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Abstract: Characterizing x-Monotone and Outerplanar Thrackles

A graph drawing is a visual representation of a graph in which points represent vertices and continuous curves

represent edges. A thrackle is defined as a graph drawing in the plane in which every edge intersects every

other edge exactly once. In this study, we focus on two special cases of thrackles: (i) outerplanar thrackles,

in which the vertices lie on a circle and the edges are contained inside the circle, and (ii) x-monotone

thrackles, in which the vertices may be anywhere, but each edge may intersect any vertical line in the plane

at most once. For both of these cases, we determine the set of graphs that can be drawn in the specified

manner. These results may be a step towards solving the general problem of characterizing all thrackles,

whose solution would in turn likely lead to advances in many different and widely applicable problems in

graph drawings.
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Executive Summary: Characterizing x-Monotone and Outerplanar Thrackles

Networks are all around us in the modern world. We are connected physically to others by a network of roads

which allows us to quickly travel to almost anywhere on one landmass, and we are connected virtually to

almost everyone in the world via networks such as the internet and telephone networks. There are also many

examples of networks which are less obvious to the untrained eye. For example, the pattern of transistors on

a computer chip can be represented as a network, and properties of the network can be used to optimize the

design of the chip. Although these networks are largely of recent origins, mathematicians have been studying

networks for several centuries, albeit under a different name. In math, a graph is the abstract representation

of a network, and a graph drawing is a visual representation of a network. In a graph drawing, we draw

points to represent the members of the network— for example, everyone who has a Facebook account—

and we draw curves between pairs of members which are directly connected— for example, people who are

friends on Facebook.

There are many properties of graph drawings which are interesting to study, but one of the most important

ones is the way in which the curves in a drawing cross each other. In this paper, we consider an extreme

scenario in the spectrum of possible crossing patterns. Specifially, we investigate graph drawings in which

each curve in the drawing crosses every other curve; these drawings are called thrackles. Given a network,

we would like to be able to determine whether the network can be drawn as a thrackle. We focus on two

special cases of the problem in which we impose further constraints on the drawing of the graph to make the

problem easier to handle. For both of the cases we consider, we determine exactly which networks can be

drawn as a thrackle with the specified constraints. The results obtained here may be a step towards solving

the general problem of characterizing all thrackles, whose solution would in turn likely lead to advances in

many different and widely applicable problems in graph drawings.
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1 Introduction

A thrackle is a drawing of a graph in the plane such that every edge intersects every other edge exactly once.

A classic example of a thrackle is the six cycle, shown in Figure 1.

Figure 1: A thrackle drawing of C6

Over 40 years ago, John H. Conway conjectured that there are at most as many edges as vertices in any

graph which can be drawn as a thrackle. At the time, Conway offered a bottle of beer for a solution, and

although the prize has since risen to $1000, the conjecture is still unresolved [3]. There has, nonetheless,

been a good deal of research on thrackles.

For example, D. R. Woodall [2] showed that if Conway’s conjecture is true, a graph is thrackleable if and

only if it contains at most one odd cycle, at most one cycle in each connected component, and no cycle of

length four. Woodall also showed that if Conway’s conjecture is false, then there is a minimal counterexample

consisting of two even cycles sharing one vertex. Thus, to prove the conjecture, it must only be shown that

any such graph cannot be drawn as a thrackle. Additionally, several upper bounds on the number of edges

in a thrackle have been proven since the proposal of Conway’s conjecture. Currently, the tightest proven

bound is 167
116v, where v is the number of vertices, by Fulek and Pach [3].

There have also been several papers examining Conway’s conjecture for special cases. Cairns and Niko-

layevsky [4] proved Conway’s thrackle conjecture for outerplanar thrackles, which are thrackles whose vertices

lie on some circle and whose edges lie in the interior of the circle, as shown in Figure 2. Pach and Sterling [5]

proved Conway’s thrackle conjecture for x-monotone thrackles, which are thrackles whose edges cross each

vertical line in the plane at most once, as shown in Figure 3. In this paper, we extend the work of Cairns,

Nikolayevsky, Pach, and Sterling by giving a complete characterization of which graphs can be drawn as

outerplanar thrackles and which graphs can be drawn as x-monotone thrackles. We hope that the complete

solution of the thrackle problem for these special cases will help to give insight into the solution of the general
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thrackle problem.

