Generalized Markov traces

H. Zhylinskyi, mentor K. Tolmachov

Yulia's Dream Program

2025

Knots and links

Definition

Knot is an embedding of a circle S^1 into \mathbb{R}^3 . Link is a disjoint union of knots.

Braids and braid group

Definition

The braid on n strands is formed when n points on a horizontal line are connected by n strands to the n points on another horizontal line directly below, and where the strands descend all the time along the way.

Braid group Br_n is a group of braid equivalence classes under ambient isotopy. It is well-known that Br_n is a group on generators $\sigma_1, \ldots, \sigma_{n-1}$ subject to the braid relations:

- $\bullet \ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1},$
- $\sigma_i \sigma_j = \sigma_j \sigma_i$ for |i j| > 1.

Braid closure

Braid β can be turned into a link by connecting the opposite nodes of β . This operation is called the closure of a braid β , and we will denote it by $\overline{\beta}$.

Coxeter groups

Definition

Coxeter group W is a group with presentation $\langle s_1,\ldots,s_n \mid (s_is_j)^{m_{ij}}=1 \rangle$ where $m_{ii}=1 \ \forall i=\overline{1,n}$ and $m_{ij}=m_{ji}\geq 2$ is an integer or ∞ for $i\neq j$.

Note that the symmetric group is a Coxeter group with $m_{i,i+1}=m_{i+1,i}=3$ and the braid group is obtained if we forget the relations $s_i^2=1$.

Iwahori-Hecke algebra

Definition

The Iwahori-Hecke algebra $\mathcal{H}(W)$ is a unital algebra over a ring $\mathbb{Z}[v,v^{-1}]$ generated by the elements

$$t_{s_i}:=t_i,s_i\in S=\{s_1,\ldots,s_n\},$$

where S is the set of generators of W, satisfying the following relations:

$$t_i^2 = (v_i - v_i^{-1})t_i + 1,$$

$$\underbrace{t_i t_j \cdots}_{m_{ij}} = \underbrace{t_j t_i \cdots}_{m_{ij}}.$$

Embeddings of Dynkin diagrams

Dynkin diagram of a Coxeter group W is a graph with an adjacency matrix (m_{ij}) . For simplicity, 2-edges are omitted, 3-edges are drawn as single edges and 4-edges are drawn as double edges.

Let $X_n = A_n$, B_n , D_n . For the inclusion of Dynkin diagrams $\Gamma_{n-1} \subset \Gamma_n$ shown below where $|\Gamma_n \setminus \Gamma_{n-1}| = 1$, we define an embedding $\iota : \mathcal{H}(X_{n-1}) \hookrightarrow \mathcal{H}(X_n)$.

Full twist and Jucys-Murphy elements

Define the canonical lift $w\mapsto \widetilde{w}$ from W to $\mathcal{H}(W)$ as follows: if $w=s_{i_1}\cdots s_{i_r}$ is a reduced expression, then $\widetilde{w}=t_{i_1}\cdots t_{i_r}$. Let $w_0\in W$ be the longest element.

Proposition

The full twist $FT(W) = \widetilde{w_0}^2$ is central in $\mathcal{H}(W)$.

Let $J(X_n) = FT(X_n) \cdot FT(X_{n-1})^{-1}$ be the Jucys-Murphy elements in type X_n and $j(X_n) = t_{w_0, X_n} \cdot t_{w_0, X_{n-1}}^{-1}$.

 $J(X_i)$ is a collection of commuting elements in $\mathcal{H}(W)$, playing an important role in its representation theory.

Markov trace

Theorem (Markov)

Given two braids $\beta_1, \beta_2 \in Br$, their closures are equivalent links if and only if β_2 can be obtained from β_1 by a sequence of the following moves:

- Conjugation of $\alpha \in Br_n$ in Br_n ;
- Replacing $\alpha \in Br_n$ by $\alpha \sigma_n^{\pm 1} \in Br_{n+1}$.

This theorem inspires the following theorem/construction:

Markov trace

Let

$$T_n = t_n^{-1} \dots t_2^{-1} t_1 t_2 \dots t_n \in \mathcal{H}(B_n),$$

 $U_n = t_n^{-1} \dots t_3^{-1} t_1^{-1} t_2 t_3 \dots t_n \in \mathcal{H}(D_n)$

Theorem (Jones [3], Geck-Lambropoulou [1])

There is a system of traces $Tr_{X_n}: \mathcal{H}(X_n) \to \mathbb{Q}[a, v_1, \dots, v_n, y]$, uniquely defined by the following relations:

- $Tr_{X_0}(1) = 1$,
- $Tr_{X_n}(xz) = Tr_{X_n}(zx)$,
- $Tr_{X_n}(\iota(x)) = (1+a)Tr_{X_{n-1}}(x)$ for $x \in \mathcal{H}(X_{n-1})$,
- $Tr_{X_n}(\iota(x)t_n) = (v_n v_n^{-1})Tr_{X_{n-1}}(x)$ for $x \in \mathcal{H}(X_{n-1})$,
- $Tr_{B_n}(\iota(x)T_n) = yTr_{B_{n-1}}(x)$ for $x \in \mathcal{H}(B_{n-1})$, if X = B.
- $Tr_{D_{2n}}(\iota(x)U_{2n-1}U_{2n}) = y^2 Tr_{D_{2n-2}}(x)$ for $x \in \mathcal{H}(D_{2n-2})$, if X = D.

