster Problem.

1. Introduction

In 2002, the Cookie Monster appeared in The Inquisitive Problem Solver [5]. The hungry

monster wants to empty a set of jars filled with various numbers of cookies. On each of his

moves, he may choose any subset of jars and take the same number of cookies from each

of those jars. The Cookie Monster number is the minimum number of moves the Cookie

Monster must use to empty all of the jars. This number depends on the initial distribution

of cookies in the jars. We consider the set of m jars containing S = {s1, s2, . . . , sm} cookies.

We call s1, s2, . . . , sm a cookie sequence. Suppose the Cookie Monster number of S, which we

denote CM(S), is n. On move j for j = 1, 2, . . . , n the Cookie Monster removes xj cookies

from every jar that belongs to some subset of the jars. We call each xj a move amount.

Each jar can be represented as a sum of move amounts. Michael Cavers [4] first presented

the formalization of Cookie Monster Problem. Both he and O. Bernardi and T. Khovanova

[3] found that CM(S) ≥ dlog2(m+ 1)e for a set of m non-empty, distinct jars.

In Section 2 of this paper, we explicitly find the Cookie Monster number of sets of jars

containing cookies in the n-nacci sequences. We also construct sequences of k jars such that

their Cookie Monster numbers are asymptotically rk, where r is any real nonnegative number

less than 1. We look at the Cookie Monster Problem from a variety of angles to study the

conditions a set S of m jars must satisfy to have CM(S) = n. The cases n ∈ {1, 2, 3} were

listed by Megan Belzner [2]. For example, when CM(S) = 2, S may contain any set of two

distinct jars or any set of three distinct jars where one jar is the sum of the other two. In

Section 3, we prove that the set of cookie sequences of length m that can be eaten in at most

m− 1 moves is contained in a finite union of hyperplanes defined by equations
m∑
i=1

aisi = 0,

where ai ∈ Z. We therefore model the problem as a finite set of n × m matroids whose

columns represent the jars in S. In Section 4, we generate the equations for a set S of n+ 2

jars to have CM(S) = n+ 1 from the equations for a set S of n+ 1 jars to have CM(S) = n.

In Section 5, we study the hyperplane arrangements that describe the conditions for

CM(S) < m for all sets S of m jars. We find a lower bound on the number of distinct

hyperplane equations and a condition some of their coefficients always satisfy. We prove

that computing and checking these equations to determine whether a set S of m jars has

CM(S) < m is NP-hard. In Section 6, we define the Cookie Monster’s generating function

Fm(k, n), the number of cookie sequences of length m with k total cookies which can be

1

eaten in at most n moves. We fix m and n and study the behavior of Fm(k, n) as a function

of k. We show that Fm(n, k) is approximately C(m,n) kn, where C(m,n) is some constant.

For Fm(m, k) we find that C(m,m) ∼ 1
m!

. We find C(m,m − 1) approaches zero as k gets

large by visualizing the hyperplane arrangements described in Section 5.

In Section 7, we use the polynomial algebra A = k[x1, . . . , xm] over any base ring or field

to model the Cookie Monster Problem. We define the multivariable Hilbert series of the

Cookie Monster algebra. The coarsening of this Hilbert Series is directly related to our work

in earlier sections, as the coefficients count the number of cookie sequences containing a

particular total number of cookies with a particular Cookie Monster Number. Additionally,

we impose another condition on the Cookie Monster Problem. For any positive integer r,

we define the r-dieting Cookie Monster as a monster that is not allowed to take more than

r cookies from a single jar each move.

2. Naccis and Beyond

We now present our Cookie Monster with interesting sequences of cookies in his jars. First,

we challenge our monster to empty a set of jars containing cookies in the Fibonacci sequence.

The Fibonacci sequence is defined as F0 = 0, F1 = 1, and Fi = Fi−2 + Fi−1 for i ≥ 2. A jar

with 0 cookies and 2 jars containing 1 cookie are irrelevant, so our smallest jar will contain

F2 cookies. Belzner [2] found that the set S of k jars containing {F2, F3, . . . , Fk+1} cookies

has CM(S) = bk
2
c+ 1.

There exist lesser-known and perhaps more challenging sequences of numbers similar to

Fibonacci called n-nacci [1]. We define the n-nacci sequence as Ni = 0 for 0 ≤ i < n − 1,

Ni = 1 for n−1 ≤ i ≤ n, and Ni = Ni−n +Ni−n+1 + · · ·+Ni−1 for i ≥ n. The main property

of the n-nacci sequence, like the Fibonacci sequence, is that the next term is the sum of

previous terms. We can use this fact to make a strategy for emptying jars with n-nacci

numbers.

Here is the Cookie Monster’s strategy for dealing with n-nacci sequences, which we call

cookie-monster-knows-addition: He takes n − 1 moves to empty the (k − i)-th largest jar

and reduce the k-th largest jar for each i such that 0 < i < n. In doing this, n jars are

emptied in n − 1 moves. This process can be repeated, until at most n elements remain,

which he empties one by one. Thus, when S = {Nn, . . . , Nn+k−1}, we will prove that the
2

Cookie Monster number

CM(S) =
⌊(n− 1)k

n

⌋
+ 1.

We first prove a lemma and the necessary inequalities relating the n-nacci numbers.

