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Abstract

We investigate the attainability of various subgroups of F×
pn as images of the unit group of a

number field under reduction modulo an inert prime. We prove several results about possible

images under reduction when fixing a finite field Fpn and varying the number field K of degree n

in which p is inert. Using the finite field norm, we fully describe the maximal image for general n

and obtain a complete description of the possible images in the quadratic case. We also consider

the analogous problem for unit groups of non-maximal orders of a quadratic number field, where

the number field is fixed and the order is varied. Similarly, we consider the analogous problem

for S-unit groups of localizations of the ring of integers, where the number field is fixed and the

choice of localization is varied.
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1 Introduction

The unit group of the ring of integers of a number field has been an important subject of study in

algebraic number theory. Dirichlet’s Unit Theorem ([Conb]) describes the unit group as a product of

a finite Z-module of specified degree and a cyclic group of roots of unity. However, it does not give

an explicit description of a system of fundamental units for the unit group, and so determining a

system of fundamental units has been a problem of interest in algebraic number theory.

We consider the problem of controlling the image of the group of units under reduction modulo a

prime ideal. Specifically, we consider the possible images of O×
K in the map ϕp : OK → OK/pOK

∼=
Fpn , where p and n are fixed and K is varied. Our problem is related to Artin’s conjecture in its

focus on the multiplicative group generated by the reduction of an element. Artin’s primitive root

conjecture states that an integer that is neither square nor −1 is a primitive root modulo infinitely

many primes. A natural generalization for Artin’s conjecture for number fields asks when a nonzero

element α of the ring of integers of a number field K is a generator of the group (OK/pOK)× for

infinitely many prime ideals p. Sections 6.1.1 and 9.7 of [Mor12] explain several other variants of

the conjecture for number fields and the progress that has been made on them. Kitaoka, Ishikawa,

Chen, and Yu ([IK98], [CKY00], [Kit06], [Kit07]) have also considered the size of the image of the

unit group when reduced modulo a prime ideal, especially in the case of a real quadratic field. Our

problem is a natural “converse” of this problem, starting with a given prime p and constructing

a number field K such that p is inert in K and the group of units of K has a given image when

reduced modulo p.

In a number field K of degree n, we will denote the ring of integers of K by OK and the group of

units by O×
K . Supposing that a rational prime p is inert in K, we find that the quotient OK/pOK is

isomorphic to the finite field Fpn . Making use of the structure of F×
pn , we note that the finite field

norm agrees with the the field norm NK/Q modulo p, so that all units must reduce modulo p to an

element with finite field norm ±1. This gives restrictions on the the image of the unit group, and

leads to a general conjecture on the attainability of various subgroups of Fpn as the image of the

reduction of the unit group of a number field. We define the subgroup

UF×
pn

= {x ∈ Fpn : NFpn/Fp
(x) = ±1} (1)

of F×
pn , and by the argument sketched we demonstrate that the image of the group of units must lie

in this group. This leads to the conjecture that all subgroups of UF×
pn

can be realized as the reduction

of the group of units of some number field. More formally, we have the following:

Conjecture 1.1. Let p be a prime, n be a positive integer, and G be a subgroup of UF×
pn

containing

−1. Then there exists a number field K of degree n in which p is inert and such that the reduction

of O×
K modulo p is exactly the subgroup G of Fpn .

We first show the more specific case that the maximal subgroup, the entirety of UF×
pn

, is always

attainable. That is, the following theorem holds:

Theorem 3.3. For a fixed rational prime p and positive integer n, there exist infinitely many number

fields K of degree n for which p is inert in K and the reduction of the unit group modulo pOK attains

the maximal image UF×
pn
.
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This can be shown by constructing a number field containing a unit that reduces to a generator

of the subgroup UF×
pn

. This result does not require much control over the group of units, as there are

no further constraints on the unit that we construct a number field to contain; it does not need to be

a fundamental unit.

We then give some bounds on the reduction of the unit group modulo a non inert prime, using

the methods developed to describe the possible images of the unit group when reduced modulo a

single inert prime. Specifically, we assume p is unramified and splits as p1p2, . . . , pk for prime ideals

p1, . . . , pk. Then, we relate the modulo p reduction of NK/Q(α) with the finite field norms of the

reduction of α modulo each pi. This gives Theorem 4.4, a bound on the size of the image of the

group of units analogous to the bound given in Lemma 2.2.

