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Abstract

We investigate the attainability of various subgroups of F;n as images of the unit group of a
number field under reduction modulo an inert prime. We prove several results about possible
images under reduction when fixing a finite field F,» and varying the number field K of degree n
in which p is inert. Using the finite field norm, we fully describe the maximal image for general n
and obtain a complete description of the possible images in the quadratic case. We also consider
the analogous problem for unit groups of non-maximal orders of a quadratic number field, where
the number field is fixed and the order is varied. Similarly, we consider the analogous problem
for S-unit groups of localizations of the ring of integers, where the number field is fixed and the

choice of localization is varied.
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1 Introduction

The unit group of the ring of integers of a number field has been an important subject of study in
algebraic number theory. Dirichlet’s Unit Theorem ([ ]) describes the unit group as a product of
a finite Z-module of specified degree and a cyclic group of roots of unity. However, it does not give
an explicit description of a system of fundamental units for the unit group, and so determining a
system of fundamental units has been a problem of interest in algebraic number theory.

We consider the problem of controlling the image of the group of units under reduction modulo a
prime ideal. Specifically, we consider the possible images of O in the map ¢, : Ox — Ok /pOk =
Fp», where p and n are fixed and K is varied. Our problem is related to Artin’s conjecture in its
focus on the multiplicative group generated by the reduction of an element. Artin’s primitive root
conjecture states that an integer that is neither square nor —1 is a primitive root modulo infinitely
many primes. A natural generalization for Artin’s conjecture for number fields asks when a nonzero
element « of the ring of integers of a number field K is a generator of the group (O /pOk)* for
infinitely many prime ideals p. Sections 6.1.1 and 9.7 of | | explain several other variants of
the conjecture for number fields and the progress that has been made on them. Kitaoka, Ishikawa,
Chen, and Yu ([ I L1 I, [ ]) have also considered the size of the image of the
unit group when reduced modulo a prime ideal, especially in the case of a real quadratic field. Our
problem is a natural “converse” of this problem, starting with a given prime p and constructing
a number field K such that p is inert in K and the group of units of K has a given image when
reduced modulo p.

In a number field K of degree n, we will denote the ring of integers of K by O and the group of
units by O%. Supposing that a rational prime p is inert in K, we find that the quotient Ok /pOf is
isomorphic to the finite field F,». Making use of the structure of F[fn, we note that the finite field
norm agrees with the the field norm Nk /g modulo p, so that all units must reduce modulo p to an
element with finite field norm +1. This gives restrictions on the the image of the unit group, and
leads to a general conjecture on the attainability of various subgroups of F» as the image of the

reduction of the unit group of a number field. We define the subgroup
UIF:n = {IL’ S Fpn : NFD”/]FP ({E) = :l:l} (1)

of ]F;n, and by the argument sketched we demonstrate that the image of the group of units must lie
in this group. This leads to the conjecture that all subgroups of Upx can be realized as the reduction
o

of the group of units of some number field. More formally, we have the following:

Conjecture 1.1. Let p be a prime, n be a positive integer, and G be a subgroup of Upx containing
i
—1. Then there exists a number field K of degree n in which p is inert and such that the reduction

of O modulo p is ezactly the subgroup G of Fyn.

We first show the more specific case that the maximal subgroup, the entirety of Upx , is always
i
attainable. That is, the following theorem holds:

Theorem 3.3. For a fixed rational prime p and positive integer n, there exist infinitely many number
fields K of degree n for which p is inert in K and the reduction of the unit group modulo pO attains

the mazimal image Upx .
n



This can be shown by constructing a number field containing a unit that reduces to a generator
of the subgroup Upx - This result does not require much control over the group of units, as there are
no further constraigts on the unit that we construct a number field to contain; it does not need to be
a fundamental unit.

We then give some bounds on the reduction of the unit group modulo a non inert prime, using
the methods developed to describe the possible images of the unit group when reduced modulo a
single inert prime. Specifically, we assume p is unramified and splits as p1po, ..., px for prime ideals
p1,...,px. Then, we relate the modulo p reduction of Ng q(«) with the finite field norms of the
reduction of a modulo each p;. This gives Theorem 4.4, a bound on the size of the image of the
group of units analogous to the bound given in Lemma 2.2.

We also show that, in the case of a real quadratic number field, every subgroup of U]Fp2 is realizable

as the image of the group of units, given that it contains —1:

Theorem 5.5. For a fized odd prime p and subgroup G of Ugx containing —1, there exists a real
pn

quadratic field K = Q(y/m) in which p is inert and the group of units of K reduces modulo pO to

exactly G.

This result requires a more careful choice of number field, since a unit we construct it to
contain may not necessarily be fundamental. To prove this theorem, we correspond units « that
are not fundamental units of Q(«) with values of the Dickson polynomials. We then show that
the sequence of Dickson polynomials approximate an infinite exponential sequence and thus have
density 0, guaranteeing a choice of o reducing to a desired generator of a subgroup of Upx that is a
fundamental unit in Q(«). '

As a consequence of this result, all even divisors d of 2(1 4 p) are realizable as the size of the
reduction of the group of units of some number field K modulo pOf, where p is inert in K.

It is also interesting to consider the problem in non-maximal orders O C Og. The unit group of
the order O is a subset of O so it may have a different image in O/pO. We consider the problem
of fixing a number field K and choosing an order O in which the image of the reduction of O*
modulo pO gives a specific image. For this question to be well defined, we describe conditions for p
to be “inert” so that O/pO = Fyn. In the quadratic case, we have a complete characterization of the

possible images:

Theorem 6.6. Let K be a real quadratic number field with ring of integers Ok, and let p be a prime
which is inert in K. Let U C U[[rpz be the image of the group of units when reduced modulo pOg .
Then for a given subgroup G C U containing —1, there exists an order O C Ok such that p remains

wnert in O and the group of units of O has image G under reduction modulo pO.

Alternatively, we generalize the question to S-units, considering the reduction of the unit group
of the localized ring O%.. The problem then becomes one of enlarging the unit group. That is, if its
image was previously some G C Upx , we consider enlarging it to some U for GCU C F; Here,
there is no longer a restriction on whpether U must lie in G C UFxn since it need not have norm 1. We
approach the problem by localizing to a prime with a given redqlction modulo p so that it generates
our desired subgroup, and apply class field theory to construct such a prime. In the general case, we

have the following theorem:

Theorem 7.6. Let p be an odd rational prime inert in a number field K. Suppose that U C
(Ok /pOK)* is the image of O under reduction modulo pOr and G is a subgroup satisfying



UCGC (Ok/pOk)*. Then there exists a prime q € Ok such that if S = {¢Ok} the image of
(O2)* under reduction modulo pO%- is G.

We also consider the real cubic case. Since the unit group has rank two in this case, it is much
harder to control the exact image of the unit group because must produce number fields in which we
have control over both fundamental units. We focus on Minkowski units, or units in cyclic extensions
K/Q such that the unit and its conjugate generate Q. The existence of Minkowski units in cyclic
cubic fields is proven in Theorem 3.28 of | ]. We use Minkowski units to restrict the image of
the group of units under reduction, since Galois conjugates of elements of F,» are powers of the
original element due to the Frobenius automorphism, making the problem once again a matter of
controlling the reduction of one unit. We prove a sufficient condition for a root of a polynomial to
be a Minkowski unit (Theorem 8.1) and expect that this condition is satisfied enough to resolve
Conjecture 1.1 in the case of real cubic fields. When considering the construction of a field with a
given Minkowski unit, we refer to other papers on the construction of number fields satisfying given

properties, including Shanks | ] and Balady | ].

2 Background

Let K be a number field of degree n with ring of integers O and unit group Oj. Furthermore,
let p be a rational prime inert in K and let ¢, : Ox — Ok /pOk denote the reduction map on Ok
sending an element to its residue class in O /pOf-.