Figure 2: An outerplanar thrackle

Figure 3: An x-monotone thrackle. The vertical lines are simply visual aids.

In addition to its inherent interest, the thrackle problem is studied because its solution will likely give

insight into how to solve a large number of related problems in graph drawings. This field has a variety

of applications including bioinformatics, cartography, and social network analysis, but its most significant

practical use is probably in very large scale integration (VLSI). As computers have grown in complexity over

the past few decades, the efficient and effective layout of the transistors on a computer chip has become

increasingly important for their design and progress. In particular, it is desirable to lay out the transistors

on a computer chip such that they take up the smallest area possible while avoiding certain types of crossing

components [6]. Although there are many algorithms for doing so today, there is a great gap of theoretical

knowledge about the problem and there may be a potential for great improvement which would lead to more

effective and smaller computer chips.

Now, it has already been shown that there is a close relationship between minimizing the number of

crossings in a graph and circuit layout design [6]. While it seems that this problem is the opposite of the
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thrackle problem, in which we want to create as many intersections as possible, there are actually many

connections between the two. For one, maximization and minimization problems in mathematics are often

closely related, and in many cases, the same method used to maximize a quantity can be used to minimize

it with very little modification. Indeed, there is already concrete evidence of connections between thrackles,

which involve crossing maximization, and planar graphs, which involve crossing minimization. One great

example of this is a beautiful theorem by Lovsz, Pach, and Szegedy, which states that every thrackleable

bipartite graph is also a planar graph [1]. This suggests deep connections between these two edge-crossing

extremes and gives more weight to the supposition that studying the thrackle problem could lead to advances

in other areas of graph drawings.

In a more general sense, because the thrackle problem is one of the simplest problems one could propose

in the field of graph drawings, it is reasonable to believe that the methods developed in finding its solution

could lead to a solution to some of the deeper and more directly applicable problems in the field, such as those

relating to VLSI. This idea is especially compelling because, beyond certain results about planar graphs,

very little progress has been made towards directly solving the fundamental problems of graph drawings. For

example, the minimum weight drawability problem for triangulated graphs, the 3D orthogonal representation

problem, and the visibility graph recognition problem are all unsolved problems in graph drawings, and even

the computational complexities of solving specific cases of the problems are not known [7]. Hopefully, by

working on simpler problems such as the thrackle problem, we can work towards an eventual solution to

these problems and many other unsolved problems in graph drawings.

In Section 3, we define some basic concepts needed for the rest of the paper. In section 4, we characterize

the graphs that can be drawn as outerplanar thrackles. Finally, in section 5, we characterize the graphs that

can be drawn as x-monotone thrackles.

2 Basic Definitions

Definition 2.1. A graph is a set V of vertices combined with a set E of pairs of vertices, which we call

edges.

Definition 2.2. We say that an edge connects the two vertices in its pair, and that it is incident to either

of the vertices in its pair. We will denote the edge connecting the vertices v and u by either eu,v or (u, v). A

vertex is adjacent to another vertex, or is the neighbor of another vertex, if there is an edge which connects

them.

Definition 2.3. The degree of a vertex is the number of edges which are incident to it.
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Definition 2.4. A path of length n is a sequence of distinct vertices v1, v2, . . . , vn such that, for all 1 ≤ i < n,

vi is adjacent to vi+1, and a cycle is a path which also contains the edge (vn, v1).

Definition 2.5. A bipartite graph is a graph whose vertices can be partitioned into two sets, A and B, such

that no two vertices in A are connected and no two vertices in B are connected.

Definition 2.6. A connected component of a graph G is a set containing a vertex v of G and all other

vertices u of G for which there is a path beginning at v and ending at u.

Definition 2.7. A graph drawing of a graph G is a mapping which takes vertices of G to points in the plane

and edges of G to continuous curves in the plane such that the arc corresponding to a given edge begins at

one of the vertices it is incident to and ends at the other.

We also require that no curve intersects itself, that no curve contains any of the vertices other than the

two at its endpoints, and that no two of the curves are tangent to each other at any point. Henceforth,

we will not distinguish between the points and curves of a graph drawing and the edges and vertices of the

underlying graph.

Definition 2.8. A graph drawing is a thrackle if and only if every edge intersects every other edge at exactly

one point. A graph is thrackleable if it can be drawn as a thrackle.

3 Outerplanar Thrackles

Definition 3.1. An outerplanar thrackle is a thrackle with all of its vertices on a circle and all of its edges

in the interior of the circle.

To state precisely which graphs can be drawn as outerplanar thrackles, we need a few more definitions.

Definition 3.2. An open caterpillar is a graph containing some path such that every vertex of degree greater

than one is in the path and every vertex of degree one is either in the path or adjacent to a vertex in the

path.

Definition 3.3. We define a closed caterpillar in the same way as an open caterpillar, except that the path

is replaced by a cycle.

These two types of graphs are shown in Figure 4.

Now, we characterize all outerplanar thrackles with the following three theorems.

Theorem 3.1. An outerplanar thrackle contains no even cycle.
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Figure 4: An open caterpillar and a closed caterpillar, respectively

Figure 5: An Attempt to Draw an Even Cycle as an Outerplanar Thrackle

Proof. Assume for the sake of contradiction that there is an outerplanar thrackle with an even cycle, and

call the vertices of the cycle v1, v2, . . . vn. Now, for 3 ≤ i ≤ n, each edge (vi, vi+1) must cross the edge

(v1, v2). Thus, vi and vi+1 are on opposite sides of that edge, and any vi and vj with i and j of different

parities must be on different sides of (v1, v2). This means that, since 3 and n are of opposite parities, v3 and

vn are on opposite sides of (v1, v2). But then, as in Figure 5, (v1, vn) and (v2, v3) cannot cross, which is a

contradiction.
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Theorem 3.2. If an outerplanar thrackle contains an odd cycle, it is a closed caterpillar.

Proof. Assume for the sake of contradiction that there is an edge e which is disjoint from the cycle. It is

well known that the regions formed by any closed curve in the plane can be two-colored, as shown in Figure

6. Since the cycle must be contained within the circle and its boundary, all points on the boundary of the

circle, excepting the vertices of the cycle, lie in the same region of this two-coloring. Now, we know that e

must cross every edge in the cycle exactly once between its two endpoints. Since the cycle is odd, this means

that the color of the region it is in changes an odd number of times from start to finish, so that it must end

in a region which is colored differently than the region it started in. As we already know that its starting

and ending point are in the same region, this is a contradiction. Therefore, if the graph contains a cycle,

every edge in the graph must be incident to some vertex of the cycle. Now, if we can show that each vertex

Figure 6: A two-coloring of a 5-cycle

outside the cycle can be adjacent to at most one vertex in the cycle, the proof will be complete. To do this,

we use the fact that outerplanar thrackles have at most as many edges as vertices, as proven by Cairns and

Nikolayevsky [4]. If a vertex is adjacent to two vertices in the odd cycle, the subgraph containing only the

vertex and the cycle has more edges than vertices, which is a contradiction. Thus, each vertex outside the

cycle is adjacent to at most one vertex in the cycle, and the graph is a closed caterpillar.

Theorem 3.3. If an outerplanar thrackle contains no cycle, every connected component is an open cater-

pillar.

Proof. First, we show that every vertex in the graph has at most two neighbors of degree greater than one.

Assume for the sake of contradiction that an outerplanar thrackleable graph contains a vertex v with three

neighbors a, b, and c, each of degree at least two. Without loss of generality, let the points lie on the circle

in the clockwise order v, a, b, c. Now, consider any neighbor u of b which is not v. Without loss of generality,

u lies on the same side of segment ev,b as a. However, this means that u and b are on the same side of ev,b,

so eu,b does not intersect ev,c, as shown in Figure 7. This contradicts the assumption that the graph is a

thrackle.
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Figure 7: A vertex with three neighbors of degree at least two

Now, consider any connected component C of the graph. Let P be the longest path in C and let v be

any vertex which is in C, but not P . Let the length of the shortest path S from v to a vertex u in P be n.

Assume for the sake of contradiction that n > 1. If u is on the end or adjacent to the end of P , the

path from v to u to the other end of P is longer than P , which is a contradiction. Otherwise, u has two

neighbors in P which have degree at least two and one neighbor in S which has degree at least two, so it

has a total of three such neighbors, which is also a contradiction. Thus, n = 1. Additionally, no vertex in

C but not in P may contain two edges connecting it to P , because that would create a cycle in the graph.

Thus, every vertex in C but not in P is a degree one vertex adjacent to a vertex in P , and C must be an

open caterpillar.

Now, we must show that we can construct any outerplanar thrackle which meets the specifications of

Theorems 3.2 and 3.3. We do this in the following two theorems.

Theorem 3.4. Every closed caterpillar is outerplanar thrackleable.

Proof. To construct a closed caterpillar with an odd cycle of length n as an outerplanar thrackle, we begin

by drawing an n-pointed star with its vertices equally spaced around the circle. Then, to add a vertex v

which is adjacent to the vertex u in the cycle, we place v in between the two neighbors of u, as shown in

Figure 8. This completes the construction.

Theorem 3.5. A graph whose every component is an open caterpillar is outerplanar thrackleable.

Proof. To construct an open caterpillar, we use the same construction as in Theorem 3.4 but do not complete

the star. This makes the graph bipartite, so we may flatten out the graph as shown in Figure 9. If it is

bipartite under the partition of the vertices into the sets A and B, we place all vertices of A in a small region
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Figure 8: A closed caterpillar drawn as an outerplanar thrackle

a on one side of the circle and all of the vertices of B in a small region b on the other side of the circle.

To combine n open caterpillars with regions (a1, b1), (a2, b2), . . . , (an, bn), we place the regions in the order

a1a2, . . . , anb1b2, . . . , bn and every edge in every component crosses every edge in every other component, as

shown in Figure 10. This completes the proof.

Figure 9: One open caterpillar drawn as an outerplanar thrackle

4 x-Monotone Thrackles

Definition 4.1. An x-monotone thrackle is a thrackle in which every edge intersects every vertical line at

most once.

We first define a few useful concepts for working with these thrackles.

Definition 4.2. A left vertex is a vertex which is incident to an edge that approaches the vertex from the

right, and a right vertex is a vertex which is incident to an edge that approaches the vertex from the left.
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Figure 10: Several open caterpillars drawn as an outerplanar thrackle

Definition 4.3. A split point is a vertex which is both a left vertex and a right vertex.

Definition 4.4. A fork point is a point which has more than two neighbors of degree at least two.

Definition 4.5. A central neighbor v of a vertex u is a vertex such that at least two edges other than eu,v

leave u in the same horizontal direction as eu,v, and one of them is above eu,v in the vicinity of u, and one

of them is below eu,v in the vicinity of u.

These points are shown in Figure 11.

Figure 11: A left vertex, a right vertex, a split point, a fork point, and a central neighbor, respectively

We now prove five lemmas which help characterize x-monotone thrackles.

Lemma 4.1. There is at most one split point in any x-monotone thrackle.

Proof. Assume that, on the contrary, there are two distinct vertices u and v which are both split points.

Without loss of generality, let u be to the left of or on the same vertical line as v. Since u and v are split
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points, there is an edge which leaves u to the left and one which leaves v to the right. If u is to the left of

v, as in Figure 12, these two edges share no x coordinates, so they do not intersect. Thus, u must be on

the same vertical line as v. Then, the only shared x coordinate is in line with u and v, but the edges could

only intersect there if u was in fact the same point as v. This contradicts the assumption that u and v are

distinct vertices.

Figure 12: A drawing with two split points

Lemma 4.2. Consider a vertex v which is a central neighbor of a fork point f . The edge ev,f is the only

edge leaving v in the direction of f .

Proof. Assume for the sake of contradiction that there is a vertex v which is a central neighbor of a fork

point f and there is an edge ev,u which leaves v in the same direction as ev,f . Without loss of generality,

we may assume that ev,u leaves v above ev,f . However, since v is a central neighbor of f , there is an edge

ef,g which leaves f below the edge ev,f , and this edge cannot cross ev,u. This contradicts the fact that the

drawing is an x-monotone thrackle.

Lemma 4.3. Every fork point is either a split point or adjacent to a split point. If there is a fork point

which is not a split point, the split point must be a central neighbor of the fork point.

Proof. We show that a fork point which is not a split point is adjacent to a split point. Consider a fork point

v which has three vertices of degree at least 2 incident to it from one direction. Let u be a central neighbor

of v. Vertex u has at least one other neighbor, but by Lemma 4.2 it must be on the opposite side of u from

v. Thus, u is a split point, as shown in Figure 13.

Corollary 4.1. A split point may have at most two edges of degree at least two incident to it from each

direction.

Proof. If a split point has more than two edges of degree at least two incident to it in one direction, it would

be adjacent to another split point, contradicting Lemma 4.1.

13



Figure 13: A fork point, v, which is not a split point, but is adjacent to the split point b

Lemma 4.4. There are at most two fork points in any x-monotone thrackleable graph.

Proof. We assume for the sake of contradiction that there is an x-monotone thrackle with three fork points.

Lemma 4.3 tells us that either all of the fork points are neighbors of a single split point or one of the fork

points is a split point and the others are its neighbors. In the first case, let the fork points be called f1, f2,

and f3, and call the split point s. Without loss of generality, we assume that f2 and f1 are on the same side

of s. By Lemma 4.3, we know that s is a central neighbor of f1. However, by Lemma 4.2, this means that s

can have no neighbors other than f1 on the same side as f1. This contradicts the fact that f2 and f1 are on

the same side of s.

For the second case, call the split point s and the two fork points f1 and f2. The proof for the first case

shows that f1 and f2 must lie on opposite sides of the split point. Since s is a central neighbor of both f1 and

f2, Lemma 4.2 tells us that there may be no vertex adjacent to s other than f1 and f2. But this contradicts

the assumption that s is a fork point, so we are done.

Lemma 4.5. No vertex may have more than three vertices of degree at least two incident to it from the same

direction.

Figure 14: Four vertices of degree two adjacent to one vertex, v
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Proof. Assume for the sake of contradiction that such a configuration is possible. Let the vertex under

consideration be v. Call the four edges vertices adjacent to it a, b, c, and d, and let v be a left vertex, as in

Figure 14. Without loss of generality, assume that, in the vicinity of v, the edges connecting v to b and c lie

in between the edges connecting v to a and d. Also, assume that b is at least as far to the right as c. Let the

neighbor of b which is not v be u. To intersect with ev,c, edge eb,u must begin below ev,b and head towards

the left. However, this means that there is no way for eb,u to intersect ev,a, which contradicts the fact that

the graph is a thrackle.

Now, we prove several theorems about x-monotone thrackles.

First, we characterize x-monotone thrackles which do not contain a split point with the following theorem.

Theorem 4.1. Any connected component of an x-monotone thrackle without a split point must be an open

caterpillar.

Proof. If there is no split point, then Lemma 4.3 tells us that there is also no fork point. Additionally, any

graph with no split point is bipartite under the partition into left and right vertices, so no such graph may

contain an odd cycle. Additionally, a result by Pach and Sterling [5] tells us that an x-monotone thrackle

may contain no even cycle. With these facts, we may use the same argument used in Section 3 to prove that

outerplanar thrackles without an odd cycle are open caterpillars.

Now, we define a new type of graph which will help us characterize x-monotone thrackles.

Definition 4.6. A cat is a graph which contains a single odd cycle, two paths branching off from the cycle,

and any number of degree one vertices adjacent to vertices of the cycle or paths. We call the two paths ears.

We define a k-cat to be a cat in which the minimum distance along the cycle between the beginnings of the

two paths is k.

An example is shown in Figure 15.

Figure 15: A 5-cat without any extra degree one vertices
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Theorem 4.2. Every connected component of an x-monotone thrackle which is a 0-cat, a 1-cat, a 2-cat, or

a subgraph thereof. Additionally, if it is a 2-cat, the vertex between the two ears in the cycle may have no

neighbors outside the cycle.

Proof. If there is no split point in the component, then the graph is an open caterpillar by Theorem 4.1.

If there is a split point and an odd cycle, we present the following argument: First, we note that every

vertex in the cycle already has two neighbors of degree at least two. Thus, any vertex which has a third

neighbor of degree at least two is immediately a fork point, and, as such, must be a split point or adjacent

to a split point, by Lemma 4.3. Also, we note that any odd cycle must contain a split point, since a graph

without a split point is bipartite between left and right vertices. Now, we divide into cases by the fork points

of the graph. Lemmas 4.1 and 4.4 tell us that the following are the only possible cases.