Lemma 1. Let S be a set of k jars with s1 < s2 < . . . < sk cookies. If si > Σi−1
k=1sk for any

i > 1, then CM(S) = k.

Proof. As the largest jar has more cookies than all the other jars together, any strategy has

to include a step in which the Cookie Monster takes cookies from the largest jar. The Cookie

Monster will not jeopardize the strategy if he takes all the cookies from the largest jar on

the first move. Applying the induction process, we see that we need at least n moves. �

Lemma 2. The n-nacci sequence satisfies the inequality:

Nk+1 >
k−1∑
i=1

Ni.

Proof. The proof is the same as that of well-known inequality [6] for Fibonacci numbers. �

Theorem 3. The n-nacci sequence satisfies the inequality for any 0 ≤ j ≤ n− 2:

Nk+j −
k+j−1∑
i=k+1

Ni >
k−1∑
i=1

Ni.

Proof. By the definition, Nk+j −
k+j−1∑
i=k+1

Ni =
k∑

i=k+j−n
Ni. By the inequality in Lemma 2,

k∑
i=k+j−n

Ni = Nk +
k−1∑

i=k+j−n

Ni >
k−2∑
i=1

Ni +Nk−1 =
k−1∑
i=1

Ni.

�

Theorem 4. When k jars contain a set of n-nacci numbers S = {Nn, . . . , Nn+k−1}, the

Cookie Monster number is:

CM(S) =
⌊(n− 1)k

n

⌋
+ 1.

Proof. Consider the largest n jars. The largest n − 1 jars each have more cookies than the

remaining k − n jars do in total. That means the Cookie Monster must perform a move

that includes the largest n− 1 jars and does not touch the smallest k − n jars. Suppose he
3

touches the (n− 1)-th largest jar on his first move. After that, even if he took cookies from

the largest n − 2 jars on his previous move, the (n − 2)-th largest jar will still have more

cookies than all of the smallest k−n jars combined (due to inequalities in Theorem 3). That

means there must be a move that touches the (n− 2)-th largest jar and does not touch the

smallest k − n jars. Continuing this, there should be a move that touches the (n − 3)-th

largest jar and does not touch the smallest k − n jars, and so on.

Summing up for every jar among the n − 1 largest jars, there are moves that touch each

jar and possibly the jars larger than it. Hence, there must be at least n − 1 moves that do

not touch the smallest k − n jars. We know that we can empty the largest n jars in n − 1

moves if the Cookie Monster uses his cookie-monster-knows-addition strategy. Because this

strategy empties n− 1 jars in n moves, the Cookie Monster may optimally continue in this

way. Thus, because at least n − 1 moves are needed to touch and discard the last n jars,

discarding all n jars in n− 1 moves is optimal.

We can continue doing this until we have no more than n jars left. Because the smallest

n jars in set S are powers of two, we must empty these jars one by one. If k has nonzero

remainder x modulo n, the Cookie Monster needs x additional moves for the last jars. Hence,

the total number of moves is (n− 1)bk/nc + x. If k has remainder 0 modulo n, he needs n

additional moves to empty the final n jars for a total of (n− 1)bk/nc+ 1 moves. Therefore,

for any k, we save one move for every group of n jars besides the last n jars. Hence, we save⌊
k−1
n

⌋
moves, and the Cookie Monster number of S is:

CM(S) = k −
⌊k − 1

n

⌋
=
⌊(n− 1)k

n

⌋
+ 1.

�

We found sequences representing k jars such that their Cookie Monster numbers are

asymptotically rk, where r is a rational number of the form (n − 1)/n. Is it possible to

invent other sequences whose Cookie Monster numbers are asymptotically rk, where r is

any rational number not exceeding 1? Before discussing sequences and their asymptotic

behavior, we go back to the bounds on the Cookie Monster number of a set and check if any

value between the bounds is achieved. A set S = {s1, s2, . . . , sk} of increasing numbers si is
4

called basic if it contains all the powers of 2 not exceeding max(S) = sk. We can calculate

the Cookie Monster number of a basic set:

Lemma 5. Given a basic set S = {s1, s2, . . . , sk}, its Cookie Monster number is the smallest

power of two not in S: CM(S) = blog2 skc+ 1.

Proof. Let m be the smallest power of 2 not in S: m = blog2 skc + 1. Then S contains a

subset of powers of 2, namely S ′ = {20, 21, . . . , 2m−1}. This subset has a Cookie Monster

number m. A superset of S ′ cannot have a smaller Cookie Monster number, so CM(S) ≥ m.

On the other hand, all numbers in S can be represented as the sum of a subset of S ′. Thus,

all jars in S can be emptied together with the jars in S ′, and CM(S) = m. �

Theorem 6. For any k and m such that m ≤ k < 2m, there exist a set S of jars of length

k such that CM(S) = m.

Proof. The given constraint allows us to build a basic set S of length k such that 2m−1 ≤

sk < 2m. This basic set satisfies the condition. �

Suppose s1, s2, . . . is an infinite increasing sequence. Let us denote the set of first k elements

of this sequence as Sk. We are interested in the ratio of CM(Sk)/k and its asymptotic

behaviour. If si = 2i−1, then CM(Sk)/k = 1. If si = i, then CM(Sk)/k = (blog2 kc + 1)/k,

which tends to zero when i tends to infinity. We know that for Fibonacci numbers the ratio

is 1/2, for Tribonacci it is 2/3, and for n-naccis it is (n− 1)/n. Are other ratios possible?