We first consider the multiplicative structure of Ok /pOf. It is well-known that Ok /pOx = Fpn,
where n is the degree of K, and furthermore we have that the multiplicative group of Fy» is cyclic.
Thus, using the finite field norm Ny ,, /p, we define a subgroup Upx as in Equation 1 containing all
elements of norm 1. Due to the structure of F», this subgroup is cyclic and has order equal to the

number of solutions to
n—1
Ne . /p,(z) = LS N
which is precisely 2(1 +p + --- +p"~1).

Remark 2.1. In order to begin to consider the image of the group of units O under reduction by ¢,,
we must first make a choice of isomorphism between Ok /pOf and F,». However, since F;n is cyclic,
automorphisms on it preserve subgroups and thus the subgroup ¢,(0%) C F;n does not depend on a

choice of isomorphism Ok /pOx = Fpn.

We now relate O with Upx . We first describe a relationship between the field norm Ng /g and
the finite field norm on Ok /pOk. This allows us to characterize the possible images of the unit

group under reduction modulo pO in terms of Upx :
o
Lemma 2.2. The image of O under ¢, is equal to a subgroup of Ugx containing —1.
p”L

Proof. We first show that for a € O, we have

?p(Nkjo(a)) = N, . /r, (p(a)).

Consider a F,-basis 1,aq,...,%,—1 of Fpn. Let 1,04,...,a,_1 be some choice of elements of

Ok whose reductions are 1,a7,...,a,_1 respectively. Observe that these elements are Z-linearly



independent because if they were not then we could take a Z-linear combination of them that is 0 in
Ok and divide factors of p from the coefficients until one of them is nonzero modulo p. Then, the
resulting linear combination has reduction equivalent to 0 in F),» but not all coefficients equivalent to
0 in F,, contradicting the assumption that 1,a7,...,%,_1 formed a basis in F,». Since they are all
elements of Ok, it follows that they form a basis of K.

Now, consider the matrix My (q) over K representing multiplication by ¢, () as a linear map from
Fpn to itself with basis 1,aq,...,a,—1. Additionally, consider the matrix M, over Q representing
multiplication by « as a linear map from K to itself with basis 1, aq,...,a,_1. Since the basis used
in My, (a) is the reduction of the basis used in M, and it represents a reduction of the multiplication
map of M,, we see that the entries of My () are the reductions of the entries of M,. By treating the
determinant as a polynomial in the entries of the matrix, we observe that det(My (q)) = ¢p(det(My)).

By Theorem 67 in | ], the extension Fyn /F, is Galois. Thus, by Theorem 5.1 in [ ], the
determinant of the matrix representing multiplication by « in the extension Fpn /F), is equal to the
product of the Galois conjugates of a, or alTP+-+p" " = Ne, . /v, ().

Thus, det(My (o)) = Nir,(#p(a)) and by the definition of norm det(M,) = Ng/g(a) so it
follows that ¢,(Ng/q(a)) = Nk, (dp(a)).

Our desired result follows, as we have that the image of O under ¢, is a subgroup of UF;n, and

it must contain —1 since —1 € Ok is a unit. O

Corollary 2.3. The size of the image of the unit group under ¢, is an even divisor of 2(1 +p +
cee b pn—l)'

Having established a necessary condition for the possible images of O} under ¢,, it remains to
determine which images are obtainable. Fixing a prime p and degree n, we will consider whether
there exists a number field K whose unit group reduces to a given subgroup of Upx .

o

The following will be helpful in our analysis of the the possible images of the unit group:

Theorem 2.4 (Dirichlet’s Unit Theorem). Suppose a number field K has r1 real embeddings and
2ry complex embeddings. Then O = g x Z™+271 where ug is a finite cyclic torsion group of

roots of unity.

Thus, one may describe the reduction of the unit group of K by considering only the reductions
of its 71 + r9 — 1 generators. This will be a useful tool in our analysis of the possible non-maximal

images.

3 Maximal Image of the Unit Group

The first case we will consider is how to construct a number field whose group of units attains the
maximal image Upx when reduced modulo p. To do so, we will consider constructing K by adjoining
o
an element whose reduction maps to a generator of Upx . First, we prove a lemma to ensure the
p’ﬂ

inertness of p in K:

Lemma 3.1. For a number field K = Q(«) and rational prime p, if « has minimal polynomial f of

degree n which is irreducible in Fylz], then p is inert in K.

Proof. By the Dedekind-Kummer Theorem, from the irreducibility of f in Fp[z] it suffices to show
that p1 [Ok : Z]a]]. By Lemma 3.32 in | ] this is equivalent to the discriminant of the integral



basis {1,,...,a" 1} not being divisible by p. Considering the discriminant as a Vandermonde
determinant, we have that it is equal to [, ;(os(a) — o;(a))? where each o; is a distinct embedding
of K into a fixed extension of Q. Since all finite fields are perfect, f is separable in F,[z] so by its
irreducibility it follows that f has no double roots in Fpn. Thus, (0;(a) — 0j(a))? is nonzero in Fyn
so the product is nonzero modulo p. Therefore, the discriminant is not divisible by p and p is inert
in K. O

Theorem 3.2. For a fized rational prime p and positive integer n, there exists a number field K of
degree n in which p is inert and such that the image of its unit group O under the reduction map

op s exactly U]F:n,

Proof. Since ]F;n is cyclic, it has a generator g. If p is odd, then we may write Ugx , a cyclic subgroup
o
of IF;n of order 2(1+p+---+p"~ 1) = ﬁ, as the subgroup generated by the element u = ¢(P—1)/2,
If p = 2, we note that Upx = {x € Fpn : Ng /5, (v) = 1} = Fp., so we may simply set u = g. In
o

either case, by the fact that u generates a group of order more than p™~—!

, we have that the minimal
polynomial f of u has degree n. We also have that f is monic and has constant coefficient (—1)"*1.
Now, consider an arbitrary polynomial fe Z[x] which is monic, has constant coefficient (—1)"*1,
and whose reduction modulo p is equal to f. Then fis irreducible by the irreducibility of f in F,[«]
and thus we may let K be the extension Q(a)) where « is an arbitrary root of f. Then we claim K
satisfies the desired property.

To show this claim, we first observe that by Lemma 3.1 we have that the irreducibility of f in
F,[z] implies that p is inert in K. Now, we see that « is a unit in K since its minimal polynomial
has a constant coefficient (—1)"*!. Additionally, ¢,(c) generates Ugpx  because it is a conjugate of u
so it generates the same subgroup, as discussed in Remark 2.1. T hﬁs, we have exhibited a number
field K of degree n for which p is inert and the image of the unit group O under ¢, contains Upx
By Lemma 2.2 the reduction of the unit group of K is also contained in U]Fxn, so it must be exactply
U, ’ O

Note that due to the freedom in constructing a polynomial f in Theorem 3.2, we may extend the
result to give a number field such that the group of units achieves the maximal image of U]F;" when

reduced modulo multiple different primes p separately.

Theorem 3.3. For any k distinct rational primes p1,...,pr and positive integer n, there exists a
number field K for which every p; is inert in K and the reduction of the unit group modulo each (p;)
is exactly UF,,n-

(pi—1
[

X
pi
otherwise. Define f; € F,,[x] as the minimal polynomial of u;. Then by Chinese Remainder Theorem

Proof. Let g; denote the generator of F .., and then define u; = g )2 i p; is odd and u; = g;

we may construct f to be a monic integer polynomial of degree n and constant coefficient (—1)"~!
such that it reduces to f; modulo each p;. This is possible because the p;’s are distinct, and thus for
each z! coefficient of ffor 1 <t <n —1 the Chinese Remainder Theorem states that there exists a
residue class modulo pips ... pr equivalent to that ¢ coefficient modulo each p;. Then, following the
rest of the proof for Theorem 3.2 for each p; we see that fis irreducible and if it has a root « then
K = Q(«) has degree n. Furthermore, we see that each p; is inert in K. We also find that « is a

unit in K and also reduces under each ¢, to a conjugate of u; which generates each Uy ,, . O



4 The Image Modulo Non-Inert Primes

Using the same tools as in the inert prime case, we place some bounds on the image of the unit group

of K when reduced modulo a prime p not inert in K.

