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Abstract

In this paper, we explored the Discrete Logarithm Problem (DLP) through introducing Diffie-Hellman
(DH) permutations. For every prime integer p > 7, we also introduced the concept of vulnerable expo-
nents and this concept is motivated by the question of existence of fixed points of DH permutations. We
proved a criterion of vulnerability for exponents relative to a given prime p > 7. We established a lower
bound on the percentage of vulnerable exponents for every safe prime p > 7. For large safe primes, this
bound is very close to 25%. This paper is accompanied by a GitHub repository with a SageMath script
for working with DH permutations, their fixed points and vulnerable exponents. In this paper, we also
listed selected open questions motivated by our exploration.

1 Introduction

There are several challenging problems related to primitive roots modulo a prime integer p. These problems
include Artin’s conjecture [1], [7], [11], exploration of the upper bound [2], [5] for the least primitive root
modulo p, and the Discrete Logarithm Problem (DLP) [9], [10].

For a prime p and its primitive root b, we introduce a bijection

τp,b : {1, 2, . . . , p− 2} ≃−→ {1, 2, . . . , p− 2}

that plays the key role in the Diffie-Hellman key exchange protocol [3]. For this reason, we call τp,b the
Diffie-Hellman (DH) permutation corresponding to the pair (p, b). The presence of fixed points of DH
permutations is a serious weakness of the Diffie-Hellman protocol and, in this paper, we explore natural
concepts related to DH permutations and their fixed points.

For a pair (p, b), a prime p and its primitive root b, we call integers 1 ≤ x ≤ p− 2 exponents. We say that
an exponent x is vulnerable relative to p, if there exists at least one primitive root b modulo p such that
τp,b(x) = x.

For a prime p and an exponent 1 ≤ x ≤ p − 2, we denote by Ωx,p the set of primitive roots modulo p such
that τp,b(x) = x. Elements of Ωx,p are called distinguished primitive roots for the pair (x, p). Clearly,
an exponent 1 ≤ x ≤ p− 2 is vulnerable relative to p if and only if the set Ωx,p is non-empty.

For a prime p, we denote by µ(p) the maximum of the following set:

{nfp(τp,b) | b ∈ the set of prim. roots mod p},

where nfp(τp,b) is the number of fixed points of τp,b. We call primitive roots b modulo p for which nfp(τp,b) =
µ(p) vulnerable.
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Some information about µ(p) and vulnerable primitive roots for a given prime p can be extracted from
computer experiments using [4]. In this paper, we present selected results of such computer experiments.

Theoretical results of this paper include the criterion of vulnerability of an exponent 1 ≤ x ≤ p− 2 for every
prime p ≥ 11 (see Theorem 2.3) and a lower bound for the number of vulnerable exponents relative to a safe
prime p ≥ 11 (see Theorem 3.5).

According to Theorem 2.3, an exponent x is vulnerable (relative to a prime p ≥ 11) if and only if

p− 1

gcd(x, p− 1)
= ordp(x+ 1),

where gcd denotes the greatest common divisor and ordp(x+ 1) is the order of the residues class of (x+ 1)
in the multiplicative group (Z/pZ)×. Theorem 2.3 also contains the formula for the number of distinguished
primitive roots for a pair (x, p), where x is a vulnerable exponent relative to a prime p.

According to Theorem 3.5, the number of vulnerable exponents relative to a safe prime p = 2q + 1 ≥ 11 is
greater or equal to

q − 5

2
.

In particular, for large safe primes p, the ratio of the number of vulnerable exponents to the total number
of exponents is greater or equal to a number that is very close to 1/4.

In our proofs, we mostly use tools of elementary number theory and a couple of facts from basic undergraduate
algebra.

Organization of the paper. The introduction has two additional subsections. In Subsection 1.1, we
establish the notational conventions and, in Subsection 1.2, we give a brief reminder of the Diffie-Hellman
key exchange protocol. In Section 2, we introduce the DH permutations and develop terminology related
to our work. We introduce the concept of vulnerable exponents, prove a criterion of vulnerability for an
exponent 1 ≤ x ≤ p− 2, where p is a prime ≥ 11 (see Theorem 2.3). Given a vulnerable exponent x relative
to a prime p ≥ 11, we describe the set of distinguished primitive roots for a pair (x, p). In Section 2, we also
present selected results of computer experiments. In Section 3, our focus is on safe primes. In this section,
we prove an interesting corollary of Theorem 2.3 (see Corollary 3.2 and Question 4.4 motivated by this
result) and establish a lower bound on the number of vulnerable exponents for every safe prime p ≥ 11 (see
Theorem 3.5). In Section 4, we present several open questions motivated by our exploration. Section 4 also
features new integers sequences related to our work. Finally, in Appendix A, we collect useful information
about GitHub repository [4] that accompanies this paper.

1.1 Notational conventions

For a finite set X, the notation #X is reserved for the size of X.

For a positive integer d, we denote by Sd the symmetric group on d letters, i.e. Sd is the group of bijections

{1, 2, . . . , d} ≃−→ {1, 2, . . . , d}. For a permutation τ , the notation nfp(τ) is reserved for the number of fixed
points of τ .

For a positive integer n and an integer a, we denote by rem(a, n) the (non-negative) remainder of division
of a by n.

