PRIMES 2026 – Entrance Problem Set

October 15, 2025

Notation: We let \mathbb{N} , \mathbb{N}_0 , \mathbb{Z} , and \mathbb{R} denote the sets of positive integers, nonnegative integers, integers, and real numbers, respectively.

Problem 1. [Analysis] Let p be a positive real. Prove that there exists $c_p \in \mathbb{R}$ such that if f is a continuously differentiable real-valued function on [-1,1] with f(1) > f(-1) and $|f'(s)| \le 1$ for all $s \in (-1,1)$, then there exists $s_0 \in (-1,1)$ with $f'(s_0) > 0$ such that

$$|f(s) - f(s_0)| \le c_p |s - s_0|^{\frac{1}{p}}$$
 for all $s \in (-1, 1)$.

Recommended reading for analysis:

• Basic Analysis I & II: Introduction to Real Analysis by J. Lebl (Chapters 1–5)

Problem 2. [Abstract Algebra] Fix an odd prime p, and let \mathbb{F}_p be the field of p elements. Let G be the group of upper-unitriangular 3×3 matrices over \mathbb{F}_p via

$$(x,y,z) \longleftrightarrow \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Prove that the commutator of G is the center Z of G, and compute the conjugacy classes of G.
- (b) Show that the maximal abelian subgroups of G are precisely the subgroups of order p^2 containing Z, and they are in one-to-one correspondence with the 1-dimensional subspaces (lines) of $G/Z \cong \mathbb{F}_p^2$.
- (c) Find the group of automorphisms of G in terms of \mathbb{F}_p and $GL_2(\mathbb{F}_p)$.

Recommended reading for algebra:

• Algebra: Abstract and Concrete by F. M. Goodman (Chapters 1–6)

Problem 3. [Combinatorics] For $n \in \mathbb{N}$, call a function $f:[n] \to [n]$ prime-tail if, in each weakly connected component of its functional digraph, the unique directed cycle has prime length, and each vertex on the cycle has at most one incoming edge from outside the cycle. Let a_n be the number of prime-tail mappings on [n]. Determine a closed form for the generating function A(x) of the sequence $(a_n)_{n\geq 1}$ and extract a coefficient formula for a_n . Show that A(x) can be written as a single exponential built from cycle lengths and labeled lists, and then derive a nontrivial asymptotic for a_n as $n \to \infty$.

Recommended reading for combinatorics:

• Enumerative Combinatorics, vol. 1, by R. Stanley (Chapters 1–3)

Problem 4. [Probability] Let S be a circle in \mathbb{R}^2 and assume that b blue points and r red points have been chosen uniformly and independently at random on S for some $b, r \in \mathbb{N}$ with $b, r \geq 3$. Let P be the intersection of the convex hull of the red points and the convex hull of the blue points, and let p be the number of vertices of P (in particular, p = 0 when P is empty). Find the expected value of p.

Recommended reading for probability:

• MIT Course 18.05 Introduction to Probability and Statistics (Chapters 15–19)

Problem 5. [Number Theory] Fix an integer $n \ge 2$ and choose an integer x_0 with $gcd(x_0, n) = 1$. Define a sequence $(x_k)_{k\ge 0}$ as follows:

$$x_{k+1} = x_k + \gcd(x_k, n) \qquad (k \ge 0).$$

Let $T(n, x_0)$ be the least $t \ge 0$ such that $n \mid x_t$.

- (a) Prove that $T(n, x_0)$ is finite for every such x_0 .
- (b) Write $n = \prod_{i=1}^r p_i^{a_i}$ with distinct primes p_i and $a_i \geq 1$. Show that

$$T(n,x_0) \le \sum_{i=1}^r a_i (p_i - 1).$$

(c) Prove that equality holds for all prime powers $n = p^a$ and, more generally, for n prime. Give at least one explicit choice of x_0 achieving equality in those cases.

Recommended reading for number theory:

• A Classical Introduction to Modern Number Theory by K. Ireland and M. Rosen (Chapters 1-4)

Problem 6. [Linear Algebra] Fix $k \in \mathbb{N}$ and, for each $v \in \mathbb{R}^k$, let ||v|| denote the Euclidean norm in \mathbb{R}^k . Then define $||M||_k := \sup_{||v|| \le 1} ||Mv||$ for any $k \times k$ complex matrix M. Prove that $||M^k|| \le \frac{k}{\ln 2} ||M||^{k-1}$ for all complex matrix M provided that all the eigenvalues of M have absolute value at most 1.

Recommended reading for linear algebra:

• Linear Algebra As an Introduction to Abstract Mathematics by I. Lankham, B. Nachtergaele and A. Schilling (Chapters 3-7)

Problem 7. [Algorithms] Let \mathscr{P}_n consist of all subsets of $\{0, 1, \ldots, n\}$ containing 0, and let \mathscr{A}_n be the set of all $A \in \mathscr{P}_n$ with $|A| \geq 2$ such that for any $B, C \in \mathscr{P}_n$ the equality $A = \{b + c : (b, c) \in B \times C\}$ implies that $1 \in \{|B|, |C|\}$. For any $k, n \in \mathbb{N}$ with $1 \leq k \leq n$, set

$$\mathscr{A}_{n,k} := \{ A \in \mathscr{A}_n : |A| = k \}.$$

- (a) Design an efficient algorithm to compute $v_n := (|\mathscr{A}_{n,1}|, \dots, |\mathscr{A}_{n,n}|)$ given an input $n \in \mathbb{N}$.
- (b) Produce a list with all the vectors v_1, v_2, \ldots, v_{35} and provide a code that we can use to reproduce your 35 vectors.
- (c) Is it true that for any $n \in \mathbb{N}$, we can pick $k \in \mathbb{N}$ with $1 \le k \le n$ such that $|\mathscr{A}_{n,1}| \le \cdots \le |\mathscr{A}_{n,k}|$ and $|\mathscr{A}_{n,k}| \ge \cdots \ge |\mathscr{A}_{n,n}|$?

Recommended reading for algorithms:

• MIT Course 6.006 Introduction to Algorithms (Chapters 15–19)