Theorem 4.1. Let K be a number field of degree n with 1 real embeddings, 2ro complex embeddings,
and finite torsion subgroup px. Let p be a rational prime which is unramified in K and splits as
P1...pr where the prime ideal p; has inertial degree e;. Then the size of the image of the reduction

of the group of units modulo p is at most |px|-lem(p® —1,...,p% — 1)ritr2=1

Proof. First, note that by the Chinese Remainder Theorem we have
Ok /pOk = Ok /p1 X -+ X O [pr Z Fper X -+ X Fpes
as an isomorphism between rings. Thus, considering their multiplicative groups, we have
(O /pOK)* =Ty x - x Ty 2Z/(p™ = 1)Z X --- X L/ (p* — 1)Z.

Thus every element of (O /pOk)* has order dividing lem(p* — 1,...,p% — 1). Thus, each of the
r1+ro—1 fundamental units has order lem(p®* —1, ..., p —1) and since in addition to ux they generate

all units, the image of the group of units has maximum size |pg|-lem(p —1,...,p% —1)"1+72=1 O

Corollary 4.2. If p splits completely in K, then the size of the reduction of the group of units modulo
p is at most 2(p—1)"1T"2=1 since in this case lem(p® —1,...,p% —1) =lem(p—1,...,p—1) =p—1.

We also prove a result relating the field norm of an element a@ € Ok with the finite field norms of

its reductions modulo Ok /p; for each prime ideal p; in the splitting of p when p is unramified.

Lemma 4.3. Let K be a number field of degree n and let p be a rational prime which is unramified
in K which splits as p1 ...py, where each p; has inertial degree e;. Let ¢; : O — Fpei denote the
reduction map modulo p; and let ¢, : O — F,, denote the reduction map modulo p. Then for a given

element o« € K we have that

k
p(Nija(@) = [T Ne . /e, ($i(a).

i=1
Proof. We may consider residue classes of p;...p; as elements of F' = Fpe; X -+ X Fper, an n-
dimensional vector space over IF,,. Then, viewing F' as a direct sum of k£ independent subspaces we
may take a standard basis B of F' in which e; of the basis vectors have nonzero projection to [Fpe; for
each 1 < i < k. If we let B be a set of elements of K whose reduction modulo p is B, we find that
this must be a basis of K because if we could write 0 as a nontrivial Q-linear combination of elements
of B then by scaling up to get a Z-linear combination and dividing by powers of p until one of the
coefficients is not a multiple of p, we find that the reduction of this linear combination is a nontrivial
linear combination of elements of B that equals 0, which would contradict the fact that B is a basis.
Now, considering F' and K as n-dimensional vector spaces over IF, and Q with bases 8 and B
respectively, we see that multiplication by « in F' and in K are both linear maps. Thus, we may
describe the map over F' as an n X n matrix M, with entries in F,,, and the map over K as an n x n

matrix ﬁa with entries in Q. Now, since the basis used in M,, is the reduction of the basis used in



J\A4; and it represents a reduction of the multiplication map of K/T;, we see that the entries of M, are
the reductions of the entries of M,. Thus, we have that p(Ni (@) = ¢p(det M) = det M,.
Now, it suffices to show that det M, = Hle Nr ., JE, (¢i()). To see this, first observe that since
each e; in B was picked to be a basis element of the independent subspace Fe;, a linear map on F
with basis B can be split up into the direct sum of linear maps on each Fje; so the matrix M, can
be split up into the direct sum of the multiplication by a matrices over each Fje;. The determinant
of the multiplication by o matrix over Fpe; has determinant N]Fpei JF, (¢i(c)) and the determinant of
a direct sum of matrices is equal to the product of their determinants, so we have the relationship

between the norms
k

¢p(Ni (@) = det Mo = [ [ Ne., /r, (61(a)).

i=1

Using this property of the norm, we find that a result analogous to Lemma 2.2 holds:

Theorem 4.4. Let K be a number field of degree n and let p be a rational prime unramified in K
which splits as p1 ...px, where each p; has inertial degree e;. Then the size of the reduction of the
2

group of units modulo p is at most P Hle(pei —-1).

Proof. By the Chinese Remainder Theorem, we have Ok /pOx = Ok /p1 X -+ X Ok [pg, = Fpey X
-+ X Fper, so an element of Ok /pOk is uniquely determined by its residue classes modulo each p;.
Let ¢; : Og — Fpe; denote the reduction map modulo p;. Then, consider any of the Hi:ll (pi = 1)
choices of residue classes modulo each p; from ¢ = 1 to kK — 1. Then any element o which satisfies

each of these equivalences and is a unit must have

k
H Nr ., /r,(¢i()) =+1  (mod p)
i=1

by Theorem 4.3. Thus,

-1

k-1
N ., /5, (0r(a)) = £ (H Nr,., /F, (¢i(a))>

so the other residue classes determine two possibilities for the norm of ¢x(«) for a unit «.
" = o has at most

Now, note that for each o € F the equation Ng ., /m, (x) = a or pttPHFP
1+ +p*~! roots in Fper. Additionally, every one of the p* —1 = (p—1)(1+p+---+p%~1)
elements of IF;@,C has a norm that is equal to one of the p—1 elements of IF,. Thus, the preimages of all
the elements of F); under the norm map NFM JF, F;ek — F; have the same size 1 +p+--- tporl,

It follows that the first £ — 1 residue classes of an element v € K determine 2 possible values for
Nr ., /7, (¢r () so that « lies in one of p%l(p"‘k — 1) possible residue classes modulo pj. Thus, there
are ;;%1 Hle(pei — 1) possible k-tuples of residue classes modulo each p; for a unit, so this is the

maximum on the size of the image of the group of units under the reduction map. O

Remark 4.5. This bound is sometimes larger than the one given in Theorem 4.1 and sometimes

smaller, depending on the different inertial degrees of the ideals that p splits into.



5 Real Quadratic Fields

We now consider the case where n = 2. We also restrict our focus to real quadratic fields, as Dirichlet’s
Unit Theorem gives that the rank of the unit group is 0 in a complex quadratic field and 1 in a real
quadratic field. We will use a similar lifting argument to construct K = Q(«) for « a generator of a
given subgroup of UF:2 containing —1, but more work will need to be done to ensure this unit is
fundamental.

2 —ax+1 and 22 — ax — 1, and determine

We first focus on minimal polynomials of the form x
when one of them has a root a = ¥ for 3 a root of another polynomial of that form and k an integer
greater than 1. The polynomials 22 — ax & 1 for which no such 3 exist are precisely the ones for
which « is a fundamental unit in Q(«). To characterize exactly the set of a for which the root of
22 — ax + 1 for which no such 3 exists, we use a polynomial series in order to relate polynomials

whose roots are powers of each other.

Definition 5.1. For a real number b, we define the sequence of polynomials Py g, P 1, ... recursively
with Py o(z) =2, Py1(x) =z, and Py p11(x) = Py (x) — 0Py p—1(2).

This sequence is also called the sequence of Dickson polynomials D, (z,b), where P, ,(z) =

D,,(x,b). More on Dickson polynomials can be found in Section 9.6 of | ]

Lemma 5.2. If a is a root of the polynomial x> — ax + b where b # 0, then o is a root of

22 — Py (a)z + b* for all nonnegative integers k.

Proof. We see that by Vieta’s formulas a = a + £ so by Identity 7.8 from | ], Ppi(a) =ar + Z—i
Additionally, o - 2—]; = b* so by Vieta’s formulas o* and g—i are roots of 22 — P, (a)x + b.