For an integer n ≥ 2 and an integer a coprime to n, the notation ordn(a) is reserved for the order of the
residue class

a+ nZ
in the multiplicative group (Z/nZ)×. For example, let p be prime and b be an integer with p ∤ b. Then b is
a primitive root modulo p if and only if ordp(b) = p− 1.
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When a modulus n is clear from the context, a denotes the residue class of a modulo n.

The notation ϕ is reserved for Euler’s ϕ-function (a.k.a. the totient function).

For positive integers d,m, we denote by gcpd(d,m) the greatest divisor of d that is coprime to m. For
instance gcpd(180, 21) = 20 and gcpd(21, 180) = 7.

1.2 A reminder of the Diffie-Hellman key exchange protocol

The Diffie-Hellman key exchange protocol [3] allows two parties (say, Alice and Bob) to agree on the secrete
encryption key using a public channel. This can be done in such way that, computationally, it is very hard
for an eavesdropper who monitors the public channel to get the resulting secret encryption key.

Let p be a large prime1 and b be a primitive root modulo p. The pair (p, b) is the public part of the key.
Alice and Bob place this information in a public channel.

Alice chooses an exponent 1 < xA < p− 1 and Bob chooses an exponent 1 < xB < p− 1. The pair (xA, xB)
is the private part of the key. Alice and Bob make sure that the pair (xA, xB) is not publicly available.
Then Alice (resp. Bob) uses a public channel to send to Bob (resp. to Alice) the remainder rem(bxA , p) of
division of bxA by p (resp. the remainder rem(bxB , p) of division of bxB by p).

After that, Alice can compute the residue class κA :=
(
b
xB

)xA
and Bob can compute the residue class

κB :=
(
b
xA

)xB
. Since (

b
xB

)xA
= b

xAxB
=

(
b
xA

)xB
,

we have κA = κB .

Now Alice and Bob can use the remainder rem(bxAxB , p) as their secrete encryption key. Note that, in
practice, Alice and Bob use only a certain number of bits of the integer rem(bxAxB , p) as their encryption
key.

Suppose that Eve is monitoring the public channel that Alice and Bob use for their communication. If Eve
wants to find xA, then she needs to solve the congruence

bxA ≡ yA mod p, (1)

where yA := rem(bxA , p). This is known as the Discrete Logarithm Problem (DLP) for the multiplicative
group (Z/pZ)×. The brute force approach of solving (1) may be time consuming.

For example, using SageMath, on a 2025 MacBook Air with the processor Apple M4 and the Random Access
Memory (RAM) 24GB, it takes > 4.5 minutes to solve the congruence

3, 405, 601, 951 ≡ 350, 552, 080x mod p

for the prime p = 5, 000, 929, 201. We expect that, for the prime p := 70, 000, 700, 928, 371 and its primitive
root b := 57, 385, 944, 440, 573 solving a similar congruence via the brute force search on the same device
(using SageMath) may take over 170 days!

There are several tools for tackling the DLP and some of these tools are described in [10]. For example,
according to [10, Section 2], there are ways to tackle the DLP for the group (Z/pZ)× if p − 1 is not of the
form 2q, where q is prime. Primes of the form 2q + 1 (with q being prime) are called safe primes. For this
reason, in Section 3 of this paper, we specifically focus on DH permutations for safe primes.

1In practice, we are interested in primes with at least 100 decimal digits.
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Remark 1.1 Neither the author nor the mentor knew about the Brizolis conjecture [6, Section F9], [8], [9].

The DH permutation τp,b can be naturally extended to a bijection τp,b : Z/(p − 1)Z ≃−→ Z/(p − 1)Z. The

permutations introduced in [8] may be also identified with bijections Z/(p− 1)Z ≃−→ Z/(p− 1)Z. Both these

bijections and the DH permutations τp,b are a part of a larger family of bijections τp,b,γ : Z/(p − 1)Z ≃−→
Z/(p− 1)Z defined by the formula

τp,b,γ(α) := τp,b(α) + γ, α, γ ∈ Z/(p− 1)Z .

It makes sense to explore this larger family of permutations parameterized by a prime p, a primitive root b
modulo p and a residue class γ ∈ Z/(p− 1)Z.

Acknowledgments. We are thankful to Pavel Etingof, Slava Gerovitch, and Dmytro Matvieievskyi for or-
ganizing the program “Yulia’s Dream” and giving us an opportunity to connect with like-minded individuals.
We are thankful to Pavel Etingof, Yury Grabovsky, Darij Grinberg, Borys Holikov, Yelena Mandelshtam,
Vadym Pashkovskyi and Alex Youcis for their stimulating questions and suggestions. We are thankful to
our families for their support and providing us with the conditions to work on this project.

2 Diffie-Hellman permutations and vulnerable exponents

Let p be a prime integer ≥ 11 and b be a primitive root modulo p. Since the residue class of b generates the
multiplicative group (Z/pZ)×, the assignment

x 7→ rem(bx, p)

defines a bijection from the set {1, 2, . . . , p− 2} to the set {2, 3, . . . , p− 1}.

Thus the formula
τp,b(x) := rem(bx, p)− 1 (2)

defines a bijection {1, 2, . . . , p − 2} ≃−→ {1, 2, . . . , p − 2} and we call this bijection the Diffie-Hellman
permutation corresponding to the pair (p, b). In this set-up, an integer x ∈ {1, 2, . . . , p − 2} is called an
exponent.

