TIME EFFICIENT SWAP REGRET MINIMIZATION

ASHLEY YU

ABSTRACT. No-regret learning algorithms provide principled frameworks for multi-agent
decision-making, with swap regret minimization enabling convergence to correlated equi-
libria, a stronger solution concept than the coarse correlated equilibria achieved by ex-
ternal regret algorithms. The classical Blum-Mansour (BM) algorithm achieves optimal
O(v/NTlog N) swap regret bounds, but computing the stationary distribution of an N x N
Markov chain at each iteration requires O(N?) time complexity that severely limits scala-
bility.

We propose a novel approach that replaces exact stationary distribution computation
with efficient sampling-based estimation, reducing per-iteration complexity from O(N?) to
O(N) while maintaining the fundamental structure of the original algorithm.
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1. INTRODUCTION

No-regret learning formalizes repeated decision-making in adversarial or multi-agent set-
tings, where agents iteratively choose actions and observe outcomes. Over time, they adjust
their strategies based on feedback, aiming to match or outperform the best fixed action in
hindsight. The central performance measure is regret. The difference between the learner’s
cumulative loss and that of the best comparator. An algorithm is said to be no-regret if this
quantity grows sublinearly with the number of rounds Cesa-Bianchi and Lugosi (2006)).

One of the most fundamental notions is external regret (ExtReg), which compares the
learner’s performance to the best fixed action in hindsight:
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Algorithms like Multiplicative Weights Update (MWU) achieve ExtReg(T) = O(y/Tlog N)
with O(N) computation per round (Cesa-Bianchi and Lugosi (2006]). This efficiency enables
applications ranging from minimax strategies in two-player zero-sum games to learning coarse
correlated equilibria (CCE) in general games Nash! (1951)); Syrgkanis et al.| (2015).

Correlated equilibrium (CE) and coarse correlated equilibrium (CCE) are solution concepts
for multi-agent interactions |/ Aumann| (1974); Hart and Mas-Colell (2000). Consider n players
with joint action space A = A; x --- x A,, and loss functions ¢; : A — [0,1]. Let D be a
distribution over joint actions. Then:

e D is a coarse correlated equilibrium (CCE) if for all players i and actions a, € A;:
Eavp(li(a)] < Eawplli(a;, ai)]

e D is a correlated equilibrium (CE) if for all players i, actions a; in the support of
D; (the marginal on A4;), and deviations a] € A;:

Ea-plli(a) | ai] <Eawplli(a;;a) | ail

The key distinction is that CE conditions on the recommended action a;, requiring obedience
even with knowledge of one’s own action. CCE only requires obedience to unconditional
deviations.

However, CCEs often provide weak guarantees in multi-agent settings. Stronger solution
concepts like correlated equilibrium (CE) require minimizing swap regret (SwapReg),
which benchmarks against the best action mapping ¢ : [N] — [N] in hindsight [Blum and
Mansour, (2007):
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While Blum—Mansour’s (BM) classical approach minimizes SwapReg using N parallel in-
stances of an external regret minimizer, it suffers from a critical computational bottleneck:
each iteration requires solving for the stationary distribution x® of a Markov chain de-
fined by transition matrix Q®, incurring O(N%) time, where w refers to the optimal time
complexity of matrix multiplication Blum and Mansour| (2007)); |Peng and Rubinstein| (2023)).

1.1. Monte Carlo-Based Blum-Mansour. We propose MC-BM, a novel algorithm that
overcomes the computational bottleneck by replacing exact stationary distribution compu-
tation with an efficient Monte Carlo (MC) sampling procedure. The key innovation is recog-
nizing that we don’t need exact stationary distributions, only approximate samples that are
"close enough” to preserve swap-regret guarantees. Instead of solving for the stationary dis-
tribution analytically at cost O(N?) per iteration, we approximate it by running the Markov
chain defined by Q® for a small number of steps k (where & < N) and collecting m samples.
Each sample is obtained by starting from a random initial state and transitioning according
to Q® for k steps. The empirical distribution of these samples serves as our approximation
to the stationary distribution.

This MC-based approach dramatically reduces computational complexity. While exact meth-
ods require O(N?) per iteration, our sampling procedure requires only O(k-m-N) per round.
For constant choices of k& and m, this achieves O(N) per-iteration cost, matching the effi-
ciency of external regret minimization while targeting the stronger swap regret guarantee.