For the sake of completeness, we provide a full proof by induction on k. For £k = 0,1 we have

a® =1 is a root of 2 — 2z + 1 and o' is a root of 2> — ax + b. Now, assume that a* is a root of
22 — Py j(a)z + b* for all k < n. Then « is a root of 22 — ax + b, a™ is a root of 2% — Py ,(a)z + b,
and o' is a root of z? — Py n—1(a)z +b""t. Equivalently, « is a root of the polynomials 22 —azx+b,

22 — Py (a)z 4+ 07, and 221 — B, 2"t 45771 s0 it is a root of
(22 +b)(z®" — Py (a)z™ +0") + Py (a)z(@? — az + b) — b (z*"™Y — Py, 1 (a)a™ L + 0771
which simplifies to
2?2 — (aPyn(a) — bPyy_1(a))z" T 40" = 2?2 Py (a) + 07T

so a™t! is a root of 22 — Py py1(a)z + b1 and our induction is complete. O

Now, we have characterized all a for which the root of 22 —ax £ 1 is a power of the root of another
quadratic polynomial 22 — a’z £ 1 by giving a sequence of polynomials such that this property holds
when a is attained as a value of one of the polynomials. We will show that the natural density of

such values is 0.

Lemma 5.3. Let S; denote the set of all integers a greater than 2 for which a root o of x? — ax + 1
is not a fundamental unit in the real quadratic number field Q(«). Similarly, let Sy denote the set
of all integers a greater than 2 for which a root a of 22 — ax — 1 is not a fundamental unit in the
number field Q(«). Then the natural density of both S1 and S in the integers is 0.



Proof. Our proof will show that the values the Dickson polynomials take on over the integers has
density 0. To show this, we will make use of multiple properties specific to the Dickson polynomials,
and this result does not hold for general sequences of polynomials with increasing degree; see Remark
5.4.

We first consider the natural density of Sy. If a root a of 22 — az — 1 is not a fundamental unit in
the number field, then we must have that a can be written as 3* for some unit 3 and integer k > 1.
Then, if we let 3 be a root of z? — bz — 1, it follows from Lemma 5.2 that a = P_1 x(b). Thus, in
order for a to be in Sy it must be of the form P_ (b) for some integer b and positive integer k > 1.

We may further reduce the problem using the fact that every coefficient in P_; j, is positive and
that P_; j is either an even polynomial or an odd polynomial. Thus, if b is negative and P_; , is
odd then P_j j(b) is negative and if P_ j is even then P_; j(b) = P_q ;(—b). Thus, it suffices to
show that the set

S, =NnN <U{P_1,;€(b) k> 2}) =Nn ( U {P-1s(b) k> 2})

beZ beNy

has natural density 0.

To show this, we first note that the sequence P_; 2(0), P_1 3(0),... alternates between 0 and 2.
We also have that, up to a finite number of cases, the sequence P_q (1), P_1,1(1),... is greater than
geometric with ratio 3/2. To see this, we recognize the sequence as Lucas’ sequence with closed form
OF + (1 — @)F for p = 1+T\/g > 3/2, and furthermore the (1 — )* term has absolute value strictly
less than 1 for £ > 1. Now, we also have that the sequence P_; 2(b), P_1 3(b),... is greater than
geometric with common ratio b. This is because P_1 ;,41(b) = bP_1,,(b) + P—1,n—1(b) > bP_1 ,,(b).

To show &4 has density 0, we may consider the cardinality of the intersection S5 N {1,2,...n%}
for each positive integer n. From the fact that P_; ;(b) increases as k increases, we see that for a
fixed b we have that P_q ;(b) attains its minimum at k = 2, when P_q 4 (b) = b*> 4+ 2. Thus, in order
for {P_1x(b) : k > 2} to intersect {1,2,...n?} at all, we need, b* + 2 < n? or b < n. Then, for each
such b, we have that since P_q ;(b) is greater than geometric with common ratio b, its intersection

with {1,2,...n2} has size at most log,(n?). Thus, for some positive integer c,

% |S5n{1,2,...,n%} < 1 <c+Z|{P1,k(b) k> 2}0{1,2,...,#}])
b=1

n2

3‘,_.

== <c+1og3/2(n2) + i [{P_1,(b) 1 k>2}nN {1,2,...,n2}|>
b=2

n—1
1
< ) <C + 108;3/2(n2) + Z IOgb(n2)>
b=2
1
< = (c+ 20— 1)logy ()
1
< ﬁ(c+2nlog3/2(n))
< c+ 6logn

n

which approaches 0 as n grows large. So S8} also has natural density 0 so Sy does, as desired.

We now deal with the density of S;. Similarly to in the first case, note that a root o of 22 —az +1
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not being a fundamental unit is equivalent to it being written as 5* for some other unit 3, which has
a minimal polynomial of the form z? — bz £ 1 for integer b. There are a finite number of cases where
Q(«) is not a totally real quadratic field, which occurs when a < 2. Thus, by Lemma 5.2, up to a
finite number of cases, we have that a being in S is equivalent to a being written in the form P 4(b)
for some integer k > 2 and b € Z or as P_; 1,(b) for some even k > 2 and b € Z. Also, by the density
of 8%, the set of cases where a = P_; ;(b) has natural density 0. Thus, it only suffices to consider the
natural density of the set

S =Nn (U{Pl,k(b) k> 2}) .

bez

Now, observe that when |b] < 2, we have that {P; (D) : k > 2} is a subset of {—2,—-1,0,1,2}. To
show this, note that if || < 2 then the root of 22 — bx + 1 is a root of unity so any kth power of the
root is also either 0 or a root of unity. Thus, the polynomial 2% — P ;(b)z + 1 always has roots that
are roots of unity and it follows that |P; ,(b)| < 2 as well.

Now, for |b] > 2, we will prove inductively that the sequence |P; 2(b)|, | Py 3(b)],... is strictly
increasing and is greater than geometric with common ratio |b| — 1. For our base case, we note that
|P1o(b)] = |b* —2| and | Py 1(b)| = [b® — 3b] < |b](|b? — 2| —1) < (|b] — 1)|b* — 2] since |b] — 1 < [b* — 2]
from the fact that |b| > 2, so this case works. Then, assuming |P; ,—1(b)| < | Py ()|, we see that

[PLnt1(0)] = [6P1n(b) = Prn—1(b)] = |[bPLn(0)| = [PLn—1(b)]] = (] = 1)|P1,n(b)]-

Thus, our induction is done.

To show & has density 0, we may consider the cardinality of the intersection 8§ N {1,2,...n%}
for each positive integer n. From the fact that |P; ;(b)| increases as k increases, we see that for a
fixed b we have that | Py ;(b)| attains its minimum at k = 2, when Py (b) = b? — 2. Thus, in order
for {Py 1 (b) : k > 2} to intersect {1,2,...n%} at all, we need, b*> — 2 < n?, which can be rewritten as
b < n. Then, for each such b, we have that since |P; ;(b)| is greater than geometric with common

ratio [b| — 1, its intersection with {1,2,...n?} has size at most log,_;(n®). Thus

1 1
SlSin{L2.nf < — |5+ > {Pukb) k=20 {1,2,...,n%}
bEZ,|b|>2

1
= |5+ S {Pu®) k=280 {1,2,...,n%|
bEZ,2<|b|<n
1 2
S ﬁ 5+ Z log|b|_1(n )

beZ,2<|b|<n
1 n—1
=~ (5 +4)° logb(n)>
b=2

%(5 +4(n — 2)logy(n))

IN

IN

IN
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which approaches 0 as n grows large. Thus, §7 has natural density 0 so S; has natural density 0.
O

Remark 5.4. Note that the density argument used in this result on the family of polynomials P, j, for
b = £1 is not true of general families of integer polynomials with increasing degrees. In fact, we may
take an example as simple as 22 4+ 1,23 4+ 2, 2* + 3,... to see that the natural density of the values
attained by the polynomials can be 1. The families considered here are special in a sense due to the
fact that Py, (z) for b = £1 only takes on a finite number of values for small  and is on the order of
2™ for large x. Thus, the values attained by P, ,(x) are roughly in correspondence with the perfect

powers, which have natural density 0.

