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M
athematicians have long been fasci-
nated with coin puzzles. The sim-
plest one is formulated like this:

You are given N coins that look 
identical, but one is fake and is lighter than the 
real coins, all of which weigh the same. What is 
the fewest number of weighings on a balance scale 
that guarantees fi nding the fake coin?

This puzzle fi rst appeared in 1945. Since then there 
have been many generalizations (see R. K. Guy and 
R. J. Nowakowski, Coin-weighing problems, Amer. 
Math. Monthly 102 no. 2 [1995] 164–167). 

For example, a 2015 generalization inspired this 
article. A chameleon coin can mimic a fake or real 
coin. It has a mind of its own and can choose how to 
behave at any weighing. It is impossible to fi nd cha-
meleon coins among real coins as they can pretend to 
be real all the time. An interesting question to ask is: 
Given N coins containing one chameleon and one fake 
coin, fi nd two coins one of which is guaranteed to be 
fake. (See T. Khovanova, K. Knop, and O. Polubasov, 
Chameleon coins, https://arxiv.org/abs/1512.07338.) 

We can draw a parallel between coin puzzles and 
logic puzzles. Real coins are similar to truth-tellers, 
and fake coins are similar to liars. Many logic puzzles 

include normal people: people who sometimes tell the 
truth and sometimes lie. Thus, a chameleon coin is an 
analogue of a normal person. Some logic puzzles have 
alternators: people who alternate between telling the 
truth and lying. Although it is impossible to identify 
a normal person—who can behave consistently as a 
truth-teller—we can identify an alternating person by 
asking for the sum of two and two—twice.

So, it is natural to introduce the analogue of an al-
ternator to coin puzzles: An alternator coin can mimic 
a fake or a real coin, but it switches its behavior each 
time it is on the scale. Unlike the chameleon, the alter-
nator can always be found.

Alternators
In this article we pose the natural question: Suppose 
we have one alternator among N coins and a balance 
scale. What is the fewest number of weighings that 
guarantees fi nding the alternator coin? We denote the 
smallest number of weighings a(N). 

We say that the alternator is in state f or state r if 
the next time it is on the scale it behaves as a fake 
coin or real coin, respectively. If we do not know the 
state, we say it is in state a.

We can simplify our problem by assuming that we 
know the state of the alternator coin in advance. Let 
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f(N) denote the smallest number of weighings that 
guarantees fi nding the alternator if we know it starts in 
state f. Likewise, r(N) is the smallest number of weigh-
ings that guarantees fi nding the alternator if we know 
it starts in state r. When calculating a(N), we assume 
it starts in state a.

One Fake Coin
Here we remind the readers of the standard analysis of 
the puzzle with one fake coin. 

Suppose there is a strategy that is guaranteed to fi nd 
a fake coin in w weighings. Then there is a sequence 
of weighings that will fi nd the fake coin. And we can 
represent the sequence of weighings as a string of three 
letters: E (the pans are equal weights), L (the left pan 
is lighter), and R (the right pan is lighter). The same 
string cannot correspond to two diff erent coins; that is, 
if  the string yielding the conclusion that the ith 
coin is fake must be diff erent than the one yielding the 
jth coin is fake. So, the number of coins that can be 
processed in w weighings is not more than 3w. In other 
words, if we have N coins, no strategy can guarantee 
fi nding the fake coin in fewer than  weighings. 
(Recall that  is the least integer greater than or 
equal to x.) 

On the other hand, we can produce a strategy that 
fi nds the fake coin out of N coins in  weigh-
ings. For example, if there are 3w coins, divide them 
into three piles of  coins. Put two piles on the 
scale, and if it doesn’t balance, the fake coin is on the 
lighter pan. If it balances, the fake coin is in the pile 
not on the scale. So, with each weighing we make the 
pile containing the fake coin one third the size. Using 
this algorithm we can fi nd the fake coin in w weigh-

ings. The same idea works if the number of coins is not 
a power of three. We leave the details to the reader.

Small Examples
The alternator is trickier to fi nd than a fake coin, so 
we expect to need more weighings. We could, for in-
stance, do the same thing as if looking for a fake coin, 
but perform every weighing twice. If the alternator 
participates in two consecutive weighings, it has to act 
as fake in one of them. But we can do better. Let’s try 
some small examples. These will illustrate our general 
strategy.

When there are two or three coins, we can perform 
only one type of weighing: Compare one coin to anoth-
er. We can fi nd the alternator coin in two weighings by 
comparing the fi rst and the second coin twice. If one of 
these coins is the alternator, it will reveal itself. If not, 
which can happen only if there are three coins, then 
the third coin is the alternator. So,  and 

 
Now, suppose there are four or fi ve coins. If the coin 

is in state f, weigh coin 1 versus coin 2 and then 3 
versus 4 if necessary. If it is in states r or a, compare 
coins 1 and 2 versus 3 and 4. If the scale doesn’t bal-
ance, then the alternator is in the lighter pan; we can 
fi nd it in two weighings. If the scale balances, compare 
1 to 2, then 3 to 4. If the alternator is among the 
fi rst four coins, it will reveal itself. If all the weigh-
ings balance, then coin 5 is the alternator. Therefore, 

 and 
We know that state a provides us less information 

than the f and r states. So,  
and  But in these examples, 

 Is this always true? To 
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maintain the suspense, let us hold back 
the answer to this question.

