Ramsey Theory on Integers

Mykhailo Bolshakov, Sasha Voitovych

Yulia's Dream

2025

Section 1

Warm-up: Ramsey Theory on Graphs

Ramsey's Theorem for Graphs - Example

Ramsey's Theorem for Graphs

Theorem 1 (Ramsey's Theorem for two colors).

Let $k, l \ge 2$. There exists a least positive integer R = R(k, l) such that every edge coloring of K_R , with the colors red and blue, admits either a red K_k subgraph or a blue K_l subgraph. R(k, l) is called a Ramsey's number.

Ramsey's theorem for two colors can easily be generalized to $r \ge 3$ colors.

Ramsey's Numbers - Known Values

$$R(3,3) = 6$$

$$R(3,4) = 9$$

$$R(3,5) = 14$$

$$R(3,6) = 18$$

$$R(3,7) = 23$$

$$R(3,8) = 28$$

$$R(3,9) = 36$$

$$R(4,4) = 18$$

$$R(4,5) = 25$$

$$ightharpoonup R(5,5) = ??$$

Section 2

Ramsey Theory on the Integers

Van der Waerden's Theorem

Theorem 2 (Van der Waerden's Theorem).

For all positive integers k and r, there exists a least positive integer w(k;r) such that for every r-coloring of $\{1,...,w(k;r)\}$ there is a monochromatic arithmetic progression of length k.

$$r = 2, k = 3$$
 (Coloring of $\{1, ..., 9\}$)

 $i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$
 $color(i) \quad R \quad B \quad B \quad R \quad B \quad B \quad B \quad B$

Monochromatic 3-term AP: (3, 6, 9) in Blue

Section 3

Proof of van der Waerden's Theorem

Notation

- ▶ We shall denote the set of integers by \mathbb{Z} , and the set of positive integers by \mathbb{Z}^+ .
- An *interval* is a set of the form $\{a, a + 1, ..., b\}$, where a < b are integers. We will denote this interval more simply by [a, b].
- ▶ An *r*-coloring of a set *S* is a function $\chi : S \rightarrow C$, where |C| = r.
- A coloring χ is monochromatic on a set S if χ is constant on S.

Proposition (Translation)

Proposition 1 (Translation).

Let k, r, m, a, and b be positive integers. Every r-coloring of [1, m] yields a monochromatic k-term arithmetic progression if and only if every r-coloring of

$$S = \{a, a + b, a + 2b..., a + (m-1)b\}$$

yields a monochromatic arithmetic progression.

Refined Triples

Definition 1 (Refined Triples).

We say that a triple (k, t; r) is refined if there exists a positive integer m = m(k, t; r) such that for every r-coloring of [1, m], there exist positive integers z, x_0 , x_1 , ..., x_t such that each of the sets

$$T_s = \left\{ b_s + \sum_{i=0}^{s-1} c_i x_i : c_i \in [1, k] \right\},$$

 $0 \le s \le t$, is monochromatic, where

$$b_s = z + (k+1) \sum_{i=s}^t x_i.$$

Refined Triples - Example

Consider
$$k=2$$
 and $t=2$
$$T_0=\{b_0\}$$

$$T_1=\{b_1+x_0,b_1+2x_0\}$$

$$T_2=\{b_2+x_0+x_1,b_2+2x_0+x_1,b_2+x_0+2x_1,b_2+2x_0+2x_1\}$$

Refined Triples - Remark

If we only look at the elements in these sets where their coefficients are equal:

$$c_1 = c_2 = ... = c_{s-1} = j$$
, for $j = 1, 2, 3, ..., k$

we get an arithmetic progression of length k.

Example 1 (k = 3).

$$T_3 = \{b_3 + 1x_0 + 1x_1 + 1x_2, ..., b_3 + 2x_0 + 2x_1 + 2x_2, ..., b_3 + 3x_0 + 3x_1 + 3x_2\}$$

Proof Outline

- ► Induction on k.
- ▶ Lemma 1 ($w(k; r) \rightarrow (k, t; r)$). Let k > 1. If w(k; r) exists for all $r \ge 1$, then (k, t; r) is refined for all $r, t \ge 1$.
- ▶ Lemma 2 ((k, t; r) \rightarrow w(k + 1; r)).

 If (k, t; r) is refined for all r, t \geq 1, then w(k + 1; r) exists for all r \geq 1.
- ▶ Lemma 1 + Lemma 2 give the induction step $k \rightarrow k + 1$.

The Compactness Principle

Theorem 3 (The Compactness Principle).

If for every r-coloring of \mathbb{Z}^+ there is a monochromatic arithmetic progression, then there exists a least positive integer n = n(r) such that for every r-coloring of [1, n], there is a monochromatic arithmetic progression.

Lemma 2 Proof

Lemma 2 $((k, t; r) \rightarrow w(k + 1; r))$.

If (k, t; r) is refined for all $r, t \ge 1$, then w(k + 1; r) exists for all $r \ge 1$.

Proof.

Let r be given and let χ be any r-coloring of \mathbb{Z}^+ .

By assumption, (k, t; r) is refined for all $r, t \ge 1$. In particular, r = t.

By definition of refined triples, there exist z, x_0 , ..., x_r such that each of the sets T_0 , T_1 , ..., T_r is monochromatic under χ . By the pigeonhole principle, two of these sets must be the same color. Let T_v and T_w , v < w be such sets.