Having shown that polynomials of the form x2 — ax £ 1 “almost always” have a root « such that
a is a fundamental unit in K = Q(«), we now consider when p is inert in K. This is not immediate
because in the case where we want the image of the unit group to have size 2 or 4, we need « to
reduce to an element of F), under ¢,, implying that the corresponding 2% — ax £ 1 is reducible in

F,[x]. Thus, we give the following criteria, leveraging the fact that Ok need not be equal to Z[a/:

Lemma 5.5. Fiz a prime p > 3. Then the following quadratic polynomials f have a root o for which

p 1s inert in Q(a):

(i) 22 — (mp** + 2)x + 1 for positive integer k and m congruent to a quadratic nonresidue modulo

p.

(ii) 2% — (2mp® + 2q) — 1 when p = 1 (mod 4), where m is congruent to a quadratic nonresidue

modulo p and q is an integer satisfying ¢> = —1 (mod p3).
(i) 2% — ax + 1, where the reduction of the quadratic modulo p is irreducible in Fp[z].
Additionally, for (ii), we have that such a residue class (mod p3) corresponding to q emists.

Proof. For (i), we have by the quadratic formula that

~ mp?F 24+ \/(mp?F +2)2 —4
2 )

s0 Q(a) = Q(y/(mp?* 4 2)2 — 4) and thus if \/(mp?* + 2)2 — 4 = b\/d for squarefree d and integer b,
then Q(a) = Q(v/d). By Section 5.9 of | ] it suffices to show d is a quadratic nonresidue modulo
p. Then observe that

Wd = /(mp2k+2)2 — 4 = \/m2p** + 4mp?k = p*/m2p2k + 4m

SO 1% =4/ W is an integer so % = 47"‘ is a quadratic residue modulo p. From the fact
that m is a quadratic nonresidue, it follows that d is also a nonresidue. Thus, p is inert in Q(«a) in
this case.

For (ii), we first show that a residue class corresponding to such a ¢ exists given p =1 (mod 4).
Observe that there exists a generator g of (Z/p3Z)* which has order p® — p? and that p® — p?> =0

(mod 4). Thus, we may take any ¢ in the residue class equivalent to g(ps_pz)/ 4 modulo p, as it will
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have order 4 and thus satisfies ¢> = —1 (mod p?). Now, to show that p is inert in Q(a), we see that
by the quadratic formula

2mp? +2q £ /(2mp? +2¢)2 + 4
o =
2 9

so Q(a) = Q(y/(2mp + 2¢)? + 4) and thus if \/(2mp + 2¢)2 + 4 = b\/d for squarefree d and integer
b, then Q(a) = Q(V/d). Again, it suffices to show d is a quadratic nonresidue modulo p. Assume for

the sake of contradiction it were a quadratic residue modulo p. Then observe that

bVd = \/(2mp? +29)2 + 4 = 2¢/m?p* + 2mp2q + ¢* + 1 = 2py/m?p? + 2mq + (¢*> + 1) /p?

_ \/m2p2+2mq+(q2+1)/p2 m*p’+2mq+(¢>+1)/p> _
= d d =

2 . . .
=4 is a quadratic residue

is an integer so

SO 23
mod]illo p. By similar reasoning to the previous case, it suffices to show that 2q is equivalent to a
quadratic residue modulo p.

To see this, we will consider p modulo 8 and make use of quadratic reciprocity, which states that
2 is a quadratic residue modulo an odd prime p if and only if p = £1 (mod 8). If p = 1 (mod 8)
then ¢ = g(”3*1’2)/4 = (g(1’3*1’2)/8)2 (mod p) is a quadratic residue and by quadratic reciprocity 2
is a quadratic residue as well so 2¢ is. If p = 7 (mod 8) then (p? — p2)/4 is odd so ¢ = g’ —P)/4
(mod p) is a quadratic nonresidue and by quadratic reciprocity 2 is also a quadratic nonresidue so 2¢
is a quadratic residue. We conclude that d is a quadratic nonresidue, so p is inert in K.

For (iii), we have by Lemma 3.1 that p is inert in Q(«). O

Theorem 5.6. For any odd prime p and subgroup G of U]sz containing —1, there exists a real
quadratic number field K in which p is inert and the image of the group of units of K under ¢, is

ezactly G.

Proof. We first treat the case where G is a subgroup of F’. Letting g be a generator of IF;z, we see
that G lies in FS if and only if its order divides p — 1. However, it also has order dividing 2(p + 1),
and it must also have an even number of elements. Thus, we find that the only possibilities are when
the order of G is 2 or when p =1 (mod 4) and the order of G is 4.

When G has size 2, consider the set of a for which a = mp?* 4 2 for k an integer and m congruent
to a quadratic nonresidue modulo p. Then since the set of such a has positive natural density greater
than 1/p?, we have by Lemma 5.3 that there exists some such a for which the root a of 2% — ax + 1
is a fundamental unit in Q(«). Then take K to be Q(«). To show this works for this case, we first
note that by part (i) of Lemma 5.5 p is inert in Q(a). Now, by construction we have that « is a
fundamental unit in Q(«) so every other unit is of the form +a* for k € Z. Finally, note that the
reduction of o under ¢, is a root of 22 — az + 1 which is equivalent to 22 — 2z + 1, so « reduces to 1
in Fp2. Thus, every element in the unit group reduces to +1 under ¢, so the image of O} under ¢,
has order 2.

For s =4 and p =1 (mod 4), we have by part (ii) of Lemma 5.5 that there exists an integer
q for which ¢> = —1 (mod p). Also, we have that for this ¢ and any m equivalent to a quadratic
nonresidue modulo p, p is inert in Q(«) for a a root of 22 — ax — 1 when a = 2mp? + 2¢ — 1. Since
the set of such a has positive natural density greater than 1/p?, we have by Lemma 5.3 that some
such a has the property that « is a fundamental unit in Q(«), and we may take K = Q(«) for
this value of a. Thus, every element of Oy is of the form +ao” for k € Z. Let the reduction of «

modulo p be @. Then @ is a root of the reduction of 22 — az — 1 modulo p, which is equivalent to
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2?2 — 29— 1= (x — ¢)%. Thus, @ = ¢ and the order of @ is 4. Thus, the reduction of the group of
units has size 4 in this case.
Now, we consider when G is not a subgroup of F,7. Then consider a generator g5 of G. Since

2_@zr+1oraz?

gs is not in [, its minimal polynomial is of the form x —ax — 1 for some @ € F,,.
Then, consider the set of @ whose reductions modulo p map to @. Since the set of such a has positive
natural density equal to %, we have by Lemma 5.3 that there exists some such a for which the root o
of 22 —az + 1 or 22 — ax — 1 is a fundamental unit in Q(«). Then take K to be Q(«). To show this
works, we first note that p is inert in Q(«) by part (iii) of Lemma 3.1. We also have that the image
of a under ¢, is a root of 22 —azr+1in Fp2 so it is g, or g3 1, both of which give that the reduction
of the unit group is exactly the group generated by gs which is G.

Thus, for every subgroup of Ur ,, we have exhibited a number field whose group of units has the

desired image when reduced under ¢,. O

Ezample 5.7. We may construct a real quadratic number field K in which the prime p = 23 is inert
and whose unit group has size exactly 8 when reduced modulo p. We first find a polynomial in I, [x]

of the form z2

— ax + 1 whose roots in IF,,» have order 8. This can be done by factoring the 8th
cyclotomic polynomial in F,[z] as ®g(z) = z* + 1 = (2% — 5z + 1)(2? — 18z + 1) and choosing a to
be equivalent to 5 (mod p). Then we may lift a to be 5 and notice that by part (iii) of Lemma 5.5, p
is inert in K = Q(cr). We also see that the element o has a minimal polynomial that reduces modulo
p to the minimal polynomial of an element of order 8 in U[sz. Thus, the image of the reduction of
the group of units has size exactly 8. Finally, we have that 5 ¢ S; so that « is a fundamental unit in

Ok . Thus, the reduction of the group of units of Ok is exactly the subgroup of size 8 in U]sz.