Yes, we claim that any ratio r : 0 ≤ r ≤ 1 is possible. We will prove this by constructing

sequences with any given r. The idea is to take a sequence that contains all the powers of

2 and to add some numbers to the sequence as needed. Let us first construct the sequence

explicitly. We build the sequence by induction. We start with s1 = 1. Then CM(S1)/1 =

1 ≥ r. We process natural numbers one by one and decide whether to add a number to the

sequence by the following rules:

• If it is a power of 2 we always add it.

• If it is not a power of 2 we add it if the ratio does not go below r.

Now we would like to study the sequence and prove some lemmas regarding it. Let us

denote the elements of this sequence by si, its partial sums by Sk = {s1, s2, . . . , sk}, and the

ratio CM(Sk)/k, by rk. We need to prove that limk→∞ rk = r.
5

Suppose CM(Sk) = m so that the current ratio rk is m/k. If sk+1 is a power of two, then

rk+1 = (m + 1)/(k + 1) and the difference rk+1 − rk = (k − m)/k(k + 1) < 1/(k + 1). In

this case the ratio does not decrease, but the increases are guaranteed to be smaller and

smaller as k grows. If sk+1 is not a power of two, then rk+1 = m/(k + 1) and the difference

rk+1 − rk = −m/k(k + 1). In this case the ratio always decreases.

Lemma 7. If r = 1 then the sequence contains only powers of 2. If r = 0, then the sequence

contains all the natural numbers.

Proof. We start with the ratio 1 for the first term of the sequence. Every non-power of 2

decreases the ratio. So if r = 1, we cannot include non-powers of 2. Otherwise, the ratio is

always positive, so we include every non-power of 2 as long as the ratio does not go below

r. �

The sequences in the previous lemma produce the ratios 0 and 1, so from now on we can

assume that 0 < r < 1. Let us see what happens if we include all numbers between two

consecutive powers of 2 in the sequence. Because all powers of 2 are present in the sequence,

let us denote the index of 2m in the sequence by km. Hence, CM(Sk) = m if km−1 ≤ k < km.

Also, rkm = (m+ 1)/km.

Lemma 8. If all the non-powers of 2 are included in the sequence between km and km+1,

then the ratio difference is bounded: rkm+1/rkm ≤ (m+ 2)/2(m+ 1).

Proof. Suppose by the algorithm we need to add all the numbers between km and km+1

to the sequence. Therefore, km+1 = km + 2m. The ratios are then rkm = (m + 1)/km and

rkm+1 = (m+2)/(km+2m). So the ratio of ratios is rkm+1/rkm = (m+2)/(m+1)·km/(km+2m).

Using the fact that km ≤ 2m, we get rkm+1/rkm ≤ (m + 2)/2(m + 1). So as m grows, the

ratio is almost halved. Starting from m = 3, we can guarantee that this ratio is never more

than 2/3. �

Corollary 9. If all of the non-powers of 2 are included for m > 2, then the ratios rkm+1/rkm <

2/3.

Theorem 10. For any real number r : 0 ≤ r ≤ 1, there exists a sequence si with partial

sums Sk = {s1, s2, . . . , sk} that have Cookie Monster numbers such that CM(Sk)/k tends to

r when k tends to infinity.
6

Proof. As we mentioned before, we can assume that 0 < r < 1. While building the sequence,

if we need to skip the next number, we have approached r within m/k(k + 1). That is,

r ≤ rk ≤ r +
m

k(k + 1)
≤ r +

1

k + 1
.

If our sequence contains all but a finite amount of natural numbers, the partial ratio will

tend to zero. Because the ratio should never go below r, we get a contradiction. Hence,

we must drop infinitely many numbers. Each time we drop a number, the partial ratio gets

within 1/(k + 1) of r. Therefore, with each number dropped we get closer and closer to r.

Now we must prove that after we get close to r we never wonder off too far from it.

Take ε such that ε < r/6, and consider k such that 1/(1 + k) < ε. We can find a number

t such that t > k and rt < ε. Thus, we have approached r within the distance of ε, and

we continue building the sequence. If the next number is a non-power of 2, then the ratio

approaches r. When we reach the next power of 2, then the ratio increases by no more than

ε. Therefore, the ratio stays within 2ε, so it will not exceed 4r/3.

We claim that after this power of 2 we cannot add all non-powers of 2 until the next

power of 2. Indeed, if that were the case, then the ratio would drop to a number below

4r/3 · 2/3 < r. Therefore, we will have to drop a non-power of 2 from the sequence after the

first encountered power of 2. We will then approach the ratio again and get at least ε-close

to it. Thus, for numbers greater than t, the ratio will never be more than 2ε away from

r. �

3. Modeling the Problem with Matrices

After we digest the statement of the general Cookie Monster Problem, we naturally wonder

which sequences of cookies can be eaten in a given number of moves. What special property

must a set of m jars have to be emptied in less than m moves? When we have a set S of

m jars with CM(S) = n, we can model the Cookie Monster Problem as an n × m binary

matrix A. Each column of the matrix represents one of the m jars, and each row represents

one of the n move amounts in a particular optimal choice of n moves that empty the jars. If

a jar is reduced by a move amount, the entry in the intersection of the column representing

that jar with the row representing that move amount is 1. Otherwise, the entry is 0. This

matrix model is illustrated in Example 21.