In this paper, we first formalize the trade-offs between ExtReg, SwapReg, and computational
efficiency (Section 2). There, we will detail CM-BM’s design and analyze the relationship be-
tween mixing time, sampling parameters, and regret accumulation. After that, we present
experimental results (Section 3). These results provide compelling evidence that CM-BM
achieves sublinear swap regret with dramatically improved computational efficiency, mo-
tivating new theoretical approaches for analyzing MCMC-based approximations in online
learning.

2. PRELIMINARIES

2.1. Online Learning Setup. Consider a repeated decision process over T rounds. At each
round ¢, the learner chooses distribution x € Ay over N actions, the adversary reveals
loss vector () € [0,1]", after which the learner suffers loss (x(), /()). The learner aims to
minimize regret relative to comparator classes.

2.2. Regret Definitions.
Definition 1 (External Regret (ExtReg)).
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Definition 2 (Swap Regret (SwapReg)).
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where ¢ ranges over all action modifications.

2.3. Follow-the-Regularized-Leader (FTRL). FTRL balances loss minimization with
regularization:

x® = argmin (Z (x,07)) 4 = R ))

XEAN

Theorem 1 (FTRL External Regret Bound). For R(x) = Y.~ | x;logz; andn = /2log N/T,

ExtReg(T") < /2T log N

Proof. By the FTRL lemma, for any x* € Axy:

d , R(x*) — R(xM) 1 2
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2.4. Blum-Mansour (BM) Algorithm. BM reduces swap regret minimization to external
regret minimization:

Algorithm 1 Blum-Mansour

Require: External regret algorithm .4, actions [N]
1: Initialize N copies A;,..., Ay of A
2: fort=1to T do
3: forizltoNdo

4: Feed A,; loss z®[4] - ¢®)

5: Receive qZ )€ Ay from A
6: end for

7: Construct Q) = [q%t)H e ||q§\t,)]
8:

Compute stationary x® satisfying x® = Q®x®
9: Play x® observe ¢(*)
10: end for




Theorem 2 (BM Swap Regret Bound). For A achieving ExtReg,(T) < /Cilog N with
C; = Zt ) [2]7

SwapReg(T) < \/NTlog N
Proof. Let ¢* be optimal modifier. The regret decomposes as:

T T
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Each A; has regret < /(>,2®[i])log N = +/C;log N. By Cauchy-Schwarz:

N N
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2.5. The Computational Bottleneck. The main computational challenge in Blum-Mansour
is computing the stationary distribution x® satisfying x® = Q®x® at each round. Stan-
dard methods include linear system solving, which finds the eigenvector for eigenvalue 1 via
Gaussian elimination at cost O(N?), power iteration, which computes limy_,.(Q®)*x re-
quiring many iterations each costing O(N?), and matrix inversion using (I — Q® +117)7'1
at cost O(N¥) where w ~ 2.37. Over T rounds, this stationary computation dominates
the overall complexity, making BM impractical for large action spaces despite its strong
theoretical guarantees.

3. MONTE CARLO BLuM MANSOUR

The classical Blum-Mansour (BM) algorithm guarantees sublinear swap regret but requires
computing a stationary distribution at each iteration, costing O(N?) per round. In this
section, we introduce MC-Based Blum-Mansour (MC-BM), which replaces exact station-
ary distribution computation with Markov chain sampling. We approximate the stationary
distribution x® of the transition matrix Q® by running the Markov chain for k steps and

collecting m samples. This reduces complexity from O(N?3) to O(k - m - N) per round.
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Algorithm 2 MC-BM

1: Input: External regret algorithm A, actions [N], MC steps k, number of samples m
2: Initialize: N copies A;,..., Ay of A

3: fort=1to T do

4: for:=1to N do

5: Feed A; loss z®[i] - ¢

6: Receive distribution qi(t) € Ay from A;
7 end for

s Construct QO = [gf"] -+ [lg]

9:

// MC sampling to approximate stationary distribution
10: for j =1 tom do

11: Sample aéj) ~ Uniform([N])

12: for s =1to k do ‘

13: Sample ¥ ~ Q®[aY, ]