Ezample 5.8. We may construct a real quadratic number field K in which the prime p = 5 is inert
and where the reduction of the group of units of Ox modulo pO has size exactly 2 (i. e., is the
subgroup {£1} of U]FPQ). Using the process given in part (i) of Lemma 5.5, we first consider the
number field K = Q(«) where « is a root of the polynomial 22 — (2 - p? + 2)z + 1 = 2% — 52z + 1.
In this number field, p is inert and we also have that the reduction of the minimal polynomial of
a is 22 — 22 + 1, thus the reduction of o must be 1. However, we actually have that 52 € S;, as
52 = P 3(4). In other words, we see that «'/? is a root of 22 — 4z + 1, so « is not a fundamental unit
of K, and instead o!/3 is. Thus, this number field does not work. If we instead try letting o be a
root of 2% — (3-p? +2)x +1 = 22 — T7x + 1, we see again that p is inert in K and that the reduction
of the minimal polynomial of « is 22 — 22 + 1 so o must reduce to 1. A short computation shows
that 77 ¢ S1 so in this case « is a fundamental unit of K. Thus, we see that for this choice of K the
reduction of the group of units of Ox modulo pOf is exactly the set {£1} with size exactly 2.

6 Non-Maximal Orders

It is also interesting to consider the same question for the unit group of a non-maximal ideal. Fixing
a prime p and number field K in which p is inert, we will consider varying a choice of order O C Ok
to determine possible images of the unit group when reduced modulo pO.

In order to formulate the problem, we first define what it means for a prime p inert in K to

remain inert in an order O C Ok.

Definition 6.1. We will say that a rational prime p which is inert in a number field K remains inert
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in an order O C Ok if the ideal pO is a prime ideal of O.
For the purposes of describing when p remains inert, we prove the following equivalence:

Lemma 6.2. Let p be a rational prime and K be a number field of degree n in which p is inert. Let

O C Ok be an order of K. Then the following statements are equivalent:
(1) The prime p remains inert in O, i.e. pO is a prime ideal.
(2) The quotient O/pO is isomorphic to Fpn.
(3) The conductor ideal ¢ of O satisfies ¢ + pO = O, i.e. is relatively prime to pO.

Proof. We first show that (1) = (2). Considering O as a finitely generated Z-module of rank
n, we may choose an additive basis 8B of O that has size n. Then, in the representation of any
element of O a reduction of each of the coefficients modulo p gives an isomorphism between O/pO
and (Z/pZ)™. Since pO is a prime ideal, it follows that O/pO is an integral domain of finite size p”,
so it is isomorphic to Fyn.

We also have that (2) = (1) because the quotient O/pO being a field implies that pO is a
maximal O-ideal, and thus it is a prime O-ideal. Thus, (1) is equivalent to (2).

To show that (2) = (3), we assume for the sake of contradiction that ¢ +pO = a # O but
O/pO = Fpyn. It follows that pO C a. However, from the fact that O/pO is a field we see that pO
is maximal. Thus, pO C a # O implies that a = pO, and thus ¢ C pO. Taking an element a € ¢
we find that aOk is an O-ideal. Furthermore, since £ ¢ ¢ by the minimality of vp(a), we find that
%(’)K is not an O-ideal so aOx Z pO. However, the ideal product aOg - a0k = a’Ok C pO since
aQp is an O-ideal and « € pO. Thus the ideal pOg is not prime, a contradiction.

We have that (3) = (2) from statement (2) in Theorem 3.8 of | ]. Thus, all three statements
are equivalent. O

We now pose the question:

Question 6.3. Let K be a number field of degree n with ring of integers Ok and let p be a prime
which is inert in K. Let U C U]Fp2 be the image of the group of units when reduced modulo pOg . For
a giwen subgroup G C U containing —1, does there exist an order O C Ok such that p remains inert

in O and the group of units O has image G under the reduction map ¢, : O — O/pO?

Lemma 6.4. For number field K of degree n and prime p inert in K, let € be an element of O. If

op(e) is a generator of Fyn, then p remains inert in the order Z[e].

Proof. Let € have minimal polynomial f(x) and let f(z) € F,[z] denote the reduction of f(x) modulo

p. Then we have

O/pO = Zel/p = (Zlz]/ () /p = Zz]/(f (), p) = (Z[z]/p)/ [ () = Fplz]/ f(2).

~J

In the case where ¢, (¢) is a generator of Fpn, we have that f(z) has degree n so O/pO = F,[z]/f(z)

O

Fp» so by Lemma 6.2 we get that p remains inert in O.

Lemma 6.5. Let K = Q(\/a) be a real quadratic number field for squarefree d and let p be an odd
rational prime inert in K. Let ¢ = a + b\/d be an element of O, where 2a,2b € Z. Furthermore
assume that € > 1, e # 3+T‘/5, and p»(®) < /b If b/ = bp=*®) | then the order O = Z[b'\/d] has p

remaining inert and € as a fundamental unit.
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Proof. Note that ged(b', p) = 1. Then observe that the conductor of O is 2b’O in the case where d = 1
(mod 4) and O otherwise. Thus, by Lemma 6.2 we see that p remains inert since the conductor of
O is coprime with pO.

We now show that ¢ is fundamental in O. Using the discriminant formula for a power basis gives
that Disc(O) = (2b'V/d)? = 4b"%d. By Eq. (1.1) of | ], we find that the regulator R satisfies

R > log (;(\/Disc((’)) + y/Disc(0) — 4))
> log(+/Disc(O) — 4)

1
=5 log(4b?d — 4).
Thus, to show that ¢ is a fundamental unit, it suffices to show that
loge < 2R = log(4b'?d — 4).

Note that since £ > 1, it follows that the conjugate of ¢ is equal to a — bv/d = % < 1. Thus, it suffices

to show

40%d — 4 > e = 20V/d + (a — bVd) > 2bV/d.

From the fact that p*»®) < /b, we have that ' = b/p*»(® > \/b. Thus 4b'%d — 4 > 4bd — 4 so it

suffices to show 4bd — 4 > 2bv/d or 2b(2d — \/g) > 4 which holds in the case where b > 1 since d > 2.

In the case where b = 1, we find that we need d =1 (mod 4) so we can only have the case d =5

3+V5
2

corresponding to € = . Thus, we are done. O

Lemma 6.6. Let K = Q(\/E) be a real quadratic number field for squarefree d and let p be an odd
rational prime inert in K. For an element ¢ in O, write ¢ = a + bV/d for 2a,2b € Z and write
eP = ay +b1Vd for 2a1,2by € Z. If pfa and p | b, then v,y(b1) = v,(b) + 1.

Proof. Let € = a+ bV/d for 2a,2b € Z. Observe that, by the binomial theorem,
e = (a+bVd)” = a” + a”’”@ +a’*(bVd)? @ +a” ¥ (0Vd)? @ +ooe ot (V)P
Extracting the v/d component, we find that it is equal to the sum of the terms with odd bv/d exponent:

aP~ovd (?) + ap_3b3d\/&(§> T+ bPdPD/24/g,

Note that the p-adic valuation of the v/d-coefficient of each term in the sum strictly increases due to

the fact that the kth coefficient has p-adic valuation

v, <apkbkd(k1)/2 <§)> = (p— k)p(a) + kv (b) + %Vp(d) +u, <<Z)> = kvp(b) + 1,

and the last term has p-adic valuation pr,(b) which is larger than the rest. It follows from the

non-Archimedian property of p-adic valuation that

vy(b1) = v (ap—lb(ll’> + ap‘3b3d<§) N bpd(p—l)/2> =, <ap_1b<€>> =,(b) + 1.
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Thus, we are done. O

Theorem 6.7. Let K be a real quadratic number field with ring of integers Ok, and let p be a
rational prime which is inert in K. Let U C U]sz be the image of the group of units when reduced
modulo pOk. Then for a given subgroup G C U containing —1, there exists an order O C Ok
such that p remains inert in O and the group of units O has image G under the reduction map
¢, : O = O/p0O.

Proof. Let K = Q(v/d) for squarefree d, and let € € Ok /pOk denote a generator of G. We consider
cases, depending on whether Z is an element of F,, C Ok /pOk (note that this embedding of F, is
canonical).