Multivariable link invariant

The Markov trace given above can be modified to give a genuine link invariant.

Definition (HOMFLY-PT polynomial)

$$P(\overline{\beta}) = \frac{\sqrt{-a}^{e(\beta)}}{\left(\sqrt{-a}(v - v^{-1})\right)^{n-1}} \operatorname{Tr}_{A_n}(\pi(\beta))$$

where $e(\beta)$ is the exponent sum of $\beta \in Br_n$, and the projection $\pi(\sigma_i) = t_i \in \mathcal{H}(A_{n-1})$.

Markov trace in type A

We have the following classical result.

Theorem

$$Tr_{A_n}(x) = coefficient near 1 in \{t_w^{-1}\}_{w \in A_n} basis of the expression$$

$$\times \prod_{i=1}^{n} (1 + aJ(A_i)^{-1}).$$

For example, it allows us to express the n-th coefficient of Tr_{A_n} of a braid β as the 0-th coefficient of Tr_{A_n} of a "twisted braid" βFT_n^{-1} .

Markov trace

The generalized Markov traces can be computed as

- an explicit linear combination of characters of the Hecke algebra (Jones, Geck-Lambropoulou).
- This linear combination admits a uniform description as the Lusztig's Fourier transform of the Molien series of $S(V) \otimes \wedge (V)$, where V is the reflection representation (Gomi [2]).
- Webster and Williamson in [4] gave the first geometric interpretation of this uniform description.

In this project, we give a new simple formula for Markov traces in types $B,\ D,$ similar to the one in type A, using the generalized Jucys-Murphy elements.

Markov trace in type B

Recall that y is a free parameter and $t_0^2 = \alpha_0 t_0 + 1$ where $\alpha_0 = v_0 - v_0^{-1}$, $t_i^2 = \alpha t_i + 1$ where $\alpha = v - v^{-1}$ and $i \neq 0$. Then the Markov trace in type B has the following expression.

Theorem

$$Tr_{B_n}^{v_0,v,y}(x) = coefficient near 1 in \{t_w^{-1}\}_{w \in B_n} basis of the expression$$
$$x \prod_{i=1}^n (1 + (y - \alpha_0)j(B_i)^{-1} + aJ(B_i)^{-1}).$$

Markov trace in type D

Corollary 1

$$Tr_{B_n}^{v_0=v,y=lpha}(x)=coefficient\ near\ 1\ in\ \{t_w^{-1}\}_{w\in B_n}$$
 basis of the expression $x\prod_{i=1}^n(1+aJ(B_i)^{-1}).$

Corollary 2

$$Tr_{D_n}^{(k)}(x) = coefficient near 1 in \{t_w^{-1}\}_{w \in D_n} basis of the coefficient near$$
 a^k of the expression $x \prod_{i=1}^n (1 + \sqrt{-a}(v - v^{-1})j(D_i)^{-1} + aJ(D_i)^{-1}).$

Remarks

Note that in types B_n and D_{2n} \widetilde{w}_0 is central (while FT_n is always central). Let E_k denote the k-th elementary symmetric polynomial, then $Tr_{X_n}^{(k)}$ is given by the coefficient near 1 in $\{t_w^{-1}\}_{w\in W}$ basis of the following expressions:

Type A	$xE_k(J(A_1)^{-1},\ldots,J(A_n)^{-1})$
Type B	$xE_k(J(B_1)^{-1},\ldots,J(B_n)^{-1})$
Type D	$ \times \sum_{i=-k}^{k} (-1)^{i} v^{-2i} E_{k-i}(j(D_{1})^{-1}, \dots, j(D_{n})^{-1}) \times $ $ E_{k+i}(j(D_{1})^{-1}, \dots, j(D_{n})^{-1}) $
	X+10(1) / /3(11) /

For example, in type D for k=1 the polynomial has the form $-v^2E_2+E_1^2-v^{-2}E_2$. In particular, these elements in the table are central.

It turns out that $E_k(J(D_1), \ldots, J(D_n))$ is not central. However, $E_k(1, J(D_2), \ldots, J(D_n))$ is central.

References

- [1] Meinolf Geck and Sofia Lambropoulou. Markov traces and knot invariants related to Iwahori-Hecke algebras of type B. 2004. arXiv: math/0405508 [math.RT]. URL: https://arxiv.org/abs/math/0405508.
- Yasushi Gomi. "The Markov traces and the Fourier transforms". In: |2| Journal of Algebra 303.2 (2006). Computational Algebra, pp. 566-591. ISSN: 0021-8693. DOI: https://doi.org/10.1016/j.jalgebra.2005.09.034. URL: https://www.sciencedirect.com/science/article/pii/ S0021869305005600.
- [3] Vaughan FR Jones. "Hecke algebra representations of braid groups and link polynomials". In: New Developments in the Theory of Knots. World Scientific, 1987, pp. 20-73.
- [4] Ben Webster and Geordie Williamson. "The geometry of Markov traces". In: Duke Mathematical Journal 160.2 (Nov. 2011). ISSN: 0012-7094. DOI: 10.1215/00127094-1444268. URL: