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Abstract

We examine the behavior of the coefficients of powers of polynomials over a finite

field of prime order. Extending the work of Allouche-Berthe, 1997, we study a(n), the

number of occurring strings of length n among coefficients of any power of a polynomial f

reduced modulo a prime p. The sequence of line complexity a(n) is p-regular in the sense

of Allouche-Shalit. For f = 1+x and general p, we derive a recursion relation for a(n) then

find a new formula for the generating function for a(n). We use the generating function

to compute the asymptotics of a(n)/n2 as n → ∞, which is an explicitly computable

piecewise quadratic in x with n = bpm/xc and x is a real number between 1/p and 1.

Analyzing other cases, we form a conjecture about the generating function for general

a(n). We examine the matrix B associated with f and p used to compute the count of

a coefficient, which applies to the theory of linear cellular automata and fractals. For

p = 2 and polynomials of small degree we compute the largest positive eigenvalue, λ, of

B, related to the fractal dimension d of the corresponding fractal by d = log2(λ). We

find proofs and make a number of conjectures for some bounds on λ and upper bounds

on its degree.

1 Introduction

It was shown by S. Wolfram and others in 1980s that 1-dimensional linear cellular automata lead

at large scale to interesting examples of fractals. A basic example is the automaton associated to a

polynomial f over Z/p, whose transition matrix Tf is the matrix of multiplication by f(x) on the

space of Laurent polynomials in x. If f = 1 + x, then starting with the initial state g0(x) = 1, one

recovers Pascal’s triangle mod p. For p = 2, at large scale, it produces the Sierpinski triangle shown

in Figure 1. Similarly, the case of f = 1 + x + x2, p = 2, and initial state g0(x) = 1 produces the
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fractal shown in Figure 2.

The double sequences produced by such automata, i.e., the sequences encoding the coefficients

of the powers of f , have a very interesting structure. Namely, if p is a prime, they are p-automatic

sequences in the sense of [3]. In the case f = 1+x, this follows from Lucas’ theorem that
(n
k

)
=
∏
i

(ni
ki

)
mod p, where ni, ki are the p-ary digits of n, k.

In [6, 7], S. Wilson studied this example in the case where f is any polynomial, and computed the

fractal dimension of the corresponding fractal. The answer is β = logp(λ), where p ≤ λ ≤ p2 is the

largest (Perron-Frobenius) eigenvalue of a certain integer matrix B associated to f (in particular,

an algebraic integer). In terms of coefficients of powers of f , this number characterizes the rate of

growth of the total number of nonzero coefficients in f i for 0 ≤ i < pn: this number behaves like

nβ. The number of nonzero coefficients of each kind can actually be computed exactly at every step

of the recursion, by using a matrix method similar to Wilson’s; this is explained in the paper [3].

In this paper, we compute the eigenvalues λ and their degrees for p = 2 for Laurent polynomials

f of small degrees, observe some patterns, and make a number of conjectures (in particular, that

λ can be arbitrarily close to 4) in Section 3.3. We also prove an upper bound for λ depending on

the degree of f .

The size of the matrix B (which is an upper bound for the degree of λ) is the number of accessible

blocks (i.e., strings that occur in the sequence of coefficients of f i for some i) of length deg(f) (for

p = 2). This raises the question of finding the number a(n) of accessible blocks of any length n. The

number a(n) characterizes the so-called line complexity of the corresponding linear automaton, and

is studied in the paper [1]. It is shown in [1],[5], and references therein that C1n
2 ≤ a(n) ≤ C2n

2,

and that for p = 2 and f = 1 +x, one has a(n) = n2−n+ 2. More generally, however, the sequence

a(n) does not have such a simple form, even for f = 1 + x and p > 2. The paper [1] derives a

recursion for this sequence, and we derive another one in Section 2.2.1, which is equivalent. These

recursions show that the sequence a(n) is p-regular in the sense of [2] (the notion of p-regularity is

a generalization of the notion of p-automaticity, to the case of integer, rather than mod p, values).

We then proceed to find a new formula for the generating function for a(n) in Section 2.3, and use

it to compute the asymptotics of a(n)/n2 as n→∞ in Section 2.4. It turns out that if n = bpm/xc,
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where x is a real number between 1/p and 1, then f(n)/n2 tends to an explicit function of x, which

is piecewise quadratic (a gluing together of 3 quadratic functions, which we explicitly compute). In

Section 2.4 we also compute the maximum and minimum value of this function, which gives the

best asymptotic values for C1 and C2. This gives us new precise results about the complexity of

the Pascal triangle mod p. We also perform a similar analysis for f = 1 + x + x2 and p = 2, and

make a conjecture about the general case.

Figure 1: Fractal corresponding to 1 + x modulo 2 (Sierpinski’s Triangle)

Figure 2: Fractal corresponding to 1 + x+ x2 modulo 2
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2 Accessible Blocks

2.1 Definitions

A block is a string of mod p digits. An m-block is a block with m digits. For example, the four

2-blocks modulo 2 are 00, 01, 11, and 11.