7

Lemma 11. All sets of cookie sequences of length m that can be eaten in less than m moves

are defined by equations in the form

m∑
i=1

aisi = 0, (1)

where ai ∈ Z.

Proof. Let S be any cookie sequence {s1, s2, . . . , sm} such that CM(S) = n = m−1 < m, and

let A be its corresponding matrix. We know that A is a n×m binary matrix representing

one of the optimal strategies to empty S. We make S the n+1-th row of A. Because the first

n rows of A span a vector space, S can be written as a linear combination of the previous

rows. Therefore, the determinant of A is zero. Equivalently,

m∑
i=1

Mm,isi = 0, (2)

where Mi,j denotes the minor of the entry in the i-th row and j-th column. All maximal

minors of the (n+ 1)×m binary matrix A are the coefficients of a linear equation relating

the elements of the cookie sequence. �

Computing the equations of the form (1) for any set S of m jars with CM(S) = m−1 < m

is equivalent to finding all matrices A of optimal move amount distributions and computing

the kernel of these matrices. A coefficient vector a = (a1, a2, . . . , am) which represents the

coefficients of equation (1) is any element of the union of these null spaces. To find these

coefficient vectors, we perform Gaussian elimination on a matrix A so that we obtain a

matrix of the form (I | C) where I is the n × n identity matrix. The m − n columns of

A which make up C may then be written in terms of the first n columns. If m− n > 1, an

equation of the form (1) is found for each of the m − n columns. Finding this equation for

the set of jars modeled in Example 21 is shown in Example 22 in Appendix A. The equation

relating the jars in cookie sequences of length m that can be eaten in less than m moves is

dependent upon the matrix of move amounts A. Two optimal strategies, or different choices

of a set of move amounts with the smallest size, will yield different equations as shown in

Example 23 in Appendix A. 8

W Y
1 0 . . . 0 a1m
0 1 . . . 0 a2m
...

...
. . .

...
...

0 0 . . . 1 anm

 =⇒


1 0 . . . 0 b1 a1m
0 1 . . . 0 b2 a2m
...

...
. . .

...
...

...
0 0 . . . 1 bn anm
c1 c2 . . . cn 1 d


Figure 1. Building a New Cookie Sequence

4. Recursively Computing CM(S) Equations

To generalize all sets of jars with a particular Cookie Monster number, we define Sn

to be any set of jars with CM(Sn) = n. We can compute the equations which describe

CM(Sn+1) = n + 1 where Sn+1 is any cookie sequence of length n + 2 from those which

describe CM(Sn) = n where Sn is any cookie sequence of length n+ 1. All combinations of

the equations which describe CM(Sn+1) = n+ 1 for Sn+1 of length n+ 2 give the equations

that cookie sequences Sn+1 of any length with CM(Sn+1) = n+1 satisfy. In cookie sequences

of length greater than n+2, each jar si with i > n+2 satisfies one of the generated equations.

As a result, cookie sequences Sn+1 with CM(Sn+1) = n + 1 of length (n + 2) + k for some

positive integer k will satisfy k + 1 of the equations we compute for Sn+1 of length n+ 2.

Conjecture 12. If CM(Sn) = n where Sn is any cookie sequence of length m, the rank of

its n×m binary matrix of move amounts A is exactly n.

Suppose we have some generic distribution of n independent move amounts in m = n+ 1

jars. After a possible permutation of the columns corresponding to the jars, Conjecture 12

guarantees that Gaussian elimination can be performed on the corresponding matrix A of

full row rank to obtain the n × n identity matrix and a column vector of length n, where

(a1m, a2m, . . . , anm) represents all values that such a matrix can yield. This column vector

gives the coefficients of the equation the n + 1 jars satisfy and is shown in matrix W in

Figure 1. To build the equations for m+ 1 = n+ 2 jars that give CM(Sn+1) = n+ 1, we add

to A any row and column which represent the addition of a jar and move amount. We can do

this because we compute a n×n identity matrix in the process of finding the (n+1)×(n+1)

identity matrix for the set of n + 2 jars. We call the binary sequence which corresponds to

the column representing the new jar {bi}, and the binary sequence which corresponds to the

row representing the new move amount {ci}. We let the set K contain the indices i such
9

W Y
1 0 . . . 0 b1 a1m
0 1 . . . 0 b2 a2m
...

...
. . .

...
...

...
0 0 . . . 1 bn anm
0 0 . . . 0 1− f d−

∑
i∈L

xi

 =⇒


1 0 . . . 0 b1 a1m
0 1 . . . 0 b2 a2m
...

...
. . .

...
...

...
0 0 . . . 1 bn anm
0 0 . . . 0 1 z


Figure 2. Row Reducing our New Matrix

that bi = 1, and we let the set L contain the indices i such that ci = 1. We denote the

number of elements such that bi = ci = 1 by f and let d be 0 or 1. This is illustrated in

matrix Y in Figure 1.