Lemma 2 Proof

$$T_{v} = \left\{ z + (k+1) \sum_{i=v}^{r} x_{i} + \sum_{i=0}^{v-1} c_{i} x_{i} : c_{i} \in [1, k] \right\}$$

and

$$T_{w} = \left\{ z + (k+1) \sum_{i=w}^{r} x_{i} + \sum_{i=0}^{w-1} c_{i} x_{i} : c_{i} \in [1, k] \right\}$$

Letting $a = z + \sum_{i=0}^{v-1} x_i + (k+1) \sum_{i=w}^{r} x_i$, we rewrite these as

$$T_{v} = \left\{ a + (k+1) \sum_{i=v}^{w-1} x_{i} + \sum_{i=0}^{v-1} (c_{i} - 1) x_{i} : c_{i} \in [1, k] \right\}$$

$$T_{w} = \left\{ a - \sum_{i=0}^{v-1} x_{i} + \sum_{i=0}^{w-1} c_{i} x_{i} : c_{i} \in [1, k] \right\}$$

Lemma 2 Proof

Taking $c_0 = c_1 = ... = c_{\nu-1} = 1$ in T_w we have

$$T'_{w} = \left\{a + \sum_{i=v}^{w-1} c_{i}x_{i} : c_{i} \in [1, k]\right\} \subseteq T_{w}$$

Letting $d = \sum_{i=v}^{w-1} x_i$, we have $a + (k+1)d \in T_v$.

Hence, we have found a monochromatic arithmetic progression of length k + 1, thereby proving the existence of w(k + 1; r).

Lemma 1 Proof

Lemma 1 ($w(k; r) \rightarrow (k, t; r)$).

Let k > 1. If w(k; r) exists for all $r \ge 1$, then (k, t; r) is refined for all $r, t \ge 1$.

The proof is by induction on t, starting with t = 1.

Lemma 1 Proof - Base Case

$$t = 1$$

To prove that (k, 1; r) is refined, we first show that we may take m = m(k, t; r) to be 3w(k; r) + k + 1.

Let χ be an arbitrary r-coloring of [1, m] = [1, 3w(k; r) + k + 1].

Since we are assuming that w(k;r) exists, applying translation, the interval [w(k;r)+k+2,2w(k;r)+k+1] must admit a monochromatic k-term arithmetic progression $S=\{a+d,a+2d,...,a+kd\}$.

Lemma 1 Proof - Base Case

Using the notation of Refined Triples, let

$$z = a - (k + 1), x_0 = d, x_1 = 1$$

This gives:

$$T_0 = \{a + (k+1)d\}$$
$$T_1 = S$$

which are both contained in [1, m] and are both monochromatic.

Thereby proving that (k, 1; r) is a refined triple.

Let $t \ge 1$ and assume that (k, t; r) is refined.

We will show that (k, t + 1; r) is refined.

Derived Coloring

Let $r, m, n \geq 1$. Let γ be an r-coloring of [1, n+m]. Define $\chi_{\gamma,m}$ to be the r^m -coloring of [1, n] as follows: for $j \in [1, n]$, let $\chi_{\gamma,m}(j)$ be the m-tuple $(\gamma(j+1), \gamma(j+2), ..., \gamma(j+m))$. We call $\chi_{\gamma,m}$ a coloring derived from γ .

Suppose m = m(k, t; r) exists, and let $n = 2w(k; r^m)$.

We claim that we may take m(k, t + 1; r) = n + m.

Let γ be an r-coloring of [1, n+m]. Let $\chi=\chi_{\gamma,m}$ be the r^m -coloring of [1, n] derived from γ .

By the definition of n, and since $w(k; r^m)$ exists, there must be an arithmetic progression:

$${a+d, a+2d, ..., a+(k+1)d} \subseteq [1, n]$$

with the first k terms monochromatic under χ .

By the definition of χ , the k intervals $I_j = [a+jd+1, a+jd+m], 1 \leq j \leq k$, have identical colorings under γ .

Since (k, t; r) is refined, there exist z, x_0 , x_1 , ..., x_t that the T_i 's are monochromatic under γ . Therefore, since I_j have identical colorings, each I_j contains the monochromatic sets:

$$S_{s}(j) = T_{s} + (a + jd)$$

$$= \{y + a + jd : y \in T_{s}\}$$

$$= \left\{ (b_{s} + a + jd) + \sum_{i=0}^{s-1} c_{i}x_{i} : c_{i} \in [1, k] \right\}$$

for s = 0, 1, ..., t

Furthermore, since the intervals have the same coloring under γ , $S_s(u)$ and $S_s(v)$ must have the same coloring under γ for $1 \leq u, v \leq k$.

Hence, by construction, the set

$$Q_s = \bigcup_{v=1}^k S_s(v)$$

= $\left\{ (b_s + a) + \sum_{i=0}^{s-1} c_i x_i + jd : j, c_i \in [1, k] \right\}$

is monochromatic under γ for each s = 0, 1, ..., t.

Now we define sets $T'_0, ..., T'_{t+1}$ that satisfy the definition of refined triples.

Let

$$z' = z + a$$

 $x'_0 = d$
 $x'_i = x_{i-1}$ for $i = 1, 2, ..., t + 1$

Check: $T'_{s+1} = Q_s$ for s = 0, 1, ..., t.

Remains: T'_0 is always monochromatic.

Thus we have satisfied the conditions required to prove that (k, t + 1; r) is refined, thereby proving the lemma.

Outro

Any Questions?