For a polynomial f(x) with integer coefficients reduced modulo p, an accessible m-block is an

m-block that appears anywhere among the coefficients, ordered by powers of x, of powers of f(x)

modulo p. The number of accessible 0-blocks we define to be 1. Furthermore, we define row k for

some f(x) and p to be the coefficients of f(x)k reduced modulo p and define af(x),p(m) to be the

number of accessible m-blocks for the polynomial f(x) and prime p.

Example 2.1. For f(x) = 1 + x and p = 2, the 4-blocks 1101 and 1011 are never a substring of

any power of 1 + x reduced modulo 2. Every other 4-block appears in some power of 1 + x reduced

modulo 2, so a1+x,2(4) = 14.

2.2 Recursion Relations for a(n)

We start with the well known fact in Lemma 2.2.

Lemma 2.2. f(x)k·p ≡ f(xp)k (mod p).

Applying Lemma 2.2 to the accessible blocks, we have Corollary 2.3.

Corollary 2.3. For any integer k, prime p, and polynomial f(x), every row k · p for f(x) mod

p is of the form b10 . . . 0b20 . . . . . . 0bn−10 . . . 0bn where the entries bi are the coefficients of f(x)k,

and where each string of zeros between two entries bi and bi+1 is of length p− 1. Therefore, every

accessible block from a row divisible by p is a subsection of b10 . . . 0b20 . . . . . . 0bn−10 . . . 0bn.

2.2.1 Accessible m-Blocks for f(x) = 1 + x and General Prime p

The number of accessible m-blocks for f(x) = 1 + x and any prime p, a1+x,p, is defined by the

recurrence relation in Theorem 2.4.
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Theorem 2.4. For f(x) = 1 + x and any prime p ≥ 3, for 0 ≤ k ≤ p − 1, the recursion relation

with starting points a1+x,p(0) = 1, a1+x,p(1) = p, and a1+x,p(2) = p2 is

a1+x,p(p · n+ k) =(p− k)(p− k + 1)
2 · a1+x,p(n) + (kp+ k − k2 + p2 − p

2 ) · a1+x,p(n+ 1)

+ k2 − k
2 · a1+x,p(n+ 2)− (2p− 1)(2p− 2).

Proof. From Corollary 2.3, every accessible block in a row r with r ≡ 0 (mod p) is formed by

adding p − 1 zeros between every digit of an accessible block, then adding some number of zeros

(possibly none) less than p to either side. Furthermore, because f(x) = 1+x, the coefficient of xi in

a row is the sum modulo p of the coefficients of xi and xi−1 in the previous row. Because accessible

blocks are subsections of a row, any accessible m-block comes from an accessible (m + 1)-block.

Table 1 provides the general forms of the (p · n + k)-blocks for each row modulo p. To count the

multiple additions of b in the forms, we define gi =
(p−1
i

)
.

The number of accessible blocks that lead into each form in Table 1 are the triangular numbers

counting downwards for a1+x,p(n), the triangular numbers counting upward for a1+x,2(n+ 2), and

because the total number of forms is p2, we find a1+x,p(n + 1) through subtraction. Namely, the

factor of a1+x,p(n) starts at p for row congruent to 0 modulo p and k=0, and decreases as k and

row increase, and the coefficient of a1+x,p(n+ 2) starts at 0 for row congruent to 0 and 1 modulo

p and increases with k and row. An additional (2p− 1)(2p− 2) must be subtracted to account for

blocks that satisfy multiple forms. Therefore

a1+x,p(p · n+ k) =(p− k)(p− k + 1)
2 · a1+x,p(n) + (kp+ k − k2 + p2 − p

2 ) · a1+x,p(n+ 1)

+ k2 − k
2 · a1+x,p(n+ 2)− (2p− 1)(2p− 2).

This is equivalent to Theorem 5.10 of Allouche-Berthe [1], reproduced below in Theorem 2.5.
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Blocks for k =
Row
mod
p

0 1 2 · · · p− 1

0

b1000. . .00b200. . . . . . 00bn00 . . . 000
0b100. . .000b20. . . . . . 000bn0 . . . 000
00b10. . .0000b2. . . . . . 0000bn . . . 000

...
...

... . . . ...
...

...
0000 . . .b10000. . . . . .bn−10000. . .0bn0
0000 . . .0b1000. . . . . .0bn−1000. . .00bn

bn+1
0
0
...
0
0

0
bn+1
0
...
0
0

· · ·
· · ·
· · ·
. . .
· · ·
· · ·

0
0
0
...

bn+1
0

1

b1000 . . .0b2b200. . . . . . 0bnbn00 . . .00bn+1
b1b100. . .00b2b20. . . . . . 00bnbn0 . . . 000
0b1b10. . .000b2b2. . . . . . 000bnbn . . . 000

...
...

... . . . ...
...

...
0000 . . . b10000 . . . . . . bn−10000 . . . bn0
0000 . . .b1b1000. . . . . .bn−1bn−1000. . . bnbn

bn+1
bn+1
0
...
0
0

0
bn+1
bn+1
...
0
0

· · ·
· · ·
· · ·
. . .
· · ·
· · ·

0
0
0
...

bn+1
bn+1

...
...