The presence of fixed points of the permutation τp,b is a serious weakness of the Diffie-Hellman protocol.
Indeed, if Alice’s exponent xA is a fixed point of τp,b, then an eavesdropper (say, Eve) can easily get

xA = rem(bxA , p) − 1 and hence Eve can calculate (b
xB

)xA = b
xAxB

. Similarly, if Bob’s exponent xB is a
fixed point of τp,b, then Eve can easily get xB = rem(bxB , p)−1 and hence Eve can calculate (b

xA
)xB = b

xAxB
.

Thus, if Alice or Bob accidentally chooses a fixed point of τp,b as their exponent, then they essentially place
the private part of their key into the public channel.

For a prime p, we set

µ(p) := max({nfp(τp,b) | b ∈ the set of prim. roots mod p}), (3)

where nfp(τp,b) is the number of fixed points of the permutation τp,b. Let us also denote by θ(p) the percentage
of primitive roots b for which nfp(τp,b) = µ(p).

Using [4], one can compute values of µ and θ for various prime integers. The table below contains this
information for selected primes:
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prime p 100 · µ(p)/(p− 2) θ(p)
103 4.95% 3.13%
911 0.55% 0.35%
1009 0.4% 1.04%
1823 0.27% 0.33%
3343 0.15% 0.36%
5557 0.13% 0.05%

The second column in the table features the values 100 · µ(p)/(p− 2) for the specified prime integers p and
the third column features the values of θ.

Let b be a primitive root modulo p. If the number of fixed points of the permutation τp,b equals µ(p) (i.e.
the worst case scenario), then we call b a vulnerable primitive root. The following table for primes
11 ≤ p ≤ 107 and their vulnerable primitive roots is produced using [4]:

prime p vulnerable primitive roots
11 2, 6
13 2
17 7, 10, 11, 12
19 3
23 19
29 2, 8
31 13, 21
37 22
41 26
43 20, 28
47 5, 22, 23, 44
53 2, 8, 12, 18, 19, 34, 41, 51

prime p vulnerable primitive roots
59 11
61 2
67 31, 51
71 7, 21, 22, 28, 59, 65
73 14
79 6, 39
83 15
89 27, 41
97 59, 87
101 2
103 77
107 2, 91

Further related results of [4] are shown in Figures 1 and 2. Figure 1 shows the plot of the values

Figure 1: Percentages of fixed points for primes
571 ≤ p ≤ 7109 in the worst case scenario

Figure 2: Percentages of vulnerable primitive
roots for primes 571 ≤ p ≤ 7109

100 · µ(p)/(p − 2) for all primes 571 ≤ p ≤ 7109. Figure 2 shows the percentages of vulnerable primitive
roots for primes 571 ≤ p ≤ 7109. (There are 807 primes in this range.)

Definition 2.1 Let p be a prime ≥ 11. We say that an exponent x ∈ {1, 2, . . . , p−2} is vulnerable relative
to p if there exists a primitive root b modulo p such that

τp,b(x) = x.
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Note that x = 1 is a vulnerable exponent relative to p if and only if 2 is a primitive root modulo p.

For an integer 1 ≤ x ≤ p − 2, we denote by Ωx,p the set of all primitive roots 1 < b ≤ p − 1 such that
τp,b(x) = x. We call elements of Ωx,p distinguished primitive roots for the pair (x, p). Clearly a positive
integer 1 ≤ x ≤ p− 2 is a vulnerable exponent relative to p if and only if Ωx,p ̸= ∅. In the next subsection,
we will give an explicit description of the set Ωx,p for every prime p ≥ 11 and for every vulnerable exponent
x relative to p.

Example 2.2 The integer p := 9241 is prime and there are 1920 primitive roots modulo p. According to
[4], 777 exponents out of 9239 are vulnerable. The table below shows the distinguished primitive roots for
selected pairs (x, p) (with x being vulnerable and p = 9241):

exponent x disting. prim. roots for the pair (x, 9241)
230 2754, 4078, 1314, 7150, 6487, 5163, 7927, 2091

388 1046, 247, 8195, 8994

430 1873, 4270, 3370, 7594, 7368, 4971, 5871, 1647

679 303, 2869, 7671, 7764, 959, 7830

1250 3498, 763, 3935, 2478, 5743, 8478, 5306, 6763

1310 658, 6276, 7139, 4444, 8583, 2965, 2102, 4797

1561 6918, 2647, 6734, 5876, 5163, 4657

1841 7969, 4242, 3202, 4578, 5743, 4185

2093 4336, 5068, 3673, 4097, 4696, 3170

2116 2718, 8805, 6523, 436

2317 455, 8639, 1223, 8182, 2965, 1053

We have
{#Ωx,9241 | 1 ≤ x ≤ 9239} = {1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 40}

and x := 3608 is the only exponent that has 40 distinguished primitive roots. Here is the list of the first 12
distinguished primitive roots for the pair (3608, 9241):

129, 206, 217, 470, 537, 857, 1082, 1404, 1418, 1482, 2107, 2271.

2.1 A criterion of vulnerability

The goal of this section is to prove the following statement:

Theorem 2.3 Let p be a prime ≥ 11. An integer 1 ≤ x ≤ p − 2 is a vulnerable exponent (relative to p) if
and only if

ordp(x+ 1) =
p− 1

gcd(x, p− 1)
. (4)

If x is a vulnerable exponent relative to p, d := gcd(x, p − 1), m := (p − 1)/d and d1 is the greatest divisor
of d that is coprime to m, then the number of primitive roots 1 < b ≤ p − 1 such that τp,b(x) = x equals
ϕ(d1)d/d1.