We also show that, in the case of a real quadratic number field, every subgroup of UFp2
is realizable

as the image of the group of units, given that it contains −1:

Theorem 5.5. For a fixed odd prime p and subgroup G of UF×
pn

containing −1, there exists a real

quadratic field K = Q(
√
m) in which p is inert and the group of units of K reduces modulo pOK to

exactly G.

This result requires a more careful choice of number field, since a unit we construct it to

contain may not necessarily be fundamental. To prove this theorem, we correspond units α that

are not fundamental units of Q(α) with values of the Dickson polynomials. We then show that

the sequence of Dickson polynomials approximate an infinite exponential sequence and thus have

density 0, guaranteeing a choice of α reducing to a desired generator of a subgroup of UF×
pn

that is a

fundamental unit in Q(α).

As a consequence of this result, all even divisors d of 2(1 + p) are realizable as the size of the

reduction of the group of units of some number field K modulo pOK , where p is inert in K.

It is also interesting to consider the problem in non-maximal orders O ⊊ OK . The unit group of

the order O× is a subset of O×
K so it may have a different image in O/pO. We consider the problem

of fixing a number field K and choosing an order O in which the image of the reduction of O×

modulo pO gives a specific image. For this question to be well defined, we describe conditions for p

to be “inert” so that O/pO ∼= Fpn . In the quadratic case, we have a complete characterization of the

possible images:

Theorem 6.6. Let K be a real quadratic number field with ring of integers OK , and let p be a prime

which is inert in K. Let U ⊆ UFp2
be the image of the group of units when reduced modulo pOK .

Then for a given subgroup G ⊆ U containing −1, there exists an order O ⊆ OK such that p remains

inert in O and the group of units of O has image G under reduction modulo pO.

Alternatively, we generalize the question to S-units, considering the reduction of the unit group

of the localized ring OS
K . The problem then becomes one of enlarging the unit group. That is, if its

image was previously some G ⊆ UF×
pn

, we consider enlarging it to some U for G ⊆ U ⊆ F×
pn . Here,

there is no longer a restriction on whether U must lie in G ⊆ UF×
pn

since it need not have norm 1. We

approach the problem by localizing to a prime with a given reduction modulo p so that it generates

our desired subgroup, and apply class field theory to construct such a prime. In the general case, we

have the following theorem:

Theorem 7.6. Let p be an odd rational prime inert in a number field K. Suppose that U ⊆
(OK/pOK)× is the image of O×

K under reduction modulo pOK and G is a subgroup satisfying
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U ⊆ G ⊆ (OK/pOK)×. Then there exists a prime q ∈ OK such that if S = {qOK} the image of

(OS
K)× under reduction modulo pOS

K is G.

We also consider the real cubic case. Since the unit group has rank two in this case, it is much

harder to control the exact image of the unit group because must produce number fields in which we

have control over both fundamental units. We focus on Minkowski units, or units in cyclic extensions

K/Q such that the unit and its conjugate generate O×
K . The existence of Minkowski units in cyclic

cubic fields is proven in Theorem 3.28 of [Nar04]. We use Minkowski units to restrict the image of

the group of units under reduction, since Galois conjugates of elements of Fpn are powers of the

original element due to the Frobenius automorphism, making the problem once again a matter of

controlling the reduction of one unit. We prove a sufficient condition for a root of a polynomial to

be a Minkowski unit (Theorem 8.1) and expect that this condition is satisfied enough to resolve

Conjecture 1.1 in the case of real cubic fields. When considering the construction of a field with a

given Minkowski unit, we refer to other papers on the construction of number fields satisfying given

properties, including Shanks [Sha74] and Balady [Bal16].

2 Background

Let K be a number field of degree n with ring of integers OK and unit group O×
K . Furthermore,

let p be a rational prime inert in K and let ϕp : OK → OK/pOK denote the reduction map on OK

sending an element to its residue class in OK/pOK .

We first consider the multiplicative structure of OK/pOK . It is well-known that OK/pOK
∼= Fpn ,

where n is the degree of K, and furthermore we have that the multiplicative group of Fpn is cyclic.

Thus, using the finite field norm NFpn/Fp
we define a subgroup UF×

pn
as in Equation 1 containing all

elements of norm ±1. Due to the structure of Fpn , this subgroup is cyclic and has order equal to the

number of solutions to

NFpn/Fp
(x) = x1+p+···+pn−1

= ±1,

which is precisely 2(1 + p + · · · + pn−1).