Theorem 13. Suppose we have all of the coefficients of the equations describing when

CM(Sn) = n for any set Sn with size n + 1. For CM(Sn+1) = n + 1 where Sn+1 is any

set with size n + 2, the coefficients of all equations are given by permutations of the set of

integers {k1, k2, . . . , kn+2} described by

ki =


ai −

d−
∑
i∈L

xi

1−f for i ∈ K

ai for i 6∈ K
d−

∑
i∈L

xi

1−f for i = n+ 2.

Proof. To guarantee that row reduction of the matrix containing the n × n identity, {bi},

{ci}, {aim}, and d is possible, we suppose each of the original n + 1 jars are distinct for

n > 1 and nonempty. If we do not assume this, the equations we calculate would have

coefficients identical to equations describing a lower Cookie Monster number. Without loss

of generality, we also suppose that the added jar contains the new move amount and f 6= 1.

We can permute the coefficients to obtain all equations.

We first clear the n+ 1-th row of our matrix by subtracting from it each of the other rows

with a nonzero entry in a column indexed by set L and replacing the n+ 1-th row with the

difference. We obtain matrix W in Figure 2. We then divide the n + 1-th row by 1 − f

and replace
d−

∑
i∈L

xi

1−f by z to obtain matrix Y in Figure 2. We clear the n + 1-th column by

subtracting the n + 1-th row from each bi with i ∈ K and replacing the rows containing bi

with the difference. We obtain the (n+1)×(n+1) identity matrix and a column representing
10

an equation describing CM(Sn+1) = n+1. The coefficients are ai−z for i ∈ K, ai for i 6∈ K,

and z for the n+ 2-th jar. �

We consider an application of Theorem 13 for the n = 1 case in Example 24 in Appendix

A. We find a lower bound on the total number of equations for CM(Sn+1) = n + 1 and

|Sn+1| = n+ 2 by fixing {ai} and {ci}. Under these constraints, any change in {bi} yields a

distinct equation. Thus, there are at least 2n = 2m−1 distinct equations for CM(Sn+1) = n+1

and |Sn+1| = n + 2. Therefore, the number of equations one has to check for a sequence of

m jars to determine whether CM(S) < m grows at least exponentially with m.

5. NP-hardness

In Section 4, we generated the equations for CM(Sn+1) = n+ 1 where Sn+1 is any cookie

sequence of length n + 2 from those which describe CM(Sn) = n where Sn is any cookie

sequence of length n+ 1. We can bound the number of these equations below more precisely

by considering the hyperplanes they represent.

Theorem 14. For m > 2, the number of distinct hyperplane equations for all sets S of jars

of size m with CM(S) < m is at least m!.

Proof. Consider all (m− 1)×m binary matrices. These represent all possible move amount

distributions for all cookie sequences S of length m with CM(S) < m. The possible rows

are all points with nonzero binary coordinates in m dimensions. The extensions of the lines

connecting these 2m − 1 points with the origin intersect the m − 1 dimensional hypersim-

plex given by fixing the sum of the m coordinates to a positive integer. For three jars with

CM(S) ≤ 2, the intersections occur at the vertices, midpoints, and centroid of the trian-

gle where the sum of the cookies is fixed and all coordinates are positive. The case with

hyperplanes for four jars with CM(S) ≤ 3 is shown in Figure 3. The subsets of m − 1 of

these points that do not give lower dimensional affine spaces determine the equations of all

m − 1 dimensional hyperplanes where CM(S) < m. We can recursively bound the number

of distinct hyperplanes for all sets S of size m with CM(S) < m given that we know the

number of distinct hyperplanes for all sets S of size m − 1 with CM(S) < m − 1. Suppose

there exist h hyperplane equations for all sets S of jars of size m− 1 with CM(S) < m− 1.

We count mh distinct hyperplanes for CM(S) < m that pass through a vertex and m − 2
11

Figure 3. The span of three move amounts in four jars is represented by the
set of nonzero binary vectors of length four. Shown here are the intersections
of scalar multiples of these vectors (labeled) with a hypersimplex where the
sum of cookies is a fixed positive integer.

points on the boundary of the hypersimplex, which lie on the facet opposite to the vertex

and which correspond to the h hyperplanes of the previous case. This recursive bound can

be made explicit by noting that there are six equations all sets S of jars of size three with

CM(S) < 3 satisfy, namely the permutations in {s1, s2, s3} of s1 = s2 and s1 = s2+s3. Thus,

the number of distinct hyperplane equations for all sets S of jars of size m with CM(S) < m

is at least m!. To find a better bound, we should count the hyperplanes that pass through

m − 1 midpoints of edges not in the same facet of the hypersimplex and the hyperplanes

which do not contain vertices or midpoints of the edges of the hypersimplex. However, these

two types of hyperplanes may contain multiple subsets of m − 1 points, so they are more

difficult to count. �

There are 2m− 1 nonzero binary vectors of length m that represent possible distributions

of move amounts in the jars of cookie sequences with length m. These vectors correspond

to vertices of the m dimensional hypercube that are visible from the m − 1 dimensional

hypersimplex given by fixing the sum of the cookies to k. Theorem 14 illustrates how

hyperplane cuts of this hypersimplex allow us to determine which cookie sequences S of

length m containing a total of k cookies have CM(S) < m. The points not lying on these

cuts represent sets of m jars with CM(S) = m.