14: end for A

15: Set al) « a,(f)

16: end for

17: Set x(Y) <~ empirical distribution of {a"),... a™}
18: Play x® observe ¢(*)

19: end for

3.1. Algorithm Description. Instead of solving x® = Q®x® exactly, we approximate
the stationary distribution by sampling. For each of m independent trials, we start from a
uniformly random state a(()j ) and run the Markov chain defined by Q® for k steps, obtaining
a final state ). The empirical distribution of these m samples gives our approximation x®.
Running a Markov chain for k steps produces samples approximately distributed according

to the stationary distribution, with accuracy depending on the chain’s mixing time.

3.2. Rationale and Advantages. MC-BM replaces exact computation with sampling to
overcome the computational bottleneck in BM. Computing the stationary distribution in
exact BM requires solving a linear system via Gaussian elimination at cost O(N?3), power
iteration requiring many O(N?) matrix-vector products, or matrix inversion at cost O(N®).
Each sample in MC-BM requires only & Markov chain transitions, each costing O(N) with
alias method preprocessing for categorical sampling.

We do not need exact stationary distributions, only approximations that preserve the regret
decomposition structure underlying BM’s theoretical guarantees. As the Markov chain runs,
the distribution of samples converges to the true stationary distribution. The mixing time
of Q® determines how many steps k are required, while the number of samples m controls
the variance of the empirical distribution.

Exact BM becomes impractical for N > 50 due to cubic scaling. MC-BM maintains effi-

ciency for hundreds or thousands of actions, which is important for applications in large-scale
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strategic games, online advertising, or resource allocation where action spaces are naturally
large.

3.3. Computational Complexity and Extensions. Each Markov chain step requires
sampling from a categorical distribution, which costs O(N) per step using alias method
preprocessing (one-time O(N) cost per distribution qit) ). Running m chains for %k steps
requires O(m-k- N) per round. For constant k and m, this achieves O(N) per-iteration cost,
matching the efficiency of external regret algorithms while targeting swap regret. MC-BM

has time complexity O(T - N) compared to exact BM’s O(T - N3).

Several extensions are possible. Adaptive sampling can increase k and m when detecting slow
convergence or high variance in samples. Mixing time estimation can monitor the spectral
gap or use heuristics to automatically set k based on the mixing properties of Q®. Variance
reduction methods like antithetic variates or control variates can reduce the variance of the
empirical distribution for fixed m. Hybrid approaches can combine MC-BM with optimistic
updates or other refinements to improve convergence rates.

3.4. Theoretical Considerations.

Conjecture 1 (MC-BM Swap Regret). For MC steps k = Q(logT) and samples m =
QlogT'), MC-BM achieves

E[SwapReg(T)] = O(/NTlog N + T - poly(N) - e )

where vy is the minimum spectral gap of {QW}L .

The main theoretical challenge is bounding the error from approximating the stationary
distribution. In exact BM, the regret decomposes cleanly across the N external regret
minimizers because x is exactly stationary: x® = Q®x®. When we approximate x®
via sampling, this stationarity property holds only approximately, introducing an error term
that accumulates over 1" rounds.

The approximation error depends on two factors: the mixing time of the Markov chain, which
determines how quickly the distribution of samples converges to stationarity (controlled by
k and the spectral gap ), and the sampling variance, which measures how well the empirical
distribution of m samples approximates the true distribution (scaling as O(1/y/m)). The
question is whether these errors remain sublinear when summed over 7' rounds, preserving
the O(v/T) swap regret bound.

A significant challenge is that Q) changes at each round (it depends on the history through
the evolving regret minimizers A;). This prevents direct application of standard Markov
chain analysis, which assumes a fixed transition matrix. New techniques for analyzing time-
varying Markov chains and their cumulative approximation error are needed to establish

MC-BM’s theoretical guarantees.
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3.5. Summary. MC-BM modifies the Blum-Mansour algorithm to replace exact station-
ary distribution computation with Markov chain sampling, reducing computational cost from
O(N?) to O(N) per iteration. The sampling-based approximation preserves the structure
of BM while making swap regret minimization practical for large action spaces. Section 77?7
demonstrates that these design choices lead to competitive swap regret performance in prac-
tice.