We first consider the case where £ is not sent to an element of F,,. Since the image of O under
reduction modulo p has an image U of which G is a subgroup, we may lift £ to an element ¢ of O}
satisfying ¢,(¢) = &. We may also assume that £ # (3 + v/5)/2 by raising it to the power of p? if
necessary, as ¢,(c) = ¢p(sp2) due to the Frobenius endomorphism. Considering O = Z[e], we have
by Lemma 6.4 that p remains inert in O.

Now, by Theorem 3.8 of | ] it follows that there is a natural ring isomorphism O/pO =
Ok /pOx given by inclusion. Thus this isomorphism sends ¢/,(¢) to ¢,(¢) so they have the same
multiplicative order. Thus, the subgroup of O/pO generated by d);(a) has the same size as the
subgroup of Ok /pOk generated by ¢, (), which is G. Thus, it suffices to show that O* is generated
by e. Since ¢ # (3 ++/5)/2, we have by Theorem 1 in | ] that € is a fundamental unit of O, so
we are done in this case. (Note that this can also be obtained by a similar argument to 6.5.)

We now consider if the generator ¢ of G is an element of F,. Since the image of O} under
reduction modulo p has an image U of which G is a subgroup, we may lift £ to an element € of O}
satisfying ¢,(¢) = 2. We may also assume that £ # (3 + 1/5)/2 by raising it to the power of p if
necessary, as ¢,(¢) = ¢,(eP) due to the Frobenius endomorphism. We may also negate it and take
its multiplicative inverse if necessary so that ¢ > 1 so that we may write € = a + bv/d for 2a,2b € N.
In order to apply Lemma 6.5 we wish to find a power of € with the same reduction such that the
p-adic valuation of the v/d coefficient is sufficiently small.

From the fact that ¢,(¢) € F, we have that p | b and from the fact that ¢,(¢) has finite
multiplicative order in IFZQ, we find that ¢,(¢) # 0 so p{a. Thus, applying Lemma 6.6 we see that
if e? = a; + bVd for 2a;,2b; € N, then v,(b1) = v,(b) + 1. Repeating this process by defining
€ = et = ar + bk\/a for 2ay,2b, € N, we find that p { ax and p | by since " reduces to the
same nonzero element under ¢, by the Frobenius endomorphism. Thus v, (bry1) = vp(bs) + 1
so vy(br) = v,(b) + k. For each one, we see that aj — bxvd = 7" satisfying 0 < e < 1 s0
ex = 2bg + (ap — by) satisfies 20y, < € < 2bg, + 1. This gives

p”P(b’“) :p”P(b)+k < prk < pks and /by > \/er/2 = \/eP" /2.

Thus, in order to have p*»(**) < /b it suffices to have pFe < \/m. Taking the logarithm of both
sides it suffices to have klogp + loge < %(pk loge —log 2). Since the exponential term grows faster
than the linear term, there exists sufficiently large k for which this holds. Taking such a k, we find
that we may apply Lemma 6.5 to € to find an order O in which p is inert and ¢ is fundamental.
By a similar argument to the first case, ¢,(¢x) has the same multiplicative order as ¢),(ex) so they

generate the same subgroup G. Thus, the image of O* under ¢}, is G. O
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We conjecture that a similar result holds in a number field of arbitrary degree, provided that the

unit group is infinite:

Conjecture 6.8. Let K be a number field of degree n, and let p be a rational prime which is inert
in K. Let U C Uy, be the image of the group of units when reduced modulo pOk . Then for a given
subgroup G C U containing —1, there exists an order O of K such that p remains inert in O and the

group of units O has image G under the reduction map gi);, : 0 — O/p0O.

7 S-Unit Group Reduction

The S-unit group is another generalization of the unit group for which many similar results hold. We
use the definition given in page 70 of | ]. For a number field K and a finite set .S of prime ideals
of K, the ring of S-integers is the subring of K defined by O3 = {% ca,B €Ok, B¢pforalpgsSt.
The group of S-units (OF-)* is defined to be the set of invertible elements in O7-. We now describe

what it means for a prime p inert in K to remain inert in O%..

Definition 7.1. We will say that a rational prime p which is inert in a number field K remains inert

in the S-integers O3 when the ideal pO%- is prime.

Equivalently, by Proposition 11.1 in Chapter 1 of | ], a rational prime p inert in K remains
inert in O% if p & S.

Lemma 7.2. When a rational prime p is inert in K and remains inert in (’);5;, the reduction map

¢p : Ox = Ok [pOk extends uniquely to a reduction map
qbg : (’)}9( — Ok /pOk.
Furthermore, we derive from gzﬁf; an induced map
®: O3 /pOy — Ok [pOx

which is an isomorphism.

Proof. Since every element of O3 may be written as o/ where p { 3 for all p ¢ S, we may extend
the reduction map by setting qb;? (a/B) = ¢p(a)/dp(B). Since p remains inert in OF, we have that
p & S so pt B implying ¢,(8) # 0, allowing this extension to be defined. We see that the kernel of

this extended reduction map is exactly

{a/B:a,B €0k, ptpforallpgSp|a}t=pOy

so the map induces an injective homomorphism ® : 0% /pO3- — O /pOg. This homomorphism is
also surjective from the fact that Og C (9;% and ¢, is surjective. Thus, ® is an isomorphism. O
It follows that O3 /pO% = F,n. We consider the question:

Question 7.3. Let p be an odd rational prime inert in a number field K. Suppose that U C
(O /pOK)* is the image of O under reduction modulo pOk . Then, for any subgroup G satisfying
U CG C(Or/pOx)*, does there exist a prime q € Ok such that if S = {qOx} the image of (OF)*

under reduction modulo pO%- is G?
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Lemma 7.4. For a real quadratic number field K = Q(\/&), odd rational prime p which is inert in
K, and nonzero residue a € Z/pZ, there exists a rational prime q which is inert in K and equivalent

to a modulo p.

It suffices to find a prime ¢ such that <g) = —1 and ¢ = a (mod p). The first condition can
be rewritten as an equivalence modulo 4d by quadratic reciprocity. From the fact that p is odd
and inert in K, we have that (4d,a) = 1. Thus, we simply wish to find a prime ¢ which satisfies
a congruence condition modulo 4dp, which exists by Dirichlet’s theorem on primes in arithmetic
progressions (Theorem 2.2 in | D.

O

Then, in the case where K is a quadratic number field of choice and ¢ must be rational, we have

the following result:

Theorem 7.5. Let p be an odd rational prime, and let G be a subgroup of Flfg of even index. Then
there exists a quadratic number field K and rational prime q # p such that p and q are inert in K
and setting S = {qOx} the image of (O%)* under reduction modulo pO3. is G.

Proof. Consider the subgroups
T=GNF) and U = G N Upx .
p2

We wish to show that G is equal to the subgroup G’ of IF‘;2 generated by T and U. It is clear
that G’ C G since its generators lie in G. Now, for an element ¢ € G, note that since the
index of G is even the element gP/? can be defined such that (g?/2)> = g?. Then we find that
(gP/2)ptl = Ns /¥, (g?/2) € T and (gP/?)P~! satisfies NIFP2/FP((gp/2)p—1) — (gP/Q)p2—1 -1 s0
(gP/?)p=t € U. Thus, g = g”2 = (gP/?)PF1(gP/2)P=1 50 g is generated by T and U. We conclude that
G'=G.

By Theorem 5.6 there exists a real quadratic number field K in which p is inert and the image of
O under reduction modulo pOf is exactly U. Also, by Lemma 7.4 there exists a rational prime ¢
inert in K such that ¢ =t (mod p), where ¢ denotes a generator of T. Then, we may consider the
S-unit group of pO%., where S = {¢Ok}. By the exactness at Gapng K> /Oy in Theorem 11.6 of
[ ], we have that (0% ) is generated by O and g. Thus, the reduction of (O%)* is generated
by U and t, so it is equal to G’ = G.