Proof. Condition (4) is clearly necessary. Indeed, let β be a generator of the multiplicative group (Z/pZ)×
for which

βx = (x+ 1) + pZ.

Since the order of βx in (Z/pZ)× is (p− 1)/ gcd(x, p− 1), condition (4) follows.
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Let us now assume that x satisfies equation (4) and let us choose a generator β0 of (Z/pZ)×.

Since 2 ≤ x+1 ≤ p− 1 and β0 is a generator of (Z/pZ)×, there exists a unique exponent 1 ≤ t ≤ p− 2 such
that

βt
0 = (x+ 1) + pZ. (5)

Condition (4) implies that the order of βt
0 in (Z/pZ)× is (p− 1)/ gcd(x, p− 1). Hence

p− 1

gcd(t, p− 1)
=

p− 1

gcd(x, p− 1)
,

or equivalently,
gcd(t, p− 1) = gcd(x, p− 1).

We set
d := gcd(x, p− 1), m := (p− 1)/d, d1 := gcpd(d,m), d2 := d/d1 .

Since β0 is a generator of the cyclic group (Z/pZ)×,

{βk
0 | 1 ≤ k ≤ p− 2, gcd(k, p− 1) = 1}

is the set of all generators of (Z/pZ)×.

Recall that Ωx,p is the set of all primitive roots b modulo p such that τp,b(x) = x. Since the set Ωx,p is in
bijection with the set of generators β of (Z/pZ)× for which

βx = (x+ 1) + pZ

and (x + 1) + pZ = βt
0, the above observation about generators of (Z/pZ)× implies that the set Ωx,p is in

bijection with the following set:

Ξx,p,β0 := {k ∈ {1, 2, . . . , p− 2} | gcd(k, p− 1) = 1, βkx
0 = βt

0}.

The remainder of the proof goes as follows. First, we will show that there exists a unique integer 1 ≤ k0 ≤
m− 1 such that

βk0x
0 = βt

0 . (6)

Second, we will use the integer k0 to construct a bijection from the set

(Z/d1Z)× × {0, 1, . . . , d2 − 1}

to the set Ξx,p,β0
.

By constructing such a bijection, we will achieve two goals. First, we will prove the “if” implication of the
first statement of the theorem. Second, we will prove the second statement about the number of distinguished
primitive roots for a pair (x, p), where x is a vulnerable exponent relative to p.

Since ord(β0) = p− 1, the equation
βkx
0 = βt

0 . (7)

is equivalent to
kx ≡ t mod (p− 1). (8)

The congruence is equivalent to kx− t = (p− 1)r, r ∈ Z. Factoring out the greatest common divisor:

t = t1d, x = x1d,
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we get
(kx1 − t1)d = mrd ⇐⇒ kx1 − t1 = mr.

Or going back to congruence form,

kx1 ≡ t1 mod m ⇐⇒ kx1 = t1 ∈ (Z/mZ)× .

Since x1 is a unit in the ring Z/mZ, there is only one integer 0 ≤ k0 < m that is a solution of the congruence
in (8). Since t1 is also a unit in Z/mZ, we can conclude that

gcd(k0,m) = 1. (9)

In particular, k0 ≥ 1.

We can also conclude that the solution set of the congruence in (8) is {k0 +ms | s ∈ Z}. Hence

Ξx,p,β0 = {k0 +ms | s ∈ Z, gcd(k0 +ms, p− 1) = 1, 1 ≤ k0 +ms ≤ (p− 2)}.

Note that
gcd(k0 +ms, p− 1) = 1 ⇐⇒ gcd(k0 +ms, d1) = 1,

where d1 is the greatest divisor of d that is coprime to m. Therefore

Ξx,p,β0 = {k0 +ms | s ∈ Z, gcd(k0 +ms, d1) = 1, 1 ≤ k0 +ms ≤ (p− 2)}. (10)

Let us choose ν ∈ (Z/d1Z)× and consider the equation

k0 +ms = ν . (11)

Since m is coprime to d1, there is a unique integer sν ∈ {0, 1, ..., d1 − 1} such that k0 +msν = ν. Moreover,
the set of integers s satisfying (11) is

{sν + d1l | l ∈ Z}.

Combining this observation with (10) and the implications

k0 +ms < p− 1 = md1d2 ⇐⇒ s ≤ (d1d2 − 1) ⇐⇒ l ≤ d2 − 1,

we get
Ξx,p,β0

= {k0 +m(sν + d1l) | ν ∈ (Z/mZ)×, 1 ≤ l ≤ d2 − 1}. (12)

To complete the proof, we consider the natural map

ψ : (Z/d1Z)× × {0, 1, ..., d2 − 1} → Ξx,p,β0

defined by the formula:
ψ(ν, l) := k0 +m(sν + ld1).

It is clear from (12) that the map ψ is surjective. To prove that ψ is injective, we consider (ν1, l1), (ν2, l2) ∈
(Z/d1Z)× × {0, 1, . . . , d2 − 1} such that ψ(ν1, l1) = ψ(ν2, l2). Then

k0 +m(sν1 + l1d1) = k0 +m(sν2 + l2d1) (13)

⇐⇒ m(sν1
+ l1d1) = m(sν2

+ l2d1).

Passing to residue classes modulo d1, we get

msν1 = msν2 .

Due to equation (11), ν1 = ν2. Hence sν1
= sν2

and substituting this into (13), we get l1 = l2. So

ψ(ν1, l1) = ψ(ν2, l2) ⇐⇒ (ν1, l1) = (ν2, l2).

Thus we established the injectivity and the theorem is proved. □
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3 Vulnerable exponents for safe primes

A prime integer q is called a Germain prime if the integer 2q + 1 is also prime. Primes of the form 2q + 1
(with q being prime) are called safe.

The goal of this section is to establish a lower bound on the number of vulnerable exponents for every safe
prime p ≥ 11.

First, let us prove that, under our assumptions, the integer q is never a vulnerable exponent:

Proposition 3.1 If q is a prime ≥ 5 and p := 2q + 1 is also prime, then q is not a vulnerable exponent
relative to p.

Proof. Since gcd(q, 2q) = q, the integer q is a vulnerable exponent relative to p if and only if

ord(q + 1) = 2. (14)

We know that −1 is the only element of (Z/pZ)× of order 2. Thus (14) implies that q + 1 ≡ −1 mod p.
Hence q + 1 = 2q − 1 which contradicts our assumption q ≥ 5. □

Let us now use Theorem 2.3 and Proposition 3.1 to prove the following property of vulnerable exponents of
safe primes:

Corollary 3.2 Let p be a safe prime ≥ 11. If x is a vulnerable exponent relative to p, then there is a unique
primitive root bx modulo p such that τp,bx(x) = x.

Proof. Let x be a vulnerable exponent relative to p, d := gcd(x, 2q), m = 2q/d and d1 = gcpd(d,m). Our
goal is to prove that ϕ(d1)d/d1 = 1.

Since 1 ≤ x < 2q and x ̸= q, d either equals 1 or 2. In the first case (d = 1), d1 = 1 and ϕ(d1)d/d1 = 1. In
the second case (d = 2), we have m = q, d1 = 2 and d/d1 = 2. Thus ϕ(d1)d/d1 = ϕ(2) = 1.

Since ϕ(d1)d/d1 = 1, the second statement in Theorem 2.3 implies that, modulo p, there is only one primitive
root bx such that τp,bx(x) = x. □

Our next goal is to prove two auxiliary statements that will be used in establishing a lower bound for the
number of vulnerable exponents for every safe prime p ≥ 11.

Claim 3.3 An element γ ∈ (Z/pZ)× has order q if and only if

γ = u2

for an integer 2 ≤ u ≤ p− 2. If ord(γ) = q, then the equation α2 = γ has exactly two solutions in (Z/pZ)×.
More precisely, if u2 = γ, then α = p− u is the second solution of α2 = γ.

Proof. To prove the direct implication, we choose a generator β of (Z/pZ)×. Then γ = βt for exactly one
integer 0 ≤ t ≤ p− 2. Since ord(γ) = q, we have:

q = ord(βt) =
2q

gcd(t, 2q)
.

Thus, gcd(t, 2q) = 2, which means that t is even. If t = 2t1, then

γ = β2t1 = (βt1)2 = u2 .
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It is obvious that u /∈ {0, 1, p − 1}. So we conclude that 2 ≤ u ≤ p − 2. Now, let us prove the opposite
implication. We know that γ = u2 for an integer 2 ≤ u ≤ p − 2. Due to Lagrange’s Theorem, ord(u) ∈
{1, 2, q, 2q}. However, the order of u cannot be 2, because than u2 = 1 and u = 1 or u = p− 1, but

2 ≤ u ≤ p− 2. Then, ord(u) = q or ord(u) = 2q. If the order of u is 2q, ord(u2) =
2q

gcd(2, 2q)
= q, because

q is odd and gcd(2, 2q) = 2. If ord(u) = q, then ord(u2) = q, because q is odd. Hence, we proved that, if
γ = u2 for an integer 2 ≤ u ≤ p− 2, the element γ := u2 has order q.

Since Z/pZ is a field, the equation α2 = γ cannot have more than two solutions. Thus, if u2 = γ, then
{u, p− u} is clearly the solution set of α2 = γ. It remains to prove that u ̸= p− u.

We may assume, without loss of generality, that 2 ≤ u ≤ p−2 (recall that ord(γ) = q). Then 2 ≤ p−u ≤ p−2.

Since p is odd, u ̸= p − u. Combining this observation with u, p − u ∈ {0, 1, . . . , p − 1}, we conclude that
u ̸= p− u. □

Claim 3.4 If q ∈ Z≥5, p = 2q+1 and m0 = (q− 1)/2, then q is the only integer that belongs to the interval

(
√
m0p,

√
(m0 + 1)p).

Proof. The statement follows from the inequalities

q − 1 <
√
m0p < q <

√
(m0 + 1)p) < q + 1. (15)

Let us prove the second inequality and the fourth inequality in (15).

Since q2 − q/2− 1/2 < q2 and q2 − q/2− 1/2 = (q + 1/2)(q − 1), we have

√
m0p =

√
(q + 1/2)(q − 1) < q.

Since
√

(m0 + 1)p) =
√
(q + 1)(q + 1/2), the inequality

√
(m0 + 1)p) < q + 1 follows easily from the in-

equality (q + 1/2)(q + 1) < (q + 1)2.