Remark 2.1. In order to begin to consider the image of the group of units O×
K under reduction by ϕp,

we must first make a choice of isomorphism between OK/pOK and Fpn . However, since F×
pn is cyclic,

automorphisms on it preserve subgroups and thus the subgroup ϕp(O×
K) ⊂ F×

pn does not depend on a

choice of isomorphism OK/pOK
∼= Fpn .

We now relate O×
K with UF×

pn
. We first describe a relationship between the field norm NK/Q and

the finite field norm on OK/pOK . This allows us to characterize the possible images of the unit

group under reduction modulo pOK in terms of UF×
pn

:

Lemma 2.2. The image of O×
K under ϕp is equal to a subgroup of UF×

pn
containing −1.

Proof. We first show that for α ∈ OK , we have

ϕp(NK/Q(α)) = NFpn/Fp
(ϕp(α)).

Consider a Fp-basis 1, α1, . . . , αn−1 of Fpn . Let 1, α1, . . . , αn−1 be some choice of elements of

OK whose reductions are 1, α1, . . . , αn−1 respectively. Observe that these elements are Z-linearly
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independent because if they were not then we could take a Z-linear combination of them that is 0 in

OK and divide factors of p from the coefficients until one of them is nonzero modulo p. Then, the

resulting linear combination has reduction equivalent to 0 in Fpn but not all coefficients equivalent to

0 in Fp, contradicting the assumption that 1, α1, . . . , αn−1 formed a basis in Fpn . Since they are all

elements of OK , it follows that they form a basis of K.

Now, consider the matrix Mϕp(α) over K representing multiplication by ϕp(α) as a linear map from

Fpn to itself with basis 1, α1, . . . , αn−1. Additionally, consider the matrix Mα over Q representing

multiplication by α as a linear map from K to itself with basis 1, α1, . . . , αn−1. Since the basis used

in Mϕp(α) is the reduction of the basis used in Mα and it represents a reduction of the multiplication

map of Mα, we see that the entries of Mϕp(α) are the reductions of the entries of Mα. By treating the

determinant as a polynomial in the entries of the matrix, we observe that det(Mϕp(α)) = ϕp(det(Mα)).

By Theorem 67 in [Rot98], the extension Fpn/Fp is Galois. Thus, by Theorem 5.1 in [Conc], the

determinant of the matrix representing multiplication by α in the extension Fpn/Fp is equal to the

product of the Galois conjugates of α, or α1+p+···+pn−1

= NFpn/Fp
(α).

Thus, det(Mϕp(α)) = NL/Fp
(ϕp(α)) and by the definition of norm det(Mα) = NK/Q(α) so it

follows that ϕp(NK/Q(α)) = NL/Fp
(ϕp(α)).

Our desired result follows, as we have that the image of O×
K under ϕp is a subgroup of UF×

pn
, and

it must contain −1 since −1 ∈ OK is a unit.

Corollary 2.3. The size of the image of the unit group under ϕp is an even divisor of 2(1 + p +

· · · + pn−1).

Having established a necessary condition for the possible images of O×
K under ϕp, it remains to

determine which images are obtainable. Fixing a prime p and degree n, we will consider whether

there exists a number field K whose unit group reduces to a given subgroup of UF×
pn

.

The following will be helpful in our analysis of the the possible images of the unit group:

Theorem 2.4 (Dirichlet’s Unit Theorem). Suppose a number field K has r1 real embeddings and

2r2 complex embeddings. Then O×
K

∼= µK × Zr1+r2−1, where µK is a finite cyclic torsion group of

roots of unity.

Thus, one may describe the reduction of the unit group of K by considering only the reductions

of its r1 + r2 − 1 generators. This will be a useful tool in our analysis of the possible non-maximal

images.

3 Maximal Image of the Unit Group

The first case we will consider is how to construct a number field whose group of units attains the

maximal image UF×
pn

when reduced modulo p. To do so, we will consider constructing K by adjoining

an element whose reduction maps to a generator of UF×
pn

. First, we prove a lemma to ensure the

inertness of p in K:

Lemma 3.1. For a number field K = Q(α) and rational prime p, if α has minimal polynomial f of

degree n which is irreducible in Fp[x], then p is inert in K.