Consider the 2m − 1 intersection points of the rays spanned by nonzero binary points

with the hypersimplex and all affine subspaces generated by all choices of m − 1 of these

points. The cuts are the intersections of these affine spaces with the hypersimplex. Integer

lattice points lying in these cuts contain the sets of cookie sequences of length m that can
12

be emptied in less than m moves. Moreover, for any integer ` with 1 < ` ≤ m, the set of all

integer lattice points in the hypersimplex contained in the affine subspaces generated by all

choices of `− 1 of these intersection points contains the set of cookie sequences of length m

that can be solved in less than ` moves.

We project these cuts onto the union of the facets of the m dimensional hypercube that

are visible from the m− 1 dimensional hypersimplex, or what we call the visible boundary of

the m-cube. These projections are the intersections of the visible boundary of the m-cube

with the linear subspaces generated by each choice of m− 1 of its nonzero vertices and the

origin. In other words, they are the intersections of the linear subspaces spanned by the m−1

nonzero vertices of the m-cube and the visible boundary. We prove a condition satisfied by

certain hyperplanes that pass through the m-cube and correspond to cookie sequences S of

length m with CM(S) < m. We suppose a = (a1, a2, . . . , am) is an integer lattice point to

a hyperplane that passes through the origin, cuts the interior of the m-cube, and does not

intersect an edge of the m-cube at its relative interior.

Theorem 15. The vector a can be any vector with integer coordinates of magnitude at most

1, such that a contains at least one coordinate equal to 1 and at least one coordinate equal

to −1.

Proof. Suppose a is normal to a hyperplane that passes through 0. By assumption, this

hyperplane does not pass through a midpoint of the hypercube, so there do not exist two

adjacent vertices v1, v2 on the m dimensional hypercube such that a · v1 < 0 and a · v2 > 0.

Without loss of generality, let a1 > 0 and let v1 = (0, . . .) and v2 = (1, . . .), where the

remaining entries of v1 and v2 are identical coordinate sequences of magnitude at most 1.

We see a · v1 and a · v2 differ only by a1, or a · v2 = a · v1 + a1 > 0, where a · v1 < 0.

Because this cannot happen, this means that whenever there is a subset I of {2, . . . ,m} such

that aI =
∑
i∈I
ai < 0, then a1 ≤ |aI |. In particular, since at least one of the coordinates of

a must be negative and at least one coordinate must be positive, then the absolute value

of the nonzero coordinates must be the same. Thus, their magnitudes must all be 1. All

such nonzero binary vectors a pass through the origin and the interior of the m-cube and

are therefore obtainable. �

The Cookie Monster number of a set of m jars may be found using one of two methods.

We may check all of the possible equations a set of m jars can satisfy if CM(S) < m.
13

Alternatively, we may use a brute-force algorithm mentioned by Cavers [4]. In this algorithm,

all possible sets with elements less than or equal to those in the cookie sequence are tested.

All subsets of each of these sets are summed. These partial sums are checked to see if they

contain all of the elements of the original cookie sequence. The algorithm stops when the

smallest set with partial sums that make up each jar in the cookie sequence is found, and

the magnitude of this set is the Cookie Monster number. Both of these methods involve

checking many partial sums and require at least exponential time.

Theorem 16. Determining whether a sequence S of m jars has CM(S) < m by using brute

force or by checking equations is NP-hard.

Proof. Using the brute force technique or determining the equations for CM(S) < m and

checking those equations is reminiscent of the NP-hard Subset Sum Problem. The Subset

Sum Problem asks whether a non-empty subset of a given set of integers sums to zero. The

Cookie Monster Problem asks if a non-empty subset of a given set of integers satisfies one

of some computed equations. We consider any one of these equations in the form∑
i∈A

si =
∑
i∈B

si (3)

found in Theorem 15 where A and B are disjoint subsets of S. We negate at least any |B|

elements of the cookie sequence and check whether the cookie sequence now has two subsets

that satisfy (3). Therefore, a subproblem of the Cookie Monster Problem is equivalent

to the Subset Sum Problem, and it is one of many checks necessary to determine whether

CM(S) < m for m jars. Thus, using established techniques to determine whether a sequence

of m jars has CM(S) < m is at least as hard as the Subset Sum Problem and is NP-hard. �

However, we cannot say that the Cookie Monster Problem is NP-hard in general. We

do not know if considering the remaining possible equations with coefficients of magnitude

greater than 1 simplifies the process of determining whether a sequence S of m jars has

CM(S) < m. For example, suppose we have a set of m integers, and we want to determine

if a subset of them has a sum between a positive integer a and a negative integer b inclusive.

This problem is easier than the Subset Sum Problem, as we can develop a faster, more

selective checking strategy by considering the relative magnitude of the elements in the

original set. However, in the context of the Cookie Monster Problem, we do not know if
14

checking all equations, including those with coefficients of magnitude greater than 1, actually

reduces the complexity of the problem. A technique different from brute force or equation

checking could be more efficient. However, considering the randomness of the equations

found in Theorem 13 for CM(S) < m as m increases, we conjecture that using any method

to determine whether a sequence S of m jars has CM(S) < m is NP-hard.

6. Cookie Monster’s Generating Function

We now consider the function Fm(k, n), the number of cookie sequences of length m with

k total cookies which can be eaten in at most n moves. We fix m and n and study the

behavior of Fm(k, n) as a function of k. We see that Fm(n, k) is approximately C(m,n)kn,

where C(m,n) is some constant.