...
... . . . ...

p− 1

b1b2(g2b2) . . . . . .(g4bn+1)(g3bn+1)(g2bn+1)
(g2b1)b1b2 . . . . . .(g5bn+1)(g4bn+1)(g3bn+1)

(g3b1)(g2b1)b1 . . . . . .(g6bn+1)(g5bn+1)(g4bn+1)
... . . . ...

(g2b1)(g3b1)(g4b1). . . . . . (g2bn)bnbn+1
b1(g2b1)(g3b1) . . . . . . (g3bn)(g2bn)bn

bn+1
(g2bn+1)
(g3bn+1)

...
(g2bn+1)
bn+1

bn+2
bn+1

(g2bn+1)
...

(g3bn+1)
(g2bn+1)

· · ·
· · ·
· · ·
. . .
· · ·
· · ·

(g3bn+2)
(g4bn+2)
(g5bn+2)

...
bn+1

(g2bn+1)

Table 1: Forms of blocks for the general case 1 + x with any prime p

Theorem 2.5. For 0 ≤ k ≤ p− 1 and n ≥ 0 such that pn+ k ≥ 3

a1+x,2(pn+ k + 1)− a1+x,2(pn+ k) =(p− k)
(
a1+x,2(n+ 1)− a1+x,2(n)

)
+ k

(
a1+x,2(n+ 2)− a1+x,2(n+ 1)

)

with starting points a1+x,2(0) = 1, a1+x,2(1) = p, a1+x,2(2) = p2, and a1+x,2(3) = p3+4p2−5p+2
2 .

2.2.2 Accessible m-Blocks for c+ x+ x2 and prime p

Table 2 provides ac+x+x2,p(n) for small n and p.

Using a method similar to the one we used for Theorem 2.4, the recursion relations appear to

be those shown in Table 3.
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Prime c a(n)
2 1 2 4 8 4 25 36 53 70 92 114
3 1 3 9 25 43 71 109 157 207 259 313
3 2 3 9 25 61 105 165 233 321 417 533
5 1 5 25 121 393 673 929 1257 1761 2341 3097
5 2 5 25 125 393 689 953 1293 1801 2389 3145
5 3 5 25 117 385 657 905 1221 1713 2277 3017
5 4 5 25 101 169 253 353 509 721 989 1313
7 1 7 49 331 1285 2137 2881 3859

Table 2: a(n) for c+ x+ x2

p c Recursion k initial

2 1 2a(n)+2a(n+1)
a(n)+2a(n+1)+a(n+2) 8 1,2,4,8,14,25

3 1
6a(n)+3a(n+1)
3a(n)+6a(n+1)

a(n)+7a(n+1)+a(n+2)
20 1,3,9,25

3 2
4a(n)+4a(n+1)+a(n+2)
2a(n)+5a(n+1)+2a(n+2)
a(n)+4a(n+1)+4a(n+2)

32 1,3,9,25,61,105

5 1

9a(n)+12a(n+1)+4a(n+2)
6a(n)+13a(n+1)+6a(n+2)
4a(n)+12a(n+1)+9a(n+2)

2a(n)+10a(n+1)+12a(n+2)+a(n+3)
a(n)+12a(n+1)+10a(n+2)+2a(n+3)

152 1,5,25,121,393,673

5 2

9a(n)+12a(n+1)+4a(n+2)
6a(n)+13a(n+1)+6a(n+2)
4a(n)+12a(n+1)+9a(n+2)

2a(n)+10a(n+1)+12a(n+2)+a(n+3)
a(n)+12a(n+1)+10a(n+2)+2a(n+3)

152 1,5,25,125,393,689

5 3

9a(n)+12a(n+1)+4a(n+2)
6a(n)+13a(n+1)+6a(n+2)
4a(n)+12a(n+1)+9a(n+2)

2a(n)+10a(n+1)+12a(n+2)+a(n+3)
a(n)+12a(n+1)+10a(n+2)+2a(n+3)

152 1,5,25,117,385,657

5 4

15a(n)+10a(n+1)
10a(n)+15a(n+1)

6a(n)+18a(n+1)+a(n+2)
3a(n)+19a(n+1)+3a(n+2)
a(n)+18a(n+1)+6a(n+2)

72 1,5,25,101,169

Table 3: Recursions for c+ x+ x2
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We see that for p > 2, ac+x+x2,p(n) = a1+x,p(n) if c = 1
4 (mod p) because c+x+x2 = (1+x/2)2.

Furthermore, we arrive at Conjecture 2.6.

Conjecture 2.6. For c 6= 1
4 (mod 5), the recursion for a1+x+x2,p(n) is independent of c. Only the

initial terms of the recursion depend on c.

2.3 Closed form for a(n)

Theorem 2.7. a1+x,2(m) = m2 −m+ 2.