We leave the proofs of the remaining two inequalities to the reader. □

We can now formulate and prove the second result of this research paper:

Theorem 3.5 Let p = 2q + 1 be a safe prime ≥ 11. Then the ratio of the number of vulnerable exponents
to the total number of exponents (relative to p) is greater or equal to

q − 5

4q − 2
. (16)

For p = 11, 5 out of 9 exponents are vulnerable.

Proof. Let us denote by X the set of all exponents relative to p = 2q + 1, i.e. X := {1, 2, ..., 2q − 1}.

Since {2, q, 2q} is the set of all divisors t of 2q with t > 1, we have

X = X2 ⊔Xq ⊔X2q ,

where Xt =
{
x ∈ X | 2q

gcd(x, 2q)
= t

}
.

It is easy to see that

X2 = {q}, Xq = {2, 4, ..., 2q − 2}, X2q = {1, 3, ..., 2q − 1} − {q}. (17)
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Since q is not a vulnerable exponent (see Proposition 3.1), we only have to look at vulnerable exponents in
Xq and X2q.

Let us denote the set of vulnerable exponents in Xq (resp. X2q) as X
vul
q (resp. as Xvul

2q ).

To prove the first statement of the theorem, we will show that

#Xvul
q ≥ q − 3

4
, #Xvul

2q ≥ #Xvul
q − 1. (18)

To prove the first inequality in (18), we introduce two auxiliary sets:

Y = {y | y is odd, 3 ≤ y ≤ 2q − 1, ord(y) = q}, (19)

U := {2 ≤ u ≤ q | rem(u2, p) is odd}. (20)

It is easy to see that the assignment x 7→ y := x+ 1 defines a bijection from Xvul
q to Y .

Due to Claim 3.3, the assignment
u 7→ rem(u2, p)

defines a bijection from U to Y . Thus #U = #Xvul
q and our goal is to prove that

#U ≥ q − 3

4
. (21)

Let m0 := (q − 1)/2. Due to Claim 3.4, every integer 2 ≤ u ≤ q belongs to exactly one interval
(
√
mp,

√
(m+ 1)p), where m is an integer

0 ≤ m ≤ m0 .

Moreover, u ∈ U ∩ (
√
mp,

√
(m+ 1)p) if and only if u is odd and m is even or u is even and m is odd.

Let Em := (
√
mp,

√
(m+ 1)p) ∩ 2Z and Im := (

√
mp,

√
(m+ 1)p) ∩ (2Z+ 1).

Combining the above observation with 1 /∈ U , we conclude that:

#U = (#I0 − 1) +

m is even∑
2≤m≤m0

#Im +

m is odd∑
1≤m≤m0

#Em .

Since (q − 1) is even, there are exactly (q − 1)/2 odd integers in the range 2 ≤ u ≤ q. Hence

#U =
q − 1

2
+

m is odd∑
0<m≤m0

(#Em −#Im). (22)

For every 1 ≤ m ≤ m0, #Em−#Im ≥ −1. It is also easy to see that the number of odd integers 1 ≤ m ≤ m0

is ≤ m0+1
2 = q+1

4 . Combining these observations with (22), we arrive at the desired inequality:

#U ≥ q − 1

2
− q + 1

4
=
q − 3

4
.

Since we proved the inequality in (21), the first inequality in (18) is also proved.

To prove the second inequality in (18), we notice that

{x+ 1 | x ∈ X2q} = {s ∈ 2Z | 2 ≤ s ≤ p− 1, s ̸= q + 1}.

11



Thus Xvul
2q is in bijection with the set S := {s ∈ 2Z | 2 ≤ s ≤ p− 1, s ̸= q + 1, ord(s) = 2q}.

Since ord(p− 1) = 2 ̸= 2q, we conclude that

S = {s ∈ 2Z | 2 ≤ s ≤ p− 3, s ̸= q + 1, ord(s) = 2q}. (23)

We also claim that the assignment y 7→ p− y defines a bijection from the set Y (see (19)) to the set

S̃ := {s ∈ 2Z | 2 ≤ s ≤ p− 3, ord(s) = 2q}. (24)

Indeed, since yq = 1 and q is odd, (−y)q = −1 ̸= 1. Since −y ̸= 1, (−y)2 = y2 ̸= 1 and q is prime, we
conclude that ord(−y) = 2q.

Vice versa, let s ∈ S̃. Since sq ̸= 1 and (sq)2 = 1, we conclude that sq = −1. Hence (−s)q = 1. Since −s ̸= 1
and q is prime, we conclude that ord(−s) = q.

We proved that the assignment y 7→ s := p− y defines a bijection from the set Y to the set S̃.

It is clear that S ⊂ S̃ and

#S =

#S̃ if ord(q + 1) ̸= 2q

#S̃ − 1 if ord(q + 1) = 2q.
(25)

Combining the above arguments, we conclude that

#Xvul
2q = #S ≥ #S̃ − 1 = #Y − 1 = #Xvul

q − 1.

Thus the second inequality in (18) is also proved.

Since the number of vulnerable exponents relative to p equals #Xvul
q + #Xvul

2q , the inequalities in (18)
imply that the number of vulnerable exponents relative to p is greater or equal to

q − 3

4
+
q − 3

4
− 1 =

q − 5

2
.

The first statement of the theorem follows.

