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Stanislav Atanasov

Rational Fixed Points of Polynomial Involutions
Kestutis Cesnavicius

A well-known theorem states that all polynomial involutions of C" have
at least one fixed point. A problem that Jean-Pierre Serre posed is whether
the involution F' = (f1,..., fn) where f; € Q[xy, ..., z,] has always a rational
fixed point. We prove Serre’s Conjecture for the affine case as well as the
case when deg f; = 1 for 1 <i <n—1 and deg f,, = d for any positive integer
d. In addition, we also construct non-trivial examples of involutions for the
case n = 3. Finally, we introduce the notion of multidegree of a polynomial
map F = (f1,..., fn) as M(dy,...,d,) where d; = deg f;, and we prove the
following theorem:

Theorem. Let a and b be positive integers. Then for n = 1 and also
for alln > W — s and divisible by s = ged(a,b) there exists a rational
polynomial involution with multidegree M (ab, ab*, n).

Megan Belzner

Emptying Sets: The Cookie Monster Problem
Wauttisak Trongsiriwat

Given a set of integers S = {ky, ko, ..., k,}, the Cookie Monster Prob-
lem is the problem of making all elements of the set equal 0 in the mini-
mum number of moves. Consider the analogy of cookie jars with distinct
numbers of cookies, such that k; is the number of cookies in the ith jar.
The “Cookie Monster” wants to eat all the cookies, but at each move he
must choose some subset of the jars and eat the same amount from each
jar. The Cookie Monster Number of S, CM(S), is the minimum number of
such moves necessary to empty the jars. It has been shown previously that
[log,(|S|+1)] < CM(S) < |S]. In this paper we classify sets by determin-
ing what conditions are necessary for CM (S) to equal 2 or 3 and what effect
certain restrictions have on C'M(S). We also provide an alternative interpre-
tation of the problem in the form of a combinatorial game and analyze the
losing positions.



Rebecca Chen

A Computational Analysis of Triangle Subdivision
Prof. David Jerison and Mr. Wenzhe Wei

Subdivision schemes in computer-aided design are used to generate smoothly

sculptured surfaces from coarse polygonal meshes. A determining factor in
how smooth a refined mesh appears is the degree of regularity in the mesh’s
polygonal faces. However, to the best of our knowledge, there currently exists
no method to test for regularity. This paper proposes the division of each
polygonal face in a mesh into triangular sub-faces that can then be tested
for flatness, a measure of irregularity, using a triangular shape z.

Sitan Chen
On the Rank Number of Grid Graphs
Jesse (Geneson

A vertex k-ranking is a labeling of a graph with integers from 1 to k so
any path between two vertices with the same label contains a vertex with a
greater label. The minimum possible k& for which a k-ranking exists is the
rank number. For grid graphs, the rank number of m xn grid graphs has been
found only for m < 3. In this paper, we determine its exact value for 4 xn grid
graphs and improve the upper bound for general grids. Finally, we improve
lower bounds on the rank number for square and triangle grid graphs from
logarithmic to linear. This new lower bound is key to characterizing the rank
number for general grids. The new ideas on cut sets that we introduce can be
used to study very large-scale integration (VLSI) circuits’ graph separators,
which have direct applications in optimizing area efficiency.

Sidharth Dhawan

Complexity of Interlocking Polyominoes

Zachary Abel



Polyominoes are a subset of polygons which can be constructed from
integer-legnth squares fused at their edges. A system of polygons P is in-
terlocked if no subset of the polygons in P can be removed arbritrarily far
away from the rest. It is already known that polyominoes with four or fewer
squares cannot interlock. It is also known that determining the interlocked-
ness of polyominoes with an arbitrary number of squares is PSPACE hard.
Here, we attempt determine which polyominoes are too simple to interlock
and for which polyominoes determining interlockedness becomes PSPACE
hard. We prove that polyominoes with five or fewer squares cannot interlock
and that polyominoes with six or more squares can interlock. Also, we show
that determining interlockedness of polyominoes with nine or more squares

is PSPACE hard.
Eric Mannes

Bounds on Monotone Switching Networks for the
Matching Problem

Aaron Potechin

Lower bounds on the space required for a computation are important
results that demonstrate the limitations of computing. The problem studied
here is to decide if a graph G has a k-matching. A k-matching is & distinct
pairs of vertices such that each pair is joined by an edge.

The switching network model of computation can be used to find lower
bounds, but so far, it has barely been explored. A switching network solving
the k-matching problem is a second graph G’ with two special vertices s" and
t' that are connected by edges in G’ if and only if the original graph G has
a k-matching. We examine the special case of monotone switching networks
in which only the presence of edges in G' not their absence is used to help
determine whether G has a k-matching.

We determine that for fixed k, the minimum size of a monotone switching
network solving k-matching on a graph with n vertices is of order of magni-
tude logn. We use a probabilistic argument for the upper bound and apply
Potechin’s technique of states of knowledge for the lower bound. We study
certain-knowledge switching networks, a special class of monotone switch-
ing networks, determine that for fixed k£ their minimum size is of order of
magnitude n?*72, and find other lower bounds in case k increases with n.



