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Section 1

Warm-up: Ramsey Theory on Graphs



Ramsey’s Theorem for Graphs - Example
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Ramsey’s Theorem for Graphs

Theorem 1 (Ramsey’s Theorem for two colors).

Let k, l ≥ 2. There exists a least positive integer R = R(k, l) such
that every edge coloring of KR , with the colors red and blue,
admits either a red Kk subgraph or a blue Kl subgraph. R(k , l) is
called a Ramsey’s number.

Ramsey’s theorem for two colors can easily be generalized to r ≥ 3
colors.
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Ramsey’s Numbers - Known Values

▶ R(3, 3) = 6

▶ R(3, 4) = 9

▶ R(3, 5) = 14

▶ R(3, 6) = 18

▶ R(3, 7) = 23

▶ R(3, 8) = 28

▶ R(3, 9) = 36

▶ R(4, 4) = 18

▶ R(4, 5) = 25

▶ R(5, 5) = ??
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Section 2

Ramsey Theory on the Integers



Van der Waerden’s Theorem

Theorem 2 (Van der Waerden’s Theorem).

For all positive integers k and r , there exists a least positive
integer w(k; r) such that for every r -coloring of {1, ...,w(k ; r)}
there is a monochromatic arithmetic progression of length k.

r = 2, k = 3 (Coloring of {1, ..., 9})

i 1 2 3 4 5 6 7 8 9
color(i) R B B R R B R B B

Monochromatic 3-term AP: (3, 6, 9) in Blue

7 / 28



Section 3

Proof of van der Waerden’s Theorem



Notation

▶ We shall denote the set of integers by Z, and the set of
positive integers by Z+.

▶ An interval is a set of the form {a, a+ 1, ..., b}, where a < b
are integers. We will denote this interval more simply by [a, b].

▶ An r -coloring of a set S is a function χ : S → C , where
|C | = r .

▶ A coloring χ is monochromatic on a set S if χ is constant on
S .

i 0 1 2 3 4 5 6
χ(i) 0 1 2 0 1 2 0
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Proposition (Translation)

Proposition 1 (Translation).

Let k, r , m, a, and b be positive integers. Every r -coloring of
[1,m] yields a monochromatic k-term arithmetic progression if and
only if every r -coloring of

S = {a, a+ b, a+ 2b...., a+ (m − 1)b}

yields a monochromatic arithmetic progression.
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Refined Triples

Definition 1 (Refined Triples).

We say that a triple (k , t; r) is refined if there exists a positive
integer m = m(k, t; r) such that for every r-coloring of [1,m], there
exist positive integers z , x0, x1, ..., xt such that each of the sets

Ts =

{
bs +

s−1∑
i=0

cixi : ci ∈ [1, k]

}
,

0 ≤ s ≤ t, is monochromatic, where

bs = z + (k + 1)
t∑

i=s

xi .
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Refined Triples - Example

Consider k = 2 and t = 2

T0 = {b0}
T1 = {b1 + x0, b1 + 2x0}
T2 = {b2 + x0 + x1, b2 + 2x0 + x1, b2 + x0 + 2x1, b2 + 2x0 + 2x1}
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Refined Triples - Remark

If we only look at the elements in these sets where their
coefficients are equal:

c1 = c2 = ... = cs−1 = j , for j = 1, 2, 3, ..., k

we get an arithmetic progression of length k .

Example 1 (k = 3).

T3 = {b3 + 1x0 + 1x1 + 1x2, ...,

b3 + 2x0 + 2x1 + 2x2, ...,

b3 + 3x0 + 3x1 + 3x2}
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Proof Outline

▶ Induction on k.

▶ Lemma 1 (w(k ; r) → (k , t; r)).

Let k > 1. If w(k; r) exists for all r ≥ 1, then (k , t; r) is
refined for all r , t ≥ 1.

▶ Lemma 2 ((k , t; r) → w(k + 1; r)).

If (k , t; r) is refined for all r , t ≥ 1, then w(k + 1; r) exists for
all r ≥ 1.

▶ Lemma 1 + Lemma 2 give the induction step k → k + 1.
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The Compactness Principle

Theorem 3 (The Compactness Principle).

If for every r -coloring of Z+ there is a monochromatic arithmetic
progression, then there exists a least positive integer n = n(r) such
that for every r -coloring of [1, n], there is a monochromatic
arithmetic progression.
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Lemma 2 Proof

Lemma 2 ((k , t; r) → w(k + 1; r)).

If (k , t; r) is refined for all r , t ≥ 1, then w(k + 1; r) exists for all
r ≥ 1.

Proof.
Let r be given and let χ be any r -coloring of Z+.

By assumption, (k , t; r) is refined for all r , t ≥ 1. In particular,
r = t.