O

We now prove an analogue of Dirichlet’s theorem on primes in arithmetic progressions for number

fields:

Theorem 7.6. Let p be an odd prime inert in a number field K of degree n. Let U C (O /pOk)™
be the image of O under reduction modulo pOk. Then for a given element o € (O /pOk)*, there

exists a (not necessarily rational) prime q in K such that the reduction of ¢ modulo pO lies in aU.

Proof. We provide a proof based on [ ]. Set mg = pOk, my = 1, and m = mymy, and consider the
ray class group with modulus m, which we denote by Cy,. By Takagi’s existence theorem (Theorem

0.5 in | | there exists a class field Ky, corresponding to the trivial subgroup of Cy, such that

®Vﬁ7 Z

Gal(K,, /K) 2 Cyy = o
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Lifting o to an arbitrary element & € O, we may let [o] = [(@)] € Ciy. This is well defined because
if @ and &’ are liftings of a then I/p(% -1 =ya—a)—v,(@) >1=r,(m)so % € K.

By the Chebotarev Density Theorem (Theorem 7.4 in | 1), since Cy, is abelian there exists
a positive density of prime ideals ¢ C Ok such that (4, Kwn/K) = 0([a]). By Artin reciprocity
(Theorem 0.8 in | ]) and the fact that (q, Km/K) = 0([q]), we have [q] = [a]. We conclude that
(q) = (ap) for B € K 1. Thus, q is principal and may be written as q = (¢) for some prime ¢ € Ok.
It follows that ¢ = afe for € € O, so reducing both sides modulo p we have that ¢,(q) € aU. O

Using this, we are able to answer our original question:

Theorem 7.7. Let p be an odd rational prime inert in a number field K. Suppose that U C
(Ok /pOK)* is the image of O under reduction modulo pOr and G is a subgroup satisfying
U C G C (Ok/pOk)*. Then there exists a prime ¢ € Ok such that if S = {qOk} the image of
(O2)* under reduction modulo pO%- is G.

Proof. Let a € (O /pOk)* be a generator of G. By Theorem 7.6 there exists a prime element
q € Ok satisfying ¢,(q) € aU. We will show that such a ¢ works. Setting S = {¢Ox} we find that
by the exactness at P, 4¢ /Oy in Theorem 11.6 of | ] that (O%)* is generated by O and q.
Thus, the reduction of (0% ) is generated by U and an element of aU, so it is equal to G. O

8 Cubic Fields

When considering totally real cubic fields, the problem of obtaining all subgroups of Uk, becomes
more complex due to the unit group having rank 2. We prove a theorem that suggests that this
should be possible, by focusing on constructing number fields in which a unit of our choice becomes
a Minkowski unit. Here, by Minkowski unit we mean a unit that forms a system of fundamental
units with its conjugate. This property would be helpful because the conjugates of an element « of
F,» are of the form a?" due to the Frobenius endomorphism. Thus, any subgroup of Fps generated
by the reduction of a Minkowski unit of a number field K automatically contains the reduction of
all of its conjugates. Therefore it contains the reduction of the system of fundamental units so it
contains the reduction of the entire unit group.

In terms of constructing number fields to have Minkowski units with a given minimal polynomial,
we have the following result on when the roots of a polynomial of the form P(z) = o3 +ax?+bx+1 are
Minkowski units, subject to an assumption that they generate a Galois field and whose discriminant

is not too far from Disc(P):

Theorem 8.1. For a fized positive integer D and constant € > 0, there exists a constant C = C(D,¢)
such that the following holds. Assume integers a and b satisfy |a|*=¢ > |b] > |a| +2 > C and the
number field K with defining polynomial P(z) = x3 + ax? + bx + 1 is Galois. Furthermore assume
Zla] for a a root of P has index d < D inside Og. Then any two roots of P form a system of

fundamental units for Ok.

Proof. First note that since [b| > |a| + 2 we have that either P(1) =24+a+bor P(—1) =a—bis
negative. It follows by the Intermediate Value Theorem that P has a root between -1 and 1, we
will call this root w. Then let the other two roots be s; and s3. We see that at least one of |s1], |s2]

is greater than 1 because the product sisqu is equal to —1. Furthermore, note that |s1],|s2| > 1
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because if one had absolute value less than 1, P would have two roots in the interval [—1,1] so P(1)
and P(—1) would be the same sign, but this is not possible from the fact that P(1) = 2+ a + b,
P(—1)=a—b, and |b] > |a| + 2.

Since P has constant coefficient 1, each of u, s, and so are units in O . Since any choice of two
roots from u, s, and sy form a system of units that generate the third one, it suffices to show that
s1 and s9 form a system of fundamental units.

A result from Cusick | ] states that the regulator R of K satisfies R > 5 log? (Disc(K)/4).
Now, observe that Disc(K) = 4> Disc(Z[a]) by Proposition 3.22 from | ]. Tt follows that

1 1
Dise(K) = —Dise(P) = -5 (=27 — 4a® + 18ab + a®b? — 4b°).

From the fact that a® > [b| > |a| + 2 this is greater than Jza?b? which is greater than Zb% for
sufficiently large a and b. Thus, we have that

R>1lo ?(Disc(P)/4) > L og? LA log? v
— 1S — — — — .
=16 &\ =16 % \2) =16 % \ D2

Since D is fixed, for sufficiently large b relative to D this is greater than (1 — 1) - & log?(b®) =
(I1—¢1)- 19—610g2 b for any fixed &1 > 0, so that R > (1 —&1)+% log? b.
At the same time, we have that the regulator R’ of the system of fundamental units formed by 71

and ro is

/ log [s1| log sz log |s1] log |s2]

= = = log® |s1] + log|s1| log |s2| + log? | s3]

log |s2| log|ul log|sa| —log|sisal

Now, since |s1[, |s2] > 1, we have log |s1]|log|s2| > 0 so
R’ =log?|s1| + log|s1|log |s2| 4 log? |so| < log? |s1] + 21log |s1|log |sa| + log? |sa| = log? |s1s2].

We also have that b = 5189 + s1u+ Sou = s189 + é + i S0 $182 is within 2 of b. Thus, for sufficiently
large b we may approximate R’ < (1—¢1) log? b using the same sufficiently small ; > 0. Setting ; to
be a constant such as 0.01, we may choose C'(D, ¢) such that all of the “sufficiently large” conditions
on a and b hold. For this value of C(D,¢), we conclude that R’ < (1 —¢;)log®b < LR < 2R by
taking 1 < 0.01. Since % is the index of the units generated by s; and s, over the group of units in
Ok, it follows that % is a positive integer which is less than 2 so it must be 1, implying that s; and
so form a system of fundamental units. O

Due to this result, it suffices to consider the following: Let f € F,[z] be the minimal polynomial
of a given generator of a subgroup G of Ur s Then there exists a Galois field K defined by the
polynomial f reducing to f modulo p such that f has large coefficients with respect to [Ok : Z[«]],

where a denotes a root of f

9 Future directions

For the totally real cubic case, considering the problem for orders would also be interesting. For

Theorem 8.1, the conditions may be be satisfied more often in specific orders. After constructing a
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polynomial of the form z3 + az? + bx + 1 with roots r; and 7, which defines a number field K, it
may be helpful to consider the unit group of the order Z[r;, 5] rather than the unit group of Ok.
This is because we expect [Ok : Z[r1]] > [Z[r1, r2] : Z[r1]], loosening the conditions on a and b.
Additionally, in order to prove the totally real cubic case from Theorem 8.1, it becomes important
to consider possible ways to construct families of Galois fields, which have been studied by Shanks
[ ] in his consideration of cubic fields defined by polynomials of the form x® — az? — (a + 3)z — 1.
Such fields are always Galois, but it is not always true that the minimal polynomial of a generator of
a subgroup of UJFps will be of such a form. Thus, we turn to Balady | ], who gives a method of
generating families of cubic fields and a result on these families similar to Theorem 8.1, conditional on
the squarefreeness of a specific quantity. In combination with Poonen’s work on squarefree values of
multivalued polynomials (| ]), it may be possible to use Balady’s general families of polynomials

to prove the cubic case.
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