Proof. Theorem 2.4 provides the recursion relation of a1+x,2(2n) = 3a1+x,2(n) + a1+x,2(n+ 1)− 6

and a1+x,2(n) = a1+x,2(n) + 3a1+x,2(n + 1). We can find the starting points of a1+x,2(1) = 2 and

a1+x,2(2) = 4 through inspection. This uniquely defines the sequence of accessible m-blocks. It is

easy to show that the equation a1+x(m) = m2 −m + 2 satisfies both recursion relations through

substitution, and also satisfies a1+x,2(1) = 2 and a1+x,2(2) = 4.

This matches Remark 5.14 of [1].

2.3.1 Generating Functions for a(n)

Using recursion relations, we can find the generating functions gf(x),p for p ≥ 3.

Theorem 2.8.

g1+x,p(z) =
∞∑
n=0

a1+x,p(n)zn

= 1
(1− z)3

(
1 + (p− 3)z + (p2 − 3p+ 3)z2

+ z2 (p− 1)2

2
∑
i≥0

(
pzp

i − 2(p− 1)z2pi + (p− 2)z3pi
))
.

Proof. We have from Theorem 2.4 that for starting points a(0) = 1, a(1) = p, and a(2) = p2 the
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recursion relation is defined for pn+ k > 2 as

a(pn+ k) =(p− k)(p− k + 1)
2 a(n) + (kp+ k − k2 + p2 − p

2 )a(n+ 1)

+ k2 − k
2 a(n+ 2)− (2p− 1)(2p− 2).

Adjusting for the k = 0, 1 cases by replacing k with n+ 2 gives

a(pn+ k + 2) =(p− k − 2)(p− k − 1)
2 a(n) + (kp− 3k − k2 − 2 + p2 + 3p

2 )a(n+ 1)

+ (k + 1)(k + 2)
2 a(n+ 2)− (2p− 1)(2p− 2).

To adjust for the case when p, k = 0, we define the recursion relation to have an additional term

of (p−2)(p−1)
2 a(0) + (p−4)(p+1)

2 a(1) − (2p − 1)(2p − 2) subtracted from the right hand side for only

the case of p, k = 0.

We multiply through by zpn+k, then sum over k = 0 to p−1, then n = 0 to∞. We also subtract

from the right hand side of the sum the above mentioned additional term to account for the case

of p, k = 0. Defining h(x) =
∑
n≥0

a(n+ 2)zn, we get

h(z) =(1 + z + z2 + . . .+ zp−1)3h(zp) + 1
2(1− z)3

(
p3z(1− z)2 + 2p2(1− z)(4− 5z + 2z2)

+ 2(2− 3z + 3z2 − z3 − zp)− p(12− 19z + 16z2 − 5z3 − 6zp + 2z2p)
)

− (2p− 1)(2p− 2)
1− z .

Therefore h(z) = (1− zp)3

(1− z)3 h(zp) +Q(z)− (2p− 1)(2p− 2) 1
1− z where

Q(z) = 1
2(1− z)3

(
p3z(1− z)2 + 2p2(1− z)(4− 5z + 2z2) + 2(2− 3z + 3z2 − z3 − zp)

− p(12− 19z + 16z2 − 5z3 − 6zp + 2z2p)
)
.

We then define u(z) = (1−z)3h(z) and R(z) = Q(z)(1−z)3−(2p−1)(2p−2)(1−z)2. Iteratively
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substituting gives u(z) = u(zp∞)+
∑
i≥0

R(zpi) = a(2)+
∑
i≥0

R(zpi), or h(z) = 1
(1−z)3

(
a(2)+

∑
i≥0

R(zpi)
)
.

Note that

∑
i≥0

R(zpi) =
∑
i≥0

1
2

(
(p3 − 2p2 − 5p+ 2)z − 2(p3 − 3p2 + 2p− 1)z2

+ (p− 2)(p− 1)2z3 + 2(3p− 1)zp − 2pz2p
)

=−
(
(3p− 1)z − pz2

)
+ (p− 1)2

2
∑
i≥0

(
pzp

i − 2(p− 1)z2pi + (p− 2)z3pi
)
.

Therefore

g(z) =a(0) + a(1)z + z2h(z)

=1 + pz + z2
p2 +

∑
i≥0

R(zpi)

(1− z)3

=
1 + (p− 3)z + (p2 − 3p+ 3)z2 + z2 (p−1)2

2
∑
i≥0

(
pzp

i − 2(p− 1)z2pi + (p− 2)z3pi
)

(1− z)3 .

Example 2.9. Setting p = 3 in Theorem 2.8 and noting that the z3pi further reduces when p = 3

provides

g1+x,3(z) = 1
(1− z)3

(
1 + 3z2 − 2z3 + 8z2

∞∑
i=0

(z3i − z2·3i)
)
.

Example 2.10. Setting p = 5 in Theorem 2.8 provides

g1+x,5(z) = 1
(1− z)3

(
1 + 2z + 13z2 + 8z2

∞∑
i=0

(5z5i − 8z2·5i + 3z3·5i)
)
.

We can use a similar proof to find further generating functions gx),p(z) from the recursion

relations for af(x),p(n).

Theorem 2.11.

g1+x+x2,2(z) =
1 + 2z3 + 2z5 − z6 +

∞∑
i=0

(z2i − z3·2i)

(1− z2)(1− z)2 .
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Based on the recursions in Table 3 and the method provided in Theorem 2.8, we arrive at

Conjecture 2.12, which is confirmed for p = 3, 5.

Conjecture 2.12. For c 6= 1
4 (mod p), the functional equation for the generating function gc+x+x2,p(z)

is

gc+x+x2,p(z) = r(zp)
r(z) gc+x+x2,p(zp)−Q(z)− k

1− z ,

where r(z) = (1− z2)(1− z)2 and Q(z) is some polynomial.

Conjecture 2.13. For any f(x) and p, the generating function gf(x),p(z) satisfies the equation

r(z)gf(x),p(z) = r(zp)gf(x),p(zp) + b(z) for some polynomials r(z) and b(z) depending on f(x) and

p.

2.4 Limits of a(n)
n2

Using the generating functions, we can find the asymptotic behavior of a(n) as n goes to infinity.

Inspired by the quadratic nature of Theorem 2.7, we examine the behavior of a(n)
n2 .

Theorem 2.14. For f(x) = 1 + x and any prime p ≥ 3,

lim
n→∞

a1+x,p(n)
n2 =



p2(p− 5)(p− 1)
2(p+ 1)

(
x+ p+ 1

p(p− 5)
)2

+ (p− 1)(p2 − 7p+ 4)
2(p− 5)

1
p ≤ x ≤

1
3

−(p− 1)(7p3 − 8p2 − 9p+ 18)
4(p+ 1)

(
x− (p+ 1)(3p2 − 7p+ 6)

7p3 − 8p2 − 9p+ 18
)2

+(p− 1)(p5 + 5p4 − 8p3 − 15p2 + 39p− 18)
2(7p3 − 8p2 − 9p+ 18)

1
3 ≤ x ≤

1
2

(p− 2)(p− 1)(p2 + 2p+ 5)
4(p+ 1)

(
x− (p+ 1)2

p2 + 2p+ 5
)2

+(p− 1)(p3 + 4p2 + 3p− 4)
2(p2 + 2p+ 5)

1
2 ≤ x ≤ 1

where n =
⌊pk
x

⌋
and the limit as n→∞ is with constant x and k →∞.

Remark 2.15. The first polynomial from Theorem 2.14 corresponding to 1
p ≤ x ≤ 1

3 should be

understood in the sense of the limit for p = 5 as we divide by (p − 5). In this case the polynomial

is not quadratic but actually the linear polynomial 20x+ 8.
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Proof. Theorem 2.8 states that

g(z) =
∑
n≥0

a1+x,p(n)zn

= 1
(1− z)3

(
1 + (p− 3)z + (p2 − 3p+ 3)z2

+ z2 (p− 1)2

2
∑
i≥0

(
pzp

i − 2(p− 1)z2pi + (p− 2)z3pi
))
.

Let
∑
n≥0

b(n)zn = z2

(1− z)3

∑
i≥0

(
pzp

i − 2(p− 1)z2pi + (p− 2)z3pi
)
.

Therefore, with the limit of n = bp
k

x c → ∞ taken with fixed x and k →∞, we have

∑
n≥0

a(n)zn =1 + (p− 3)z + (p2 − 3p+ 3)z2

(1− z)3 +
∑
n≥0

(p− 1)2

2 b(n)zn

lim
n→∞

a(n) = lim
n→∞

(
(p− 1)2n2

2 + (p2 − 1)n
2 + p+ (p− 1)2

2 b(n)
)

lim
n→∞

a(n)
n2 =(p− 1)2

2 + (p− 1)2

2 lim
n→∞

b(n)
n2 .

Therefore, because they act similarly, we can find the asymptotics of a(n)
n2 by understanding the

behavior b(n)
n2 . We can rewrite

∑
n≥0

b(n)zn as

∞∑
n=0

(
p
pi≤n∑
i=0

(n− pi)(n− pi − 1)
2 − 2(p− 1)

2pi≤n∑
i=0

(n− 2pi)(n− 2pi − 1)
2

+(p− 2)
3pi≤n∑
i=0

(n− 2pi)(n− 2pi − 1)
2 zn

)
.

From this we see that

b(n) =p
pi≤n∑
i=0

(
(n− pi)(n− pi − 1)

2

)
− 2(p− 1)

2pi≤n∑
i=0

(
(n− 2pi)(n− 2pi − 1)

2

)

+ (p− 2)
3pi≤n∑
i=0

(
(n− 2pi)(n− 2pi − 1)

2

)
.

12



Therefore

b(n)
n2 =p

2

pi≤n∑
i=0

(
(1− pi

n
)(1− pi + 1

2 )
)
− (p− 1)

2pi≤n∑
i=0

(
(1− 2pi

n
)(1− 2pi + 1

2 )
)

+ p− 2
2

3pi≤n∑
i=0

(
(1− 3pi

n
)(1− 3pi + 1

2 )
)
.

Let n = bp
k

x c. We can neglect the 1 in the second factor (it creates a change that goes to zero as

k →∞), so we get

b(n)
n2 = p

2

pi≤n∑
i=0

(1− pi

n
)2 − (p− 1)

2pi≤n∑
i=0

(1− 2pi

n
)2 + p− 2

2

3pi≤n∑
i=0

(1− 3pi

n
)2.