By definition of refined triples, there exist z , x0, ..., xr such that
each of the sets T0, T1, ..., Tr is monochromatic under χ. By the
pigeonhole principle, two of these sets must be the same color. Let
Tv and Tw , v < w be such sets.
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Lemma 2 Proof

Tv =

{
z + (k + 1)

r∑
i=v

xi +
v−1∑
i=0

cixi : ci ∈ [1, k]

}
and

Tw =

{
z + (k + 1)

r∑
i=w

xi +
w−1∑
i=0

cixi : ci ∈ [1, k]

}

Letting a = z +
∑v−1

i=0 xi + (k + 1)
∑r

i=w xi , we rewrite these as

Tv =

{
a+ (k + 1)

w−1∑
i=v

xi +
v−1∑
i=0

(ci − 1)xi : ci ∈ [1, k]

}

Tw =

{
a−

v−1∑
i=0

xi +
w−1∑
i=0

cixi : ci ∈ [1, k]

}
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Lemma 2 Proof

Taking c0 = c1 = ... = cv−1 = 1 in Tw we have

T ′
w =

{
a+

w−1∑
i=v

cixi : ci ∈ [1, k]

}
⊆ Tw

Letting d =
∑w−1

i=v xi , we have a+ (k + 1)d ∈ Tv .

Hence, we have found a monochromatic arithmetic progression of
length k + 1, thereby proving the existence of w(k + 1; r).
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Lemma 1 Proof

Lemma 1 (w(k ; r) → (k , t; r)).

Let k > 1. If w(k; r) exists for all r ≥ 1, then (k, t; r) is refined for
all r , t ≥ 1.

The proof is by induction on t, starting with t = 1.
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Lemma 1 Proof - Base Case

t = 1

To prove that (k , 1; r) is refined, we first show that we may take
m = m(k , t; r) to be 3w(k ; r) + k + 1.

Let χ be an arbitrary r -coloring of [1,m] = [1, 3w(k ; r) + k + 1].

Since we are assuming that w(k ; r) exists, applying translation, the
interval [w(k; r) + k + 2, 2w(k; r) + k + 1] must admit a
monochromatic k-term arithmetic progression
S = {a+ d , a+ 2d , ..., a+ kd}.
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Lemma 1 Proof - Base Case

Using the notation of Refined Triples, let

z = a− (k + 1), x0 = d , x1 = 1

This gives:
T0 = {a+ (k + 1)d}
T1 = S

which are both contained in [1,m] and are both monochromatic.

Thereby proving that (k, 1; r) is a refined triple.
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Lemma 1 Proof - Induction Step

Let t ≥ 1 and assume that (k, t; r) is refined.

We will show that (k , t + 1; r) is refined.
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Derived Coloring

Let r , m, n ≥ 1. Let γ be an r -coloring of [1, n +m]. Define χγ,m

to be the rm-coloring of [1, n] as follows: for j ∈ [1, n], let χγ,m(j)
be the m-tuple (γ(j + 1), γ(j + 2), ..., γ(j +m)). We call χγ,m a
coloring derived from γ.

i 1 2 3 4 5 6

γ(i) 1 0 2 1 1 0
χγ,m ( 0 , 2 , 1 ) ( 2 , 1 , 1 ) ( 1 , 1 , 0 ) ( 1 , 0 , 2 ) . . . . . .
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Lemma 1 Proof - Induction Step

Suppose m = m(k , t; r) exists, and let n = 2w(k ; rm).

We claim that we may take m(k , t + 1; r) = n +m.

Let γ be an r -coloring of [1, n +m]. Let χ = χγ,m be the
rm-coloring of [1, n] derived from γ.

By the definition of n, and since w(k ; rm) exists, there must be an
arithmetic progression:

{a+ d , a+ 2d , ..., a+ (k + 1)d} ⊆ [1, n]

with the first k terms monochromatic under χ.
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Lemma 1 Proof - Induction Step

By the definition of χ, the k intervals
Ij = [a+ jd + 1, a+ jd +m], 1 ≤ j ≤ k, have identical colorings
under γ.

Since (k , t; r) is refined, there exist z , x0, x1, ..., xt that the Ti ’s
are monochromatic under γ. Therefore, since Ij have identical
colorings, each Ij contains the monochromatic sets:

Ss(j) = Ts + (a+ jd)

= {y + a+ jd : y ∈ Ts}

=

{
(bs + a+ jd) +

s−1∑
i=0

cixi : ci ∈ [1, k]

}

for s = 0, 1, ..., t
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Lemma 1 Proof - Induction Step

Furthermore, since the intervals have the same coloring under γ,
Ss(u) and Ss(v) must have the same coloring under γ for
1 ≤ u, v ≤ k.

Hence, by construction, the set

Qs =
k⋃

v=1

Ss(v)

=

{
(bs + a) +

s−1∑
i=0

cixi + jd : j , ci ∈ [1, k]

}

is monochromatic under γ for each s = 0, 1, ..., t.
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Lemma 1 Proof - Induction Step

Now we define sets T ′
0, ...,T

′
t+1 that satisfy the definition of

refined triples.

Let

z ′ = z + a

x ′0 = d

x ′i = xi−1 for i = 1, 2, ..., t + 1

Check: T ′
s+1 = Qs for s = 0, 1, ..., t.

Remains: T ′
0 is always monochromatic.

Thus we have satisfied the conditions required to prove that
(k , t + 1; r) is refined, thereby proving the lemma.
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Outro

Any Questions?

28 / 28


	Warm-up: Ramsey Theory on Graphs
	Ramsey Theory on the Integers
	Proof of van der Waerden's Theorem