Theorem 17. For Fm(m, k), the coefficient C(m,m) ∼ 1
m!

.

Proof. All cookie sequences of size m may be eaten in at most m moves. Therefore, Fm(m, k)

counts all partitions of k cookies into m jars with no jars empty. This is(
k − 1

m− 1

)
∼ km

m!
= C(m,m)km.

�

We wonder if we may simplify the function Fm(k,m−1) = C(m,m−1)km similarly. Each

cookie sequence of length m with k total cookies which can be eaten in at most m− 1 moves

satisfies some hyperplane equation of the form (1) discussed in Theorem 14 and Theorem 15.

We can bound the number of these hyperplane equations and describe their coefficients, but

computing C(m,m− 1) is difficult. We see that as the fixed sum k of the cookies grows, the

intersections of the hyperplanes describing when CM(S) < m for any set S of m jars with

the hypersimplex become more insignificant. In other words, most cookie sequences with

many cookies do not lie on one of the hyperplanes describing when CM(S) < m for any set

S of m jars with cookie sum k. Thus, C(m,m − 1), the coefficient of km in the generating

function Fm(k,m− 1), approaches zero as k approaches infinity.

7. Cookie Monster Algebra

We now discuss an algebraic model of the Cookie Monster Problem. We consider the

polynomial algebra A = k[x1, . . . , xm] over any base ring or field, and we define a filtration
15

on A, the Cookie Monster Filtration, by the condition that the degrees of the generators are

1. For each T ⊂ {1, 2, . . . ,m} we define xT =
∏

i∈T xi. The generators of the algebra are of

the form x(n, T) = xnT where n is a positive integer. We let gr(A) be the associated graded

algebra, and we call it the Cookie Monster algebra. This algebra is relevant because for a

cookie sequence s1, . . . , sm and its corresponding monomial xS = xs11 . . . xsmm , the degree of its

image in gr(A) is CM(S). Therefore, any minimal way of eating the cookies corresponds to

a representation of xS in gr(A) as a product of generators. The multivariable Hilbert series

of the Cookie Monster algebra is given by

Hm(z1, . . . , zm, t) =
∑
S

zs11 . . . zsmm tCM(S).

In the earlier sections, we observed how difficult it is to solve the Cookie Monster Problem

in its entirety. To make the problem more tractable using algebraic techniques, we impose

another condition on the Cookie Monster Problem. For any positive integer r, we define the

r-dieting Cookie Monster as a monster that is not allowed to take more than r cookies from

a single jar each move. We define dieting Cookie Monster algebras with generators x(n, T)

only for n ≤ r.

Theorem 18. For an r-dieting Cookie Monster emptying a set of jars S with largest element

sm, ⌈sm
r

⌉
≤ CM(S) ≤

⌊sm
r

⌋
+ CM(R)

where R = {1, 2, . . . , r − 1}.

Proof. In
⌊
sm
r

⌋
moves, the Cookie Monster can reduce each jar to a number of cookies less

than r. He does so by taking r cookies from every jar as many times as possible, which

is bounded by the largest element in the cookie sequence. If all of the other jars contain

multiples of r cookies, CM(S) =
⌈
sm
r

⌉
. Otherwise, after each jar is reduced to a number

of cookies less than r, the dieting Cookie Monster empties the jars as the regular Cookie

Monster would. In the worst case, this means that he must empty jars containing the set of

{1, 2, . . . , r − 1} cookies. �

However, the strategy of reducing each jar to its modulus in r by taking as many multiples

of r cookies as possible and then emptying the jars optimally is not always the fastest

approach.
16

Theorem 19. The multivariable Hilbert series of the dieting Cookie Monster algebra

HD,m(z1, ..., zm, t) is a rational function.

Proof. We consider the syzygies between the generators of the dieting Cookie Monster algebra

corresponding to the r-dieting Cookie Monster. There are finitely many of these generators,

so the rationality of dieting Cookie Monster algebras follows from Hilbert’s syzygy theorem.

�We can coarsen the Hilbert series in Theorem 19, where |S| is the number of cookies in S:

hD,m(z, t) = HD,m(z, . . . , z, t) =
∑
S

z|S|tCMD(S).

Theorem 20. For the r-diet with a cookie sequence made only of r multiples hD,m(z, t) is

of the form
1∏m

n=1(1− tzrn)(
m
n)
.

Proof. While on the r-diet, the Cookie Monster may take r cookies from any subset of the

jars with at least r cookies.
∏m

n=1(1−tzrn)(
m
n) represents choosing n of the m cookie jars and

taking r cookies out of those jars on a number of moves corresponding to the magnitude of

t’s exponent. When all jars are multiples of r, all optimal moves will be of this form. Thus,

hD,m(z, t) may be written as
1∏m

n=1(1− tzrn)(
m
n)
.

�

8. Acknowledgements

I would like to thank my PRIMES mentor, Dr. Tanya Khovanova of the Massachusetts

Institute of Technology, for guidance throughout the project. I would also like to thank

my RSI mentor, Mr. Benjamin Iriarte of the Massachusetts Institute of Technology, for his

assistance with the project. I would like to thank Dr. Pavel Etingof of MIT and the RSI

staff, especially my tutor Dr. John Rickert and Jacob McNamara, for invaluable advice. I am

grateful for the resources and research opportunity provided by the Center for Excellence in

Education, RSI, PRIMES, and the MIT Mathematics Department. I would also like to thank

Dr. Tom Leighton, CEO of Akamai Technologies, and Akamai Technologies for sponsoring

me this summer at RSI.

17

References

[1] Generalizations of the Fibonacci Numbers. Available at http://en.wikipedia.org/w/index.php?

title=Generalizations_of_Fibonacci_numbers&oldid=560561954 (2013/09/14).

[2] M. Belzner. The Cookie Monster Problem. Available at http://arxiv.org/abs/1304.7508

(2013/07/02).

[3] O. Bernardi and T. Khovanova. The Cookie Monster Problem. Available at http://blog.

tanyakhovanova.com/?p=325 (2013/07/02).

[4] M. Cavers. Cookie Monster Problem Notes. University of Calgary Discrete Math Seminar, 2010.

[5] P. Vaderlind, R. Guy, and L. Larson. The Inquisitive Problem Solver. The Mathematical Association of

America, 2002.

[6] Wikipedia. Fibonacci Numbers. Available at http://en.wikipedia.org/w/index.php?title=

Fibonacci_number&oldid=572271013 (2013/09/14).

18

http://en.wikipedia.org/w/index.php?title=Generalizations_of_Fibonacci_numbers&oldid=560561954
http://en.wikipedia.org/w/index.php?title=Generalizations_of_Fibonacci_numbers&oldid=560561954
http://arxiv.org/abs/1304.7508
http://blog.tanyakhovanova.com/?p=325
http://blog.tanyakhovanova.com/?p=325
http://en.wikipedia.org/w/index.php?title=Fibonacci_number&oldid=572271013
http://en.wikipedia.org/w/index.php?title=Fibonacci_number&oldid=572271013

Appendix A.

Example 21. Suppose we have a set of jars S = {s1, s2, s3, s4} and a set of move amounts

{x1, x2, x3}. Suppose that s1 = x1, s2 = x2 + x3, s3 = x1 + x2, and s4 = x1 + x3. The matrix

corresponding to this distribution of the move amounts in the jars is
1 0 1 1

0 1 1 0

0 1 0 1

 .

Example 22. When the matrix corresponding to the distribution of move amounts in the

jars in Example 21 is put in the form (I | C) by Gaussian elimination we obtain
1 0 0 2

0 1 0 1

0 0 1 −1

 .

By writing the fourth column in terms of the first three, we obtain s4 = 2s1 + s2 − s3 or, of

the form (1), 2s1 + s2 − s3 − s4 = 0.

Example 23. Suppose we have a set of jars S = {1, 2, 1}. Two choices of A with the least

number of rows possible are 1 1 1

0 1 0

 and

 1 1 0

0 1 1


where the set of move amounts {x1, x2} = {1, 1}. The first A gives the equation s1 = s3,

while the second A gives the equation s2 = s1 + s3. Both equations are of the form (1) but

represent different optimal move sequences of the Cookie Monster.

Example 24. The equation for CM(S) = 1 and |S| = 2 is s1 = s2, which corresponds to

the 1× 2 matrix
(
1 1
)
. To find the coefficients describing all equations for CM(S) = 2 and

|S| = 3, we add all possible binary sequences corresponding to the addition of a nonempty

jar and move amount to this matrix.

Case 1. {bi} = 0, {ci} = 0.

The matrix that represents this situation is
(
1 0 1
0 1 d

)
, which is already reduced. Setting d = 0

19

and d = 1, we obtain the equations

s1 = s3 and s3 = s1 + s2. (4)

Case 2. {bi} = 1, {ci} = 0.

The matrix that represents this situation is
(
1 1 1
0 1 d

)
. We reduce the matrix by replacing the

first row with the positive difference between the two rows:
(
1 0 1−d
0 1 d

)
. Setting d = 0 and

d = 1, we obtain the equations

s1 = s3 and s3 = s2. (5)

Case 3. {bi} = 0, {ci} = 1.

The matrix that represents this situation is
(
1 0 1
1 1 d

)
. We reduce the matrix by replacing the

second row with the positive difference between the two rows:
(
1 0 1
0 1 d−1

)
. Setting d = 0 and

d = 1, we obtain the equations

s3 = s1 − s2 and s1 = s3. (6)

Case 4. {bi} = 1, {ci} = 1.

The matrix that represents this situation is
(
1 1 1
1 1 d

)
. Because we cannot reduce this case, we

already have the equation for any d,

s1 = s2. (7)

Combining and permuting (4), (5), (6), and (7) in {s1, s2, s3}, we obtain all possible

equations describing CM(S) = 2 and |S| = 3 from those describing CM(S) = 1 and |S| = 2.

These are s1 = s2, s1 = s3, s2 = s3, s3 = s1 + s2, s2 = s1 + s3, and s1 = s2 + s3. These match

the equations found by Belzner [2].

20

	1. Introduction
	2. Naccis and Beyond
	3. Modeling the Problem with Matrices
	4. Recursively Computing `39`42`"613A``45`47`"603ACM(S) Equations
	5. NP-hardness
	6. Cookie Monster's Generating Function
	7. Cookie Monster Algebra
	8. Acknowledgements
	References
	Appendix A.

