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Knots and links

Definition

Knot is an embedding of a circle S1 into R3. Link is a disjoint union of
knots.
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Braids and braid group

Definition

The braid on n strands is formed when n points on a horizontal line are
connected by n strands to the n points on another horizontal line directly
below, and where the strands descend all the time along the way.

Braid group Brn is a group of braid equivalence classes under ambient
isotopy. It is well-known that Brn is a group on generators σ1, . . . , σn−1

subject to the braid relations:

σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi for |i − j | > 1.
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Braid closure

Braid β can be turned into a link by connecting the opposite nodes of β.
This operation is called the closure of a braid β, and we will denote it by
β.
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Coxeter groups

Definition

Coxeter group W is a group with presentation ⟨ s1, . . . , sn | (si sj)mij = 1 ⟩
where mii = 1 ∀i = 1, n and mij = mji ≥ 2 is an integer or ∞ for i ̸= j .

Note that the symmetric group is a Coxeter group with
mi ,i+1 = mi+1,i = 3 and the braid group is obtained if we forget the
relations s2i = 1.
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Iwahori-Hecke algebra

Definition

The Iwahori-Hecke algebra H(W ) is a unital algebra over a ring
Z[v , v−1] generated by the elements

tsi := ti , si ∈ S = {s1, . . . , sn},

where S is the set of generators of W , satisfying the following relations:

t2i = (vi − v−1
i )ti + 1,

ti tj · · ·︸ ︷︷ ︸
mij

= tj ti · · ·︸ ︷︷ ︸
mij

.
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Embeddings of Dynkin diagrams

Dynkin diagram of a Coxeter group W is a graph with an adjacency
matrix (mij). For simplicity, 2−edges are omitted, 3−edges are drawn as
single edges and 4-edges are drawn as double edges.
Let Xn = An, Bn,Dn. For the inclusion of Dynkin diagrams Γn−1 ⊂ Γn
shown below where |Γn \ Γn−1| = 1, we define an embedding
ι : H(Xn−1) ↪→ H(Xn).

An
1 2 n − 1 n

Bn
n n − 1 2 1

Dn
n n − 1 3

1

2
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Full twist and Jucys-Murphy elements

Define the canonical lift w 7→ w̃ from W to H(W ) as follows: if
w = si1 · · · sir is a reduced expression, then w̃ = ti1 · · · tir . Let w0 ∈ W be
the longest element.

Proposition

The full twist FT (W ) = w̃0
2 is central in H(W ).

Let J(Xn) = FT (Xn) · FT (Xn−1)
−1 be the Jucys-Murphy elements in

type Xn and j(Xn) = tw0,Xn · t−1
w0,Xn−1

.

J(Xi ) is a collection of commuting elements in H(W ), playing an
important role in its representation theory.
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Markov trace

Theorem (Markov)

Given two braids β1, β2 ∈ Br , their closures are equivalent links if and
only if β2 can be obtained from β1 by a sequence of the following moves:

Conjugation of α ∈ Brn in Brn;

Replacing α ∈ Brn by ασ±1
n ∈ Brn+1.

This theorem inspires the following theorem/construction:
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Markov trace

Let

Tn = t−1
n . . . t−1

2 t1t2 . . . tn ∈ H(Bn),

Un = t−1
n . . . t−1

3 t−1
1 t2t3 . . . tn ∈ H(Dn)

Theorem (Jones [3], Geck-Lambropoulou [1])

There is a system of traces TrXn : H(Xn) → Q[a, v1, . . . , vn, y ], uniquely
defined by the following relations:

TrX0(1) = 1,

TrXn(xz) = TrXn(zx),

TrXn(ι(x)) = (1 + a)TrXn−1(x) for x ∈ H(Xn−1),

TrXn(ι(x)tn) = (vn − v−1
n )TrXn−1(x) for x ∈ H(Xn−1),

TrBn(ι(x)Tn) = yTrBn−1(x) for x ∈ H(Bn−1), if X = B.

TrD2n(ι(x)U2n−1U2n) = y2TrD2n−2(x) for x ∈ H(D2n−2), if X = D.
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Multivariable link invariant

The Markov trace given above can be modified to give a genuine link
invariant.

Definition (HOMFLY-PT polynomial)

P(β) =

√
−a

e(β)(√
−a(v − v−1)

)n−1
TrAn(π(β))

where e(β) is the exponent sum of β ∈ Brn, and the projection
π(σi ) = ti ∈ H(An−1).

H. Zhylinskyi, mentor K. Tolmachov Generalized Markov traces



Markov trace in type A

We have the following classical result.

Theorem

TrAn(x) = coefficient near 1 in {t−1
w }w∈Anbasis of the expression

x
n∏

i=1

(1 + aJ(Ai )
−1).

For example, it allows us to express the n−th coefficient of TrAn of a
braid β as the 0-th coefficient of TrAn of a ”twisted braid” βFT−1

n .
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Markov trace

The generalized Markov traces can be computed as

an explicit linear combination of characters of the Hecke algebra
(Jones, Geck-Lambropoulou).

This linear combination admits a uniform description as the
Lusztig’s Fourier transform of the Molien series of S(V )⊗ ∧(V ),
where V is the reflection representation (Gomi [2]).

Webster and Williamson in [4] gave the first geometric
interpretation of this uniform description.

In this project, we give a new simple formula for Markov traces in types
B, D, similar to the one in type A, using the generalized Jucys-Murphy
elements.
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Markov trace in type B

Recall that y is a free parameter and t20 = α0t0 + 1 where
α0 = v0 − v−1

0 , t2i = αti + 1 where α = v − v−1 and i ̸= 0.
Then the Markov trace in type B has the following expression.

Theorem

Tr v0,v ,yBn
(x) = coefficient near 1 in {t−1

w }w∈Bnbasis of the expression

x
n∏

i=1

(1 + (y − α0)j(Bi )
−1 + aJ(Bi )

−1).
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Markov trace in type D

Corollary 1

Tr v0=v ,y=α
Bn

(x) = coefficient near 1 in {t−1
w }w∈Bnbasis of the expression

x
n∏

i=1

(1 + aJ(Bi )
−1).

Corollary 2

Tr
(k)
Dn

(x) = coefficient near 1 in {t−1
w }w∈Dnbasis of the coefficient near

ak of the expression x
n∏

i=1

(1 +
√
−a(v − v−1)j(Di )

−1 + aJ(Di )
−1).
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Remarks

Note that in types Bn and D2n w̃0 is central (while FTn is always
central). Let Ek denote the k-th elementary symmetric polynomial, then

Tr
(k)
Xn

is given by the coefficient near 1 in {t−1
w }w∈W basis of the

following expressions:

Type A xEk(J(A1)
−1, . . . , J(An)

−1)

Type B xEk(J(B1)
−1, . . . , J(Bn)

−1)

Type D
x
∑k

i=−k(−1)iv−2iEk−i (j(D1)
−1, . . . , j(Dn)

−1)×
Ek+i (j(D1)

−1, . . . , j(Dn)
−1)

For example, in type D for k = 1 the polynomial has the form
−v2E2 + E 2

1 − v−2E2. In particular, these elements in the table are
central.
It turns out that Ek(J(D1), . . . , J(Dn)) is not central. However,
Ek(1, J(D2), . . . , J(Dn)) is central.
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