Case 1: There is only one fork point.

Call the fork point f . In this case, f must be in the cycle, as otherwise there would have to be another

fork point in the cycle to connect the cycle to f . Since f is in the cycle, it already has two neighbors of

degree two in the cycle. Since Lemma 4.5 and Corollary 4.1 imply that no vertex may have more than four

neighbors of degree two, f can have at most two such neighbors outside the cycle, and it follows that it can

have at most two paths branching off of from it. Thus, the graph is a 0-cat.

Case 2: There are two fork points, and one of them is also the split point.

Call the split point s and the fork point f . First, note that s may have no edges other than es,f leaving

it in the direction of es,f , by Lemma 4.2. As s has one edge leaving it in each direction within the cycle,

es,f must be an edge of the cycle, and so f must be in the cycle. Now, by Corollary 4.1 and Lemma 4.5, we

know that each of s and f can have at most one neighbor of degree at least two outside the cycle. Thus, the

graph must be a 1-cat.

Case 3: There are two fork points, and neither is a split point.

Call the split point s and the fork points f1 and f2. Since the split point is not a fork point, it can have

at most two neighbors of degree at least two. As it has two such neighbors in the cycle, and two neighbors

which are fork points, the fork points must be its neighbors in the cycle. Now, Lemma 4.5 implies that fork

points which are not split points can have at most three neighbors of degree at least two. Since the fork

points each have two such neighbors in the cycle, they may have only one such neighbor outside the cycle,

so the graph must be a 2-cat. Additionally, since the split point is a central neighbor of both f1 and f2, it

may have no incident edges other than (s, f1) and (s, f2).

This concludes the proof for graphs with a split point and an odd cycle. We may use the same arguments

for graphs with a split point but no odd cycle to show that such graphs are subgraphs of those described
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above. The odd cycle is simply replaced everywhere by a path which is open on both ends.

With all of these theorems about the connected components of an x-monotone thrackle, we may charac-

terize x-monotone thrackles in general by the following theorem.

Theorem 4.3. An x-monotone thrackle may have at most one component which is not an open caterpillar,

and this component must be of one of the forms described in Theorem 4.2.

Proof. By Theorem 4.1, any component of an x-monotone thrackle which is not an open caterpillar contains

a split point. Since there is at most one split point in any x-monotone thrackle, there can be at most one

component which is not an open caterpillar. Theorem 4.2 describes all possible components of an x-monotone

thrackle which are not open caterpillars, so our proof is complete.

So far, we have shown that, if a graph is an x-monotone thrackle, it must be of the form described in

Theorem 4.3. We now proceed to prove the converse by demonstrating constructions for all such graphs.

First, we prove two lemmas.

Lemma 4.6. Given an x-monotone thrackle with a vertex v, we may add a degree one neighbor of v to the

graph if there is some vertex u in the graph of which v is a neighbor, but not a central neighbor.

Proof. Consider a vertex v in an x-monotone thrackle which has a neighbor u of which v is not a central

neighbor. Without loss of generality, assume that eu,v leaves u above all other edges leaving u in its direction.

Let the coordinates of u in the plane be (x, y). Then, to add a degree one vertex to v, we place a construction

point, P , at coordinates (x, y−h), and the vertex, w, at coordinates (x−h2, y+h), for some arbitrarily small

positive h. We then draw ev,w as the union of the segment vP , which is drawn from v to P just below eu,v,

and segment Pw, which is drawn as a straight line. This is shown in Figure 16. We see that ev,w intersects

eu,v at v and all edges which are not incident to u along the segment vP . Segment vP also intersects all of

the edges leaving u to the right, and segment Pw intersects all of the edges leaving u to the left. Thus, ev,w

intersects every edge in the graph exactly once, so the graph is still an x-monotone thrackle.

Lemma 4.7. Given an x-monotone thrackle with a degree one vertex v adjacent only to a degree two vertex

u, we may add a single path of any length to v.

Proof. We proceed by induction on the length of the path.

Base case: We note that, since u is of degree two, v cannot be a central neighbor of u, so by Lemma

4.6 we may add a degree one vertex as a neighbor of v. This is a path of length one.
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Figure 16: A degree one vertex, w, added to the vertex v

Inductive step: Given a path of length k, the end always has a degree one vertex v adjacent only to

a degree two vertex. Thus, by Lemma 4.6, we can add a degree one vertex as a neighbor of v, obtaining a

path of length k + 1.