4. RESULTS

In this section, we present our empirical findings comparing MC-BM to exact Blum-Mansour
(BM). Experiments were performed on Kuhn Poker, random normal-form games with varying
action space sizes, and subgames of the Diplomacy environment.

For random games, we generated two-player normal-form games with payoff matrices sampled
uniformly from [0, 1]. We tested action spaces of size N = 128, N = 256, and N = 512 to
evaluate scalability. We also tested Diplomacy, which is an extensive form game with normal-
form subgames. There are 7 players and each chooses their action simultaneously. We used
the neural network from |Gray et al. (2020)), which finds the 11-14 best actions for each power.
We modified it to obtain utility matrices. We obtained over 500 two-player subgames for 6
pairs of powers. The remaining 4 powers’ actions were randomly selected from the filtered
actions. We also obtained several 7-player subgames. For MC-BM, we used k = 1000 MC
steps with m = 1 sample unless otherwise specified.

Unless otherwise specified, each trial was repeated multiple times with different random
seeds, and we plot the average experimental over the number of iterations 7.

4.1. Kuhn Poker. In figure [l we measure swap regret over T iterations for both exact BM
and MC-BM. Both algorithms achieve sublinear swap regret and converge to correlated
equilibrium. MC-BM exhibits slightly higher swap regret than exact BM, but the difference
remains small relative to the overall regret scale. This demonstrates that while the MC-based
approximation introduces some error, it remains comparable to exact BM and preserves the
key convergence properties.

4.2. Random Games. We test performance on randomly generated normal-form games
with larger action spaces. Figures[2] 3] and [4]show results for games with N = 128, N = 256,
and N = 512 actions per player. In all experiments, MC-BM converges to correlated
equilibrium with swap regret slightly higher than exact BM. The gap remains small. These
results show that MC-BM provides a good trade-off between speed and solution quality.

4.3. Diplomacy Subgames. We next evaluate performance on selected two-player sub-

games extracted from the complex, multi-player game Diplomacy.
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F1GURE 1. Kuhn Poker: BM vs. MC-BM. MC-BM achieves comparable swap
regret to exact BM while maintaining O(N) per-iteration complexity instead
of O(N?).
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FIGURE 2. Random game (N = 128): BM vs. MC-BM. MC-BM maintains
comparable swap regret while achieving significant computational savings over
exact BM.

External and Swap Regret Over Time
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FIGURE 3. Random game (N = 256): BM vs. MC-BM. MC-BM continues to
perform comparably to exact BM while the computational advantage becomes
more pronounced.

Figures[o] [0, and [7]show results comparing exact BM and MC-BM. The patterns here closely
mirror those observed in Kuhn Poker. Swap regret for MC-BM consistently exceeds that of

exact BM, with the gap stabilizing after initial convergence, but it still remains minimal.
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External and Swap Regret Over Time
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FIGURE 4. Random game (N = 512): BM vs. MC-BM. MC-BM scales to large
action spaces where exact BM becomes computationally prohibitive, while
maintaining comparable swap regret guarantees.

Two key observations distinguish these strategic games from random games. First, the swap
regret curves exhibit more oscillatory behavior in early iterations, particularly visible in the
first 200 iterations. This likely reflects the structured nature of Diplomacy payoff matrices
compared to random matrices. Second, the relative performance gap between MC-BM and
exact BM appears similar to that observed in Kuhn Poker and random games, confirming
that the MC-based approximation error generalizes across different game types.

The final convergence values vary across matchups. This reflects different strategic complex-
ities. Some subgames converge to lower regret values (around 0.013-0.015 in the first two
figures). Others maintain slightly higher equilibrium regret (around 0.018 in the third fig-
ure). In all cases, MC-BM tracks exact BM’s convergence behavior. This suggests that the
approximation preserves the essential learning dynamics. Across different Diplomacy set-
tings, MC-BM consistently showed bounded swap regret. It maintained the computational
efficiency advantage that becomes critical for scaling to larger games.

External and Swap Regret Over Time
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F1GURE 5. Diplomacy subgame: BM vs. MC-BM. MC-BM demonstrates com-
parable convergence, showing that the MC-based approximation works effec-
tively in strategic scenarios.

