Turan's Theorem

Olena Syvachenko, Anton Opulskyi, Klim Garmash

25/06/2025

Central Question

Central Question for Turan's Theorem

What is the maximal number of edges in a simple graph with n vertices that **does not** contain a fixed subgraph **H**?

Definitions

- G = (V, E): a graph with n = |V| vertices
- e(G): the number of edges of G
- $ex(n, F) = max\{e(G) : |V(G)| = n, F \text{ not a subgraph of } G\}.$
- ex(n, F): the extremal function forbidding subgraph F

example of a 4-vertex click

Turan's Graph

Theorem

Turan's theorem states that max amount of edges graph $ex(n, K_{r+1}) \leq (1 - \frac{1}{r}) \frac{n^2}{2}$

Theorem

The maximum number of edges in a graph $ex(n, K_{r+1})$ is achieved if and only if graph is Turan's graph. Turan's graph is achieved by having r-partite graph with vertices in graph being split as evenly as possible

Proof of Turan's Theorem

Theorem

The maximum number of edges a graph without r+1 clique can have is achieved by Turan's graph, which is r-partite graph with vertices in graph being split as evenly as possible

Keypoints

- We have a graph G(V, E). Induction is going on r.
- Base case r = 1 is obvious its just 1 vertex.
- Assume that r > 1, meaning $ex(n, K_r) = e(T_{n,r-1})$ for any n
- Vertex v is vertex with most edges in graph G
- The set A is a set of all vertices connected to v
- The set B is a set of all vertices not connected to v

Proof of Turan's Theorem

Keypoints

- If graph G is K_{r+1} -free then A is K_r -free
- $e(A) \leq ex(|A|, K_r)$
- Maximum amount between A and B and within B is $|A| \cdot |B|$

Figure: Visual example of A

Turan Density

Density Definition

$$\pi(H) := \lim_{n \to \infty} \frac{\operatorname{ex}(n,H)}{\binom{n}{2}}$$

$\pi(H)$ for K_{r+1}

$$\pi(K_{r+1}) = 1 - \frac{1}{r}$$

Erdős-Stone-Simonovits theorem

$$\pi(H) = 1 - \frac{1}{\chi(H) - 1}$$

Zarankiewich Problem

Problem statement

Determine $ex(n, K_{s,t})$, the maximum number of edges in an *n*-vertex $K_{s,t}$ -free graph.

Kővári–Sós–Turán theorem – "KST theorem"

For positive integers $s \le t$, there exists some constant C = C(s, t), such that, for all n, $ex(n, K_{s,t}) \le Cn^{2-1/s}$

Consequence

For every bipartite graph H, there exists some constant c > 0 such that $ex(n, H) = O_H(n^{2-c})$.

Geometric Applications of the KST Theorem

Famous problem was posed by Erdős (1946)

What is the maximum number of unit distances formed by a set of n points in \mathbb{R}^2 ?

Geometric Applications: Upper bound

Upper bound

Every set of n points in \mathbb{R}^2 has $O(n^{3/2})$ unit distances.

Proof

Every unit distance graph is $K_{2,3}$ -free. For every pair of distinct points, there are at most two other points that are at a unit distance from both points.

The number of edges is at most $ex(n, K_{2,3}) = O(n^{3/2})$ by KST theorem.

Forbidding a subgraph

Open Problems: Turan's Theorem for Hypergraphs

Keypoints

- A *k*-uniform hypergraph: each edge connects *k* vertices (not just 2)
- Extremal question:
- $ex(n, K_{r+1}^{(k)}) = max$ number of edges avoiding $K_{r+1}^{(k)}$
- Known for graphs (k = 2), but unknown for most $k \ge 3$
- Example: open problem $ex(n, K_4^{(3)})$
- Area of active research: flag algebras, probabilistic methods, design theory