Note that if x 6∈ [1
3 , 1] then there is m ∈ Z such that pmx ∈ [1

p , 1], so we can assume 1
p ≤ x ≤ 1.

Ignoring the floor for simplicity, we set n = pk

x . Therefore we get

b(p
k

x )
(pk

x )2
= p

2

pi≤ pk

x∑
i=0

(1− pi−kx)2 − (p− 1)
pi≤ pk

2x∑
i=0

(1− 2pi−kx)2 + p− 2
2

pi≤ pk

3x∑
i=0

(1− 3pi−kx)2.

When examining the upper limits of the three sums, we find that we therefore have 3 cases:
1
p ≤ x ≤ 1

3 ,
1
3 ≤ x ≤ 1

2 ,
1
2 ≤ x ≤ 1. For the first sum, pi ≤ pk

x gives i ≤ k + 1 for x = 1
p , and i ≤ k

for x = 1
3 ,

1
2 , 1. For the second sum, pi ≤ pk

2x gives i ≤ k for x = 1
p ,

1
2 ,

1
3 and i ≤ k − 1 for x = 1. For

the third sum, pi ≤ pk

3x gives i ≤ k for x = 1
p ,

1
3 and i ≤ k − 1 for x = 1

2 , 1. Note that the limit is

taken along the subsequences of the form bp
k

x c with fixed x and k →∞. Also note that the limiting

function does not change if x is replaced by p · x.

13



For the first case of 1
p ≤ x ≤

1
3 , we find that

b(p
k

x )
(pk

x )2
=p

2

k∑
i=0

(1− pi−kx)2 − (p− 1)
k∑
i=0

(1− 2pi−kx)2 + p− 2
2

k∑
i=0

(1− 3pi−kx)2

=(p− 5)
p2 − 1

p2k

p2 − 1 x2 + 2
p− 1

pk

p− 1 x

lim
n→∞

b(n)
n2 = lim

k→∞

(p− 5)
p2 − 1

p2k

p2 − 1 x2 + 2
p− 1

pk

p− 1 x


lim
n→∞

a(n)
n2 =p2(p− 5)(p− 1)

2(p+ 1)
(
x+ p+ 1

p(p− 5)
)2

+ (p− 1)(p2 − 7p+ 4)
2(p− 5)

For the case of 1
3 ≤ x ≤

1
2 we similarly find that because

b(p
k

x )
(pk

x )2
= p

2

k∑
i=0

(1− pi−kx)2 − (p− 1)
k∑
i=0

(1− 2pi−kx)2 + p− 2
2

k−1∑
i=0

(1− 3pi−kx)2,

the limit of

lim
n→∞

a(n)
n2 =−(p− 1)(7p3 − 8p2 − 9p+ 18)

4(p+ 1)

(
x− (p+ 1)(3p2 − 7p+ 6)

7p3 − 8p2 − 9p+ 18

)2
− (p− 4)(p− 1)2

4

+ (p+ 1)(p− 1)(3p2 − 7p+ 6)2

4(7p3 − 8p2 − 9p+ 18) .

Similarly for the case of 1
2 ≤ x ≤ 1 we find that because

b(p
k

x )
(pk

x )2
= p

2

k∑
i=0

(1− pi−kx)2 − (p− 1)
k−1∑
i=0

(1− 2pi−kx)2 + p− 2
2

k−1∑
i=0

(1− 3pi−kx)2,

one has

lim
n→∞

a(n)
n2 = (p− 2)(p− 1)(p2 + 2p+ 5)

4(p+ 1)
(
x− (p+ 1)2

p2 + 2p+ 5
)2

+ (p− 1)(p3 + 4p2 + 3p− 4)
2(p2 + 2p+ 5) .

14



Corollary 2.16. For the polynomial 1 + x and p ≥ 3,

lim inf
n→∞

a1+x,p(n)
n2 =(p− 1)(p3 + 4p2 + 3p− 4)

2(p2 + 2p+ 5)

lim sup
n→∞

a1+x,p(n)
n2 =(p− 1)(p5 + 5p4 − 8p3 − 15p2 + 39p− 18)

2(7p3 − 8p2 − 9p+ 18)

Proof. The maximum of Theorem 2.14 is when x = 3p3 − 4p2 − p+ 6
7p3 − 8p2 − 9p+ 18 and the minimum is when

x = p2 + 2p+ 1
p2 + 2p+ 5.

We can also apply this to other af(x),p(n).

Theorem 2.17. For polynomial 1 + x+ x2 and prime 2,

lim
n→∞

a1+x+x2,2(n)
n2 =


5
4 + 1

2x−
5
12x

2 1
2 ≤ x ≤

2
3

3
2 −

1
4x+ 7

48x
2 2

3 ≤ x ≤ 1

Furthermore, the upper and lower limits of a1+x+x2 (n)
n2 are 7

5 and 39
28 respectively.

The proof of Theorem 2.17 is similar to the proof of Theorem 2.14.