With these lemmas in hand, we now demonstrate constructions of the three allowed types of cats.

Theorem 4.4. Any 0-cat, any 1-cat, and any 2-cat that has no leaf adjacent to the split point is x-monotone

thrackleable.

Proof. First, we construct a 0-cat. To do this, begin with the odd cycle as a star, which we will consider

to be oriented as shown in Figure 17. Then, because s is not a central neighbor of either of its neighbors,

we may by Lemma 4.6 add a degree one vertex a which is adjacent to s on the left and a degree one vertex

b which is adjacent to s on the right. Now, neither a nor b is a central neighbor of s, so we may add two

more degree one vertices: one adjacent to a and one adjacent to b. At this point, we have two vertices of

degree one adjacent only to vertices of degree two, so Lemma 4.7 tells us that we may add a path of any

length to each one. This will give us the cycle and ears of a 0-cat. Now, because the only vertex in the graph

which has more than two neighbors is the split point, and no vertex is adjacent to only the split point, every

vertex has a neighbor of which it is not a central neighbor. Therefore, we may add any number of degree

one vertices to any vertex in the graph and obtain every possible 0-cat.

To create a 1-cat or a 2-cat, the proof is the same except for the construction of the initial two vertices

of the ears and for the addition of degree one vertices in the 2-cat case. To create the beginning of the path

originating from a neighbor v of the split point s, we first draw an edge which travels below es,f , under s,

and up through the other edge incident to s. The next edge follows this same path back just above the first

edge, but cuts up through both neighbors of v at the end. These constructions are shown in Figures 18 and

20. The only other important point is that, in a 2-cat, after constructing the ears and the cycle, the split
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point has no neighbors of which it is not a central neighbor. Thus, it cannot have any degree one vertices

added to it.

Figure 17: A construction of a 0-cat

Figure 18: A construction of a 1-cat

Now, all that is left is to show that we may combine the constructions of the connected components in

the ways that we claim are possible.

Theorem 4.5. Any combination of some number of open caterpillars and at most one component of the

types described by Theorem 4.2 is x-monotone thrackleable.

Proof. We will demonstrate how to construct every such combination. We first remember our construction

of a set of open caterpillars for outerplanar thrackles. We see that, by moving the regions a1, a2, . . . , an into

a single very small region, and the regions b1, b2, . . . , bn into a different very small region, we flatten out the

construction so that, to edges outside of the closed caterpillars, the whole set of caterpillars is equivalent to

a single edge. This is shown in Figure 20.
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Figure 19: A construction of a 2-cat

To complete the proof, we must show that we may add one disjoint edge to any x-monotone thrackle

which is not an open caterpillar. We divide into two cases.

Case 1: The graph is a cat with an ear of length at least two. In this case, we may find a vertex v which

is of degree one, which is not a central neighbor of its neighbor u, and which is not adjacent to the graph’s

split point. Assume without loss of generality that ev,u leaves u above all other edges incident to u. Then,

to draw a segment disjoint from the graph which intersects every edge in the graph, we begin just above v,

follow the path of ev,u, crossing it once along the way, and end just below vertex u.

Case 2: The graph has no ear of length at least two. In this case, the graph must be a closed caterpillar.

Call the split point s, and let the top edge leaving s on the right connect s to the vertex a. To draw a

segment disjoint from the graph which intersects every edge in the graph, we start just above a, follow a

straight line path to a point very close to and directly below s, and then follow a nearly vertical line upward

to hit all of the edges which are incident to s on the other side, as shown in Figure 21. This completes the

proof.

Figure 20: A set of open caterpillars, flattened out to act like a single edge
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Figure 21: A closed caterpillar with a disjoint edge

5 Conclusion

We examined two special cases of thrackles. We first characterized outerplanar thrackles based on one simple

impossible configuration. We then characterized x-monotone thrackles by a more in-depth analysis involving

several special types of vertices and some casework. In the future, this work may help give ideas for how to

approach the general thrackle problem, which, if solved, will likely help in turn to give insight into a broad

range of related problems in graph drawings.
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