Todor Markov

On Extremal Degrees of Minimal Ramsey Graphs
Wuttisak Trongsiriwat

Let F,G and H be simple graphs. We say that F' is (G, H)-Ramsey if
any coloring of the edges of F' in red and blue contains either a red sub-
graph isomorphic to G or a blue subgraph isomorphic to H. Furthermore, if
the above property is not retained after removing some edge or vertex from
F| then F is called (G, H)-minimal. We define s(G, H) to be the minimal
degree of any vertex of a (G, H)-minimal graph, and (G, H) to be the min-
imum possible maximum degree of any (G, H)-minimal graph. We prove
that 5(G,H) > A(G) + A(H) — 1 if A(G) and A(H) are both odd and
5(G,H) > A(G) + A(H) — 2 otherwise, where A(G) is the maximum degree
of any vertex of G. We also prove that s(K,,,T) = 1 for any positive integer
m and tree T', where K, is a star with m + 1 vertices.

Jessica Oehrlein
Book Thickness of Graphs and their Subdivisions

Aaron Potechin

A book embedding of a graph is an arrangement of vertices and edges
with applications to very large scale integration (VLSI) design. A page is
formed by labeled vertices arranged on a straight line called the spine and
a half-plane of edges in which no edges cross. A book is the union of these
pages. The minimum number of pages necessary to embed a graph G in a
book is known as the book thickness of G, denoted sn(G). We show that
the book thickness of any subdivision of G is at most twice sn(G). We also
explore the number of pages necessary to embed a graph G in a book given
a fixed vertex ordering. We find that this number of pages is exactly the
chromatic number of the graph whose vertices are edges of G and in which
there is an edge connecting two vertices if the two edges of GG cross in a book
embedding.



Matthew Rauen
On Strongly Multiplicative Graphs
Jesse Geneson

We analyze the problem of finding the maximal number of edges on a
strongly multiplicative graph on n vertices, a problem which has applications
to network modeling. Such a graph has n vertices labeled by the integers
1,2,...,n such that if each edge is labeled with the product of adjacent
vertices, no two edges have the same label. This value is denoted by A(n),
and we construct an analogous function where the two factors, a and b, are
chosen from sets of differing cardinalities, denoted by f(x,y). We establish
the difference function é;(x,y) which is equal to the number of products
constructible for the first time as the cardinality of the set of cardinality
y — 1 is increased by 1. We prove the periodicity and symmetry of d;(x,y)
and use it to create a linear approximation for f(z,y) for fixed x in terms of
y, and prove this approximation is the least squares regression line.

Abraham Shin

Analysis of Discrete Gaussian Free Field in Random
Surfaces on the Motion of Strings

Wenzhe Wei

The Liouville Quantum Gravity model proposed by Polyakov is used to
study motion of strings. Quantum gravity measures are assigned to each
vertex on a grid graph and the edges that connect vertices are weighted
based on the height values assigned to vertices. We look for the relationship
between the size of the grid and the distance a string travels. In a finite
discrete Gaussian free field (GFF), we discover that the power of the number
of sides in a GFF is proportional to the distance from the center of the GFF
to its half-to-boundary points. We find the equation d = .1993n7?%, where
d and n are the distance from the center and the number of sides of a grid,
respectively. We determine the contour curves have Hausdorff dimension 2.1.



Adam H. Su

Rank-Generating Functions for the Distributive Lattice
of Order Ideals for Comb Posets

Benjamin Iriarte

Let P, be the poset with elements s; 1, s; 2 for i € [n], and cover relations
S11 < S21 < -+ <SS,y and s;1 < s;9 for all ¢ € [n]. The Hasse diagram of
P, resembles a comb. We derive the rank-generating function of J(P,), the
distributive lattice of order ideals of P,,. We then generalize this function to
J(P,,m). We also prove bounds on the maximal rank of J(FP,).

Let P be the disjoint union of n chains C, (s, ..., C,, where C; contains
elements s;1,S;2,...,5,m. Let P’ be a generalization of P where we also
permit an arbitrary number of cover relations of the form s;; > s;_;; for
2<i<nand1l <75 < m. We describe a method to construct the Hasse
diagram for all J(P’). This provides an efficient method to visualize and
describe the properties of new posets we define.

Zacharias Tsampasidis

Non-divisibility of Binomial coefficients with a Given
Set, of Primes

Kestutis Cesnavicius

The problem we tackle here asks whether there exist infinitely many bino-
mial coefficients of the form (ffk) coprime to a given set of odd primes which
we denote by P. Erdés, Graham, Ruzsa and Straus proved the infinitude of
such n for k = 0 and two primes. Here we work on the analogous result for
k =1 and two primes using similar ideas to their proof. We also observe that
it can be modified to try to prove the result for other values of k, such as 0,
2 but the case analysis is much more involved when k£ > 2. For the moment

we do not have a way to extend it for a greater number of primes.