Using the recursion relations, we computed the upper and lower limits of af(x),p(n)
n2 for sufficiently

large n for several f(x) and p, The oscillatory nature of this sequence for large n stabilizing to a

periodic function in log(x) is illustrated by Figure 3.

5.5 6.0 6.5 7.0 7.5 8.0

3.1

3.2

3.3

3.4

3.5

3.6

(a) 1 + x (mod 3)
4.0 4.5 5.0 5.5

5

10

15

(b) 1 + x (mod 5)
7 8 9

1.385

1.390

1.395

1.400

1.405

(c) 1 + x+ x2 (mod 2)

Figure 3:
af(x),p(m)

m2 with the x axis showing logpm
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This matches a prior result expressed in Lemma 5.15 by [1], which states that for large n, there

exists constants c1 and c2 such that c1n
2 ≤ a(n) ≤ c2n

2. The limits given by Corollary 2.16 provide

sharp values of c1 and c2. 1

3 Counting Coefficients

3.1 Definitions

For a polynomial f(x), prime p, and positive integer α ≤ p − 1, we define qf(x),p(k, α) to be the

number of occurrences of α among the coefficients of f(x)k reduced modulo p. Similarly, we define

qf(x),p(k) to be the total number of nonzero coefficients of f(x)k. We then define rf(x),p(n, α) =
n−1∑
i=0

qf(x),p(i, α) and rf(x),p(n) =
n−1∑
i=0

qf(x),p(i). We search for a quick method for calculating both

qf(x),p(k, α) and the asymptotic behavior of rf(x),p(n, α) for large n.

3.2 Willson Method

Willson [6] describes an algorithm for computing the value of rf(x),2(n), which is provided in

Theorem 3.1.

Theorem 3.1 (Willson’s Method). For some polynomial f(x) with maximum degree d, there exists

a matrix B, row vector u, and column vector v each of size 2d− 1 such that u ·Bk · v = rf(x),2(2k).

Amdeberhan-Stanley [4] describes a similar and related algorithm for calculating the number of

each coefficient α for any power k for general f(x) and p, namely qf(x),p(k, α). Willson also analyzed

the case of p > 2 in [7].

Example 3.2. For 1+x+x2 mod 2, B =
[2 0 2
1 1 2
1 1 0

]
. Note that the largest eigenvalue of this matrix

is 1 +
√

5.

Theorem 3.3. The matrix B is the sum of four matrices, each of which corresponds to a self-

mapping of the set X = F2[x]/xd \ 0.
1Strictly speaking, fore these sharp values, we may not have c1n

2 ≤ a(n) ≤ c2n
2, but for any δ > 0 we have

(c1 − δ)n2 ≤ a(n) ≤ (c2 + δ)n2 for large enough n.
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Theorem 3.3 follows easily from Willson [6].

Remark 3.4. The size of the matrix B can be made smaller only by using accessible blocks, as

explained in Wilson [6].

3.3 Eigenvalue Analysis

The matrix B has nonnegative entries and is irreducible. Following Willson [6], define λ to be

the Perron-Frobenius eigenvalue of B, i.e., the largest positive eigenvalue of B (it exists by the

Perron-Frobenius theorem). We define λ(f) to be the value of λ for the polynomial f(x). We can

approximate the value of rf(x),p(pk, α) with λk because the entries of Bk grow as a constant times

λk.

Example 3.5. For f(x) = 1 + x and p = 2, λ = 3 because B = [3]. In this case λ corresponds

exactly to the scaling of the number of nonzero coefficients when doubling the number of rows,

namely r1+x,2(2k) = 3 · r1+x,2(k).

When examining the eigenvalues, we note that there are multiple transformations of a polyno-

mial that does not change λ.

Theorem 3.6. We define the polynomials f(x) and g(x) to be similar if we can transform f(x)

into g(x) through a combination of the transformations f(cx) and cf(x) with integer 1 < c < p,

xcf(x) with integer c > 0, f(xc) with integer c > 1, xdeg(f)f(x−1), and f(x)c with integer c > 1.

Any two similar polynomials have the same λ.

Proof. Because the transformations f(c · x), f(xc), xc · f(x), c · f(x), and flipping a polynomial do

not change the number of nonzero coefficients of a polynomial, λ do not change. Furthermore,

because f(x)c is every cth row, the ratios over the long term of the sums of total number of nonzero

coefficients does not change, so λ is the same. Namely, let qf(x)(n) be the number of nonzero

coefficients of f(x)n. Therefore qf(x)(n + 1) ≤ C · qf(x)(n), where C is the number of nonzero

coefficients of f(x). This means that

rf(x)(k · n) =
k·n−1∑
j=0

qf(x)(j) ≤
n−1∑
j=0

(1 + C + . . .+ Ck−1)qf(x)(j · k) ≤ (1 + C + . . .+ Ck−1)rf(x)k(n).
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Polynomial λ d Polynomial λ d

1 + x 3 1 1 + x+ x6 3.45686 20
1 + x+ x2 3.23607 2 1 + x+ x2 + x6 3.49009 20
1 + x+ x3 3.31142 4 1 + x+ x3 + x6 3.50478 10
1 + x+ x4 3.33159 5 1 + x2 + x3 + x6 3.53521 20