The statement about p = 11 is proved by a direct calculation or using [4]. □

Remark 3.6 Note that, when the Germain prime q is large, the ratio in (16) is close to 1/4. Please see
Question 4.3 in the next section.

Remark 3.7 There are examples of safe primes p = 2q + 1 for which q + 1 is a primitive root modulo p.
Thus the set S in the proof of Theorem 3.5 may be a proper subset of S̃ (see (23) and (24)). In fact, using
[4], one can show that the number of safe primes 11 ≤ p = 2q+1 ≤ 50, 000, 747 for which q+1 is a primitive
root equals 62, 323. In other words, approximately, 0.499% of safe primes in the range 11 ≤ p ≤ 50, 000, 747
satisfy this property.

The following statement is an obvious consequence of Theorem 3.5:

Corollary 3.8 For every safe prime p ≥ 11, there exists a primitive root b modulo p such that the DH
permutation τp,b has a fixed point. □
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4 Open questions

Corollary 3.8 motivates the following question:

Question 4.1 Let p be a prime ≥ 11. Is this true that p has a primitive root b such that the DH permutation
τp,b has a fixed point?

We encourage the reader to compare this question to the Brizolis conjecture [6, Section F9], [9].

Clearly, if every prime p ≥ 11 has a vulnerable exponent, then the answer to Question 4.1 is “yes”.

Question 4.2 Let p be a prime ≥ 11. Is this true that the percentage of vulnerable exponents relative to p
is > 5%?

Our computer experiments [4] showed that, for all primes 11 ≤ p < 180181, the percentage of vulnerable
exponents is > 7%. However, for p = 180181, this number is 6.99%. Due to these results every prime
11 ≤ p ≤ 180181 has a primitive root b such that the DH permutation τp,b has a fixed point.

According to our computer experiments [4], safe primes typically have a large percentage of vulnerable
exponents. For example, for every safe primes 59 ≤ p ≤ 1, 276, 103, the percentage of vulnerable exponents
relative to p is > 42%.

Question 4.3 Is this true that for every safe prime p ≥ 59, the percentage of vulnerable exponents is > 42%?

Figure 3 shows the plot of the percentages of vulnerable exponents for all safe primes 59 ≤ p ≤ 165, 059.
(There are 997 safe primes in this range.)

Let p be a large safe prime. Due to Theorem 3.5, roughly a quarter of exponents relative to p or more2 are
vulnerable. Due to Corollary 3.2, for every vulnerable exponent x (relative to p), there is a unique primitive
root bx modulo p such that

(bx)
x ≡ (x+ 1) mod p. (26)

The description of the set Ωx,p of distinguished primitive roots for a pair (x, p) presented in the proof of
Theorem 2.3 shows that, given a vulnerable exponent x, one can find the primitive root bx relatively fast.
However, given the primitive root b := bx, solving the congruence bx ≡ (x + 1) mod p is probably very
challenging.

Question 4.4 Let p be a safe prime and σ be the function from the set of vulnerable primitive roots (relative
to p) to the set of primitive roots modulo p given by the formula

σ(x) := bx,

where bx is the unique primitive root modulo p for which equation (26) holds. Is σ a pre-image resistant
function?

The ability to factor large integers fast does not seem to help finding the pre-image of this function. So, if
σ is indeed pre-image resistant, it may be very useful in cryptographic applications.

2According to Figure 3, the situation may be even more encouraging.
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Figure 3: Percentages of vulnerable exponents for 997 safe primes 59 ≤ p ≤ 165, 059

4.1 Selected integer sequences

Ideas presented in this paper allow us to generate numerous integer sequences and, at the time of writing,
according to [13], all these sequences3 are new:

• Here is the sequence of numbers nfp(τp,gp) for primes 7 ≤ p ≤ 107:

0, 2, 3, 0, 3, 0, 2, 0, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 3, 0, 0, 3, 0, 4.

For comparison, here is the sequence of numbers nfp(τp,gp) for primes 55, 579 ≤ p ≤ 55, 813:

3, 2, 3, 0, 2, 2, 1, 0, 2, 3, 0, 2, 1, 0, 4, 1, 1, 3, 0, 4, 4, 3, 1, 0, 2, 2.

• There are 1228 primes 3 ≤ p < 10, 000 and, for 286 primes in this range, the permutation τp,gp has no
fixed points. Here is the list of the first 12 primes that satisfy this property:

7, 17, 23, 31, 41, 43, 89, 97, 103, 127, 137, 167.

• Recall that, for a prime p, µ(p) denotes the number of fixed points of a DH permutation for p in the
worst case scenario (see (3)). Here is the sequence of values of µ for primes 7 ≤ p ≤ 107:

0, 2, 3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 4, 3, 3, 3, 5, 4.

For comparison, here is the sequence of values of µ for the primes 10559 ≤ p ≤ 10789:

5, 6, 7, 7, 7, 7, 6, 6, 5, 7, 6, 7, 5, 6, 7, 7, 6, 6, 6, 6, 6, 5, 5, 6, 6, 7.

3Recall that gp is the smallest primitive root modulo a prime p.
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• Here is the list of numbers of vulnerable primitive roots for all primes 1009 ≤ p ≤ 1171:

3, 7, 4, 1, 1, 5, 8, 2, 8, 1, 9, 1, 1, 2, 1, 1, 10, 1, 9, 1, 1, 1, 1, 2, 4.

• Here is the list of orders of the DH permutations τp,gp for all primes 7 ≤ p ≤ 107:

6, 10, 6, 26, 8, 84, 46, 182, 340, 60, 310, 204, 4950, 240, 126, 814, 150, 828,

2820, 3068, 992, 27336, 240, 1998, 840.

• For a prime p, we denote by κ(p) the number of cycles of the permutations τp,gp . Here is the list of
values of κ for all primes 7 ≤ p ≤ 107:

2, 4, 5, 2, 6, 3, 4, 3, 6, 5, 2, 6, 7, 5, 10, 6, 5, 6, 8, 7, 4, 4, 11, 6, 9.

A Comments about the GitHub repository [4]

GitHub repository [4] accompanies this research paper. At the time of writing, it consists of the SageMath
script ‘FixedPoints DH.sage’, the file ’README.md’, and several image files.

Here are the descriptions of selected functions defined in the script ‘FixedPoints DH.sage’:

• For a prime p and an integer b coprime to p, the command order mod(b, p) returns the order of the
residue class of b in the multiplicative group (Z/pZ)× of units of the ring Z/pZ.

• For a prime p and an integer b coprime to p, the command is primitive(b, p) returns True if b in a
primitive root modulo p; otherwise, it returns False.

• For a prime p, prim roots(p) is a generator of all primitive roots modulo p, e.g. the command
list(prim roots(p)) returns

[5, 10, 20, 17, 11, 21, 19, 15, 7, 14]

• Let p be prime, b be a primitive root modulo p and x be any integers; the command DH perm(p, b, x)
returns τp,b(x); usually, we assume that 1 ≤ x ≤ p− 2.

• Let p be prime and b be a primitive root modulo p; the command DH order(p, b) returns the order of
the DH permutation τp,b.

• Let p be prime and b be a primitive root modulo p; the command DH cycle type(p, b) returns the cycle
type of the DH permutation τp,b.

• Let p be prime and b be a primitive root modulo p; the command fixed points(p, b) returns the tuple
of all fixed points of the Diffie-Hellman permutation τp,b.

• For a prime p, the command fixed pts4smallest prim root(p) returns the tuple of all fixed points of
the Diffie-Hellman permutation τp,gp , where gp is the smallest primitive root modulo p; equivalently,
one can execute the command fixed points(p, primitive root(p)).

• For a prime p > 7, the commands vul exp(p) and vul exp1(p) return the list of all vulnerable exponents
relative to p; usually, the resulting list is not sorted; the time performance of both commands vul exp(p)
and vul exp1(p) is comparable.

• vul exp slow() is a slow version of vul exp(); it was used for testing the functions vul exp() and
vul exp1().
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• Let p be a safe prime > 7; the command vul exp4safe(p) returns the list of all vulnerable exponents
relative to p; note that, under our assumptions, q and p− 2 are not vulnerable exponents; so we ignore
them; also, (x + 1)2 is not congruent to 1 if 1 ≤ x ≤ p − 4 and x in odd; usually, the output of
vul exp4safe() is not a sorted list.

• Let p be a safe prime > 7 and b be a primitive root modulo p; the command fixed points4safe(p, b)
returns the list of all fixed points of the permutation τp,b.

• For a prime p > 7, the command percentage vul exp(p) returns the percentage of vulnerable exponents
among the total number of (p− 2) exponents relative to p.

• For a safe prime p > 7, the command percentage vul exp4safe(p) returns the percentage of vulnerable
exponents among the total number of (p− 2) exponents relative to p.

• Let p be a prime and x be an integer 1 ≤ x ≤ p − 2; the command disting prim roots(x, p) returns
the tuple of primitive roots b modulo p for which τp,b(x) = x.

• For a prime p and a vulnerable exponent x, the command num disting prim roots(x, p) returns the
size of the set Ωx,p of distinguished primitive roots for the pair (x, p); the command should not be
applied if x is not a vulnerable exponent.

• Let x be a vulnerable exponent relative to a prime p and b be a primitive root modulo p; the command
disting exp(x, p, b) returns the tuple of integers k ∈ {1, . . . , p− 2} such that τp,bk(x) = x.

• For a prime p, the command root profile(p, timed = None) returns the list L of nonnegative integers
of length p−1; if an integer 0 ≤ k ≤ p−2 is coprime to (p−1), then L[k] is the number of fixed points
of the DH permutation τp,gk

p
, where gp is the smallest primitive root modulo p; if k is not coprime to

(p− 1), then L[k] = 0.

• For a safe prime p = 2q + 1, the command root profile4safe(p) returns the list L of non-negative
integers of length (p− 1); if an integer 0 ≤ k ≤ p− 2 is coprime to 2q, then L[k] is the number of fixed
points of the DH permutation τp,gk

p
; otherwise, L[k] = 0.

• For a prime p > 7, the command max num fp(p) returns the value µ(p) of the function µ (see (3)).

• For a safe prime p > 7, the command max num fp4safe(p) returns the value µ(p) of the function µ
(see (3)).

• For a prime p, the command vul prim roots(p) returns the list of vulnerable primitive roots modulo
p; the output may not be sorted.

By loading the script ‘FixedPoints DH.sage’, one loads the list ’SP’ of all safe primes 11 ≤ p ≤ 50, 000, 747.
There are 124, 849 safe primes in this range.
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