A Lower Bound
The Jacobsthal numbers are defi ned 
as  and they 
satisfy the recurrence relation 

 The fi rst several terms, starting 
with  are 0, 1, 1, 3, 5,   11, 21, 43, 85, 171, 341,… 
We can see from the sequence that e ach term is one 
more or one less than twice the previous term. Indeed, 
it is straightforward to prove that  
This sequence is A001045 in the On-Line Encyclopedia 
of Integer Sequences (https://oeis.org/A001045). 

The Jacobsthal numbers are the coolest numbers you 
have never heard about. For example, Jk is the number 
of ways to tile a 3-by-  rectangle with 1-by-1 and 
2-by-2 square tiles. It is also the number of ways to 
tile a 2-by-  rectangle with 1-by-2 dominoes and 
2-by-2 squares. Moreover, the product of two successive 
Jacobsthal numbers is a triangular number. We leave it 
to the reader to prove these properties. But we digress. 
We do not need these cool properties for our future 
progress. 

The Jacobsthal numbers are intimately related to 
our coin puzzle. We will use them to produce a better 
bound.

Theorem. If a strategy is guaranteed to fi nd a 
state-f alternator coin in N coins using w weighings, 
then  If the alternator is in state r or a, 
then 

Proof. Suppose there is a strategy for fi nding the 
alternator. As before, this gives a unique string of 
length at most w of letters E, L, and R to each coin. 
The key observation is that L and R cannot follow 
each other; they must be followed by an E. Indeed, 
after an L or R, the alternator coin will be in state r. 
So, regardless of whether it participates in the next 
weighing, the scale will balance. (Of course, we only 
ever put equal numbers of coins in both pans.)

It is possible to have a string of length less than w 
point to a coin; that is, some coins might be found 
faster than others. But if a shorter string points to a 
coin, then all the strings that have this same beginning 
substring point to the same coin. Thus, to fi nd the 
theoretical maximum, we should count all the strings 
of length w. 

Let s(n) denote the number of such strings of length n.

We have one string (an empty one) of length zero and 
three strings of length one. The number of strings 
of length k can be calculated as follows. If the string 
starts with E, then it can be followed by any such 
string of length  If it starts with L or R, it must 
be followed by E and then any such string of length 

 Therefore,  This is 
the same recurrence relation as for the Jacobsthal 
numbers. The initial terms are the Jacobsthal 
numbers shifted two places, so  What 
remains to note is that if the alternator is in state r, 
the fi rst letter of the string must be E.

Thus, the lower bound for the number of weighings 
increases after each Jacobsthal number. In the next 
section, we will see that the bound is precise.

An Optimal Strategy
Next, we give a strategy that can fi nd the alternator in 
the number of weighings provided by the bound above. 

Theorem. Suppose we have N coins with one 
alternator coin. If we know the alternator is in state 
f and  or if the alternator is in state r or a 
and  then we can fi nd it in w weighings.

Proof. This is a proof by strong induction on k, the 
index of the Jacobsthal number. We have already 
proved that when the alternator is in state f and 

 or it is in state a or r and  
we can fi nd the coin in one weighing. And when it is 
in state a or r and  we can fi nd the coin in 
two weighings. These are the base cases.

Now, suppose that the result holds for every index 
up to some  That is, for every  whenever 

 an f -state alternator can be found in  
weighings and an r - or a -state alternator can be found 
in  weighings. 

Suppose . We must show that we can fi nd 
an f -state alternator in  weighings and an r - or 
a -state alternator in k weighings.

First suppose we know the alternator is in state f. 
If  then by the induction hypothesis, we can 
fi nd the alternator in  weighings. So, assume that 
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 Our strategy is to weigh two piles each 
containing  coins and set aside the remaining m 
coins. If the scale doesn’t balance, then the alternator 
is in one of the piles on the scale, and it switches to 
state r. By our induction hypothesis, we can fi nd this 
coin in  weighings. If the scale balances, then the 
alternator is in the leftover pile and has state f. By 
the recurrence relation for the Jacobsthal numbers, 

 and so, by our induction hypothesis, we can 
fi nd the coin in  weighings. Because we used 
one weighing at the beginning, the total number of 
weighings is at most  

Next, suppose we know the alternator is in state r. If 
N is even, weigh all the coins, switching the alternator 
to state f. We just showed how to fi nd the alternator 
among these coins in  more weighings. Therefore, 
we can fi nd the alternator in k weighings total. 

If N is odd, set aside one coin. Now we have an even 
number of coins that may or may not have an alterna-
tor in state r. If it does, our procedure will fi nd it in k 
weighings. If it does not, then every weighing will bal-
ance, and we will know that the remaining coin is the 
alternator. 

Lastly, suppose we don’t know the state of the alter-
nator; that is, it is in state a. Divide the coins into two 
equal piles, setting aside one coin if needed. Because 

 these piles have at most Jk 
coins. If the scale doesn’t balance, then the alternator 
switches to state r and, hence, can be found in  
weighings, for a total of  weighings.  If the scale 
balances and the alternator is on the scale, it is now 
in state f, and we can fi nd it in  weighings. If it 
is not on the scale, then after  even balances, we 
conclude that the extra coin is the alternator.

Thus, bringing these two theorems together, we have 
the following lovely theorem about alternator coins.

Theorem. If  then  and 
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Solutions to puzzles on page 2
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