1 + x+ x2 + x4 3.3788 7 1 + x+ x2 + x3 + x6 3.53141 19
1 + x+ x3 + x4 3.47662 4 1 + x+ x4 + x6 3.50468 17

1 + x+ x2 + x3 + x4 3.45729 4 1 + x+ x2 + x4 + x6 3.55002 19
1 + x+ x5 3.35174 10 1 + x+ x3 + x4 + x6 3.59415 16
1 + x2 + x5 3.46127 12 1 + x2 + x3 + x4 + x6 3.53665 15

1 + x+ x2 + x5 3.49563 7 1 + x+ x2 + x3 + x4 + x6 3.59043 11
1 + x+ x3 + x5 3.45469 12 1 + x+ x5 + x6 3.54536 14
1 + x2 + x3 + x5 3.46639 5 1 + x+ x2 + x5 + x6 3.50809 18

1 + x+ x2 + x3 + x5 3.5229 14 1 + x+ x2 + x3 + x5 + x6 3.57066 17
1 + x+ x2 + x4 + x5 3.47168 11 1 + x+ x2 + x4 + x5 + x6 3.49995 6

1 + x+ x2 + x3 + x4 + x5 3.52951 6 1 + x+ x2 + x3 + x4 + x5 + x6 3.5598 6

Table 4: λ and the degree of its minimal polynomial for p = 2 and deg(f(x)) ≤ 6

This implies that λ(f) ≤ λ(fk). Similarly since qf(x)(j · k − i) ≥ C−iqf(x)(j · k), we can show that

λ(fk) ≤ λ(f). Therefore λ(f) = λ(fk).

3.3.1 Values of λ where p = 2

We calculate λ for polynomials with p = 2. We also find the minimal polynomial of λ. Provided

are λ and the degree d of its minimal polynomial for non-similar polynomials with degree of up to

6, although we had calculated for deg(f) ≤ 9.

We see that λ is between 3 and 4. We form several conjectures on the bounds of λ.

Conjecture 3.7. When p = 2, λ ≥ 3. Furthermore, λ = 3 only for polynomials similar to 1 +x. If

p = 2 and λ > 3, then λ ≥ 1 +
√

5. Furthermore, λ = 1 +
√

5 only if f(x) is similar to 1 + x+ x2.

Question 3.8. Is it true that λ(f) = λ(g) if and only if f(x) and g(x) are similar in terms of the

transformations described in Theorem 3.6?

Theorem 3.9. For some polynomial f(x) with degree at most 2k and p = 2,

λ(f) ≤ 4(1− 1
2k+2 )

1
k+1 .
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Proof. Define k such that the degree of f(x) is at most 2k, with p = 2. From Theorem 3.3, we can

draw an oriented graph whose vertices are elements of X and whose edges correspond to the four

maps. Therefore there are exactly four edges coming out of each vertex. Therefore if Q(n) is the

number of paths in the graph of length n, we have log λ = lim sup
n→∞

logQ(n)
n

. From the definition

of Willson’s method, Theorem 3.1, two of the four mappings correspond to g(x) → g(x2) and

g(x)→ x · g(x2). Assume deg(f(x)) = 2k. Then a path starting from any g(x) and moving first to

x · g(x2) then alternating in any way between the two mappings leads to 0 after k+ 1 steps. So the

number of such paths of length k + 1 is 2k. So the number of paths of length k + 1 from any point

that avoids 0 is at most 4k+1 − 2k. Thus the number of such paths of length n · (k + 1) is at most

(4k+1 − 2k)n. This gives us the bound of λ ≤ 4(1− 1
2k+2 )

1
k+1 .

For k = 0, the only polynomial is 1 + x, so the bound λ ≤ 4(1− 1
4)1 = 3 is sharp. However, for

k = 1 the bound tells us that λ ≤
√

14 which is not sharp. Furthermore, this bound approaches 4

as k approaches ∞.

Conjecture 3.10. Let Λk be the maximal λ(f) for deg f ≤ k. Then limk→∞Λk = 4.

Remark 3.11. Similarly for p > 2, one may conjecture that limk→∞Λk = p2.

Through computer analysis of λ for p = 2 and deg
(
f(x)

)
≤ 9, Conjecture 3.12 arises.

Conjecture 3.12. The degree of the minimal polynomial of λ is less than or equal to 2deg(f)−1 for

p = 2.

4 Conclusion and Directions of Future Research

Natural goals for further study of the phenomena examined in this paper include the following:

• Obtain recursion relations, generating functions, and limiting functions as in Section 2 for

af(x),p(n) in the case deg
(
f(x)

)
> 1;

• Prove Conjecture 2.13 on the functional equation for the generating function for af(x),p(n);
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• Prove the conjectures in section 3 on the behavior of the eigenvalues λ and obtain better

upper bounds;

• Find, tighten, and explore the upper bound mentioned in Conjecture 3.12;

• Study the algebras generated by the four transformations composing the Willson matrices

and find analogs for larger p.
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