4.4. Summary. Our experiments reveal two key findings. First, MC-BM delivers swap

regret performance on par with exact BM across multiple domains, including Kuhn Poker,
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External and Swap Regret Over Time
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F1GURE 6. Diplomacy subgame: BM vs. MC-BM. MC-BM again achieves
comparable swap regret, reinforcing the effectiveness of sampling-based ap-
proximation in practice.

External and Swap Regret Over Time
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FiGUuRrRE 7. Diplomacy subgame: BM vs. MC-BM. Sampling-based approxi-
mation in MC-BM leads to comparable convergence across different strategic
matchups.

random games, and Diplomacy subgames. Though Monte Carlo approximation leads to
marginally higher swap regret, the difference remains small and practically acceptable. Sec-
ond, MC-BM’s computational benefits scale dramatically as action spaces expand. With 512
actions, MC-BM runs over 1000 times faster than exact BM, making the minor performance
trade-off highly worthwhile.

5. CONCLUSION

We have presented a new swap regret minimization algorithm, MC-Based Blum-Mansour
(MC-BM), designed to overcome the computational bottleneck in exact Blum-Mansour. By
replacing exact stationary distribution computation with Markov chain sampling, MC-BM
achieves dramatic computational speedups over exact BM while maintaining comparable
swap regret performance. Moreover, our results indicate that the MC-based approximation
introduces only a small, bounded performance gap in practice, with external regret remaining

nearly identical across all experiments.
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Extensive experiments on Kuhn Poker, random games, and Diplomacy subgames confirm
that MC-BM achieves swap regret comparable to exact BM, thereby enabling practical
correlated equilibrium computation in settings where exact methods are prohibitively ex-
pensive. The computational efficiency improvement is particularly strong for large action
spaces. These findings show the potential for MC-BM to be applied in broader multi-agent
Al settings, as scalable swap regret minimization is vital for achieving stronger equilibrium
guarantees in these settings.

Looking ahead, it remains an open theoretical question to establish rigorous regret bounds
for MC-BM that account for the MC-based approximation error. Future work should analyze
how mixing time, spectral gap, and sampling parameters (k and m) affect the accumulated
approximation error over 1" rounds. Additional research directions include adaptive sam-
pling schemes that automatically adjust k& based on observed mixing properties, variance
reduction techniques to improve sample efficiency, and integration with optimistic or predic-
tive updates to potentially accelerate convergence. We believe that continued research along
these lines will help bridge the gap between the strong theoretical guarantees of swap regret
minimization and the computational efficiency required for real-world multi-agent systems.

12



REFERENCES

Aumann, R. J. (1974). Subjectivity and correlation in randomized strategies. Journal of
Mathematical Economics, 1(1):67-96.

Blum, A. and Mansour, Y. (2007). From external to internal regret. Journal of Machine
Learning Research, 8(6):1307-1324.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and Games. Cambridge
University Press.

Gray, J., Lerer, A., Bakhtin, A., and Brown, N. (2020). Human-level performance in no-press
diplomacy via equilibrium search. arXiv preprint arXiv:2010.029235.

Hart, S. and Mas-Colell, A. (2000). A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68(5):1127-1150.

Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54(2):286-295.

Peng, B. and Rubinstein, A. (2023). Fast swap regret minimization and applications to
approximate correlated equilibria.

Syrgkanis, V., Agarwal, A., Luo, H., and Schapire, R. E. (2015). Fast convergence of regular-
ized learning in games. In Advances in Neural Information Processing Systems (NeurIPS),
volume 28, pages 2989-2997.

13



	1. Introduction
	1.1. Monte Carlo-Based Blum-Mansour

	2. Preliminaries
	2.1. Online Learning Setup
	2.2. Regret Definitions
	2.3. Follow-the-Regularized-Leader (FTRL)
	2.4. Blum-Mansour (BM) Algorithm
	2.5. The Computational Bottleneck

	3. Monte Carlo Blum Mansour
	3.1. Algorithm Description
	3.2. Rationale and Advantages
	3.3. Computational Complexity and Extensions
	3.4. Theoretical Considerations
	3.5. Summary

	4. Results
	4.1. Kuhn Poker
	4.2. Random Games
	4.3. Diplomacy Subgames
	4.4. Summary

	5. Conclusion
	References