Proof. By the Dedekind-Kummer Theorem, from the irreducibility of f in Fp[x] it suffices to show

that p ∤ [OK : Z[α]]. By Lemma 3.32 in [Jar14] this is equivalent to the discriminant of the integral
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basis {1, α, . . . , αn−1} not being divisible by p. Considering the discriminant as a Vandermonde

determinant, we have that it is equal to
∏

i<j(σi(α) − σj(α))2 where each σi is a distinct embedding

of K into a fixed extension of Q. Since all finite fields are perfect, f is separable in Fp[x] so by its

irreducibility it follows that f has no double roots in Fpn . Thus, (σi(α) − σj(α))2 is nonzero in Fpn

so the product is nonzero modulo p. Therefore, the discriminant is not divisible by p and p is inert

in K.

Theorem 3.2. For a fixed rational prime p and positive integer n, there exists a number field K of

degree n in which p is inert and such that the image of its unit group O×
K under the reduction map

ϕp is exactly UF×
pn
.

Proof. Since F×
pn is cyclic, it has a generator g. If p is odd, then we may write UF×

pn
, a cyclic subgroup

of F×
pn of order 2(1+p+ · · ·+pn−1) = pn−1

(p−1)/2 , as the subgroup generated by the element u = g(p−1)/2.

If p = 2, we note that UF×
pn

= {x ∈ Fpn : NFpn/Fp
(x) = 1} = F×

pn , so we may simply set u = g. In

either case, by the fact that u generates a group of order more than pn−1, we have that the minimal

polynomial f of u has degree n. We also have that f is monic and has constant coefficient (−1)n+1.

Now, consider an arbitrary polynomial f̃ ∈ Z[x] which is monic, has constant coefficient (−1)n+1,

and whose reduction modulo p is equal to f . Then f̃ is irreducible by the irreducibility of f in Fp[x]

and thus we may let K be the extension Q(α) where α is an arbitrary root of f . Then we claim K

satisfies the desired property.

To show this claim, we first observe that by Lemma 3.1 we have that the irreducibility of f in

Fp[x] implies that p is inert in K. Now, we see that α is a unit in K since its minimal polynomial

has a constant coefficient (−1)n+1. Additionally, ϕp(α) generates UF×
pn

because it is a conjugate of u

so it generates the same subgroup, as discussed in Remark 2.1. Thus, we have exhibited a number

field K of degree n for which p is inert and the image of the unit group O×
K under ϕp contains UF×

pn

By Lemma 2.2 the reduction of the unit group of K is also contained in UF×
pn

, so it must be exactly

UF×
pn

.

Note that due to the freedom in constructing a polynomial f̃ in Theorem 3.2, we may extend the

result to give a number field such that the group of units achieves the maximal image of UF×
pn

when

reduced modulo multiple different primes p separately.

Theorem 3.3. For any k distinct rational primes p1, . . . , pk and positive integer n, there exists a

number field K for which every pi is inert in K and the reduction of the unit group modulo each ⟨pi⟩
is exactly UFpn

i
.

Proof. Let gi denote the generator of F×
pn
i
, and then define ui = g

(pi−1)/2
i if pi is odd and ui = gi

otherwise. Define fi ∈ Fpi
[x] as the minimal polynomial of ui. Then by Chinese Remainder Theorem

we may construct f̃ to be a monic integer polynomial of degree n and constant coefficient (−1)n−1

such that it reduces to fi modulo each pi. This is possible because the pi’s are distinct, and thus for

each xt coefficient of f̃ for 1 ≤ t ≤ n− 1 the Chinese Remainder Theorem states that there exists a

residue class modulo p1p2 . . . pk equivalent to that xt coefficient modulo each pi. Then, following the

rest of the proof for Theorem 3.2 for each pi we see that f̃ is irreducible and if it has a root α then

K = Q(α) has degree n. Furthermore, we see that each pi is inert in K. We also find that α is a

unit in K and also reduces under each ϕpi
to a conjugate of ui which generates each UFpn

i
.
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4 The Image Modulo Non-Inert Primes

Using the same tools as in the inert prime case, we place some bounds on the image of the unit group

of K when reduced modulo a prime p not inert in K.

Theorem 4.1. Let K be a number field of degree n with r1 real embeddings, 2r2 complex embeddings,

and finite torsion subgroup µK . Let p be a rational prime which is unramified in K and splits as

p1 . . . pk where the prime ideal pi has inertial degree ei. Then the size of the image of the reduction

of the group of units modulo p is at most |µK | · lcm(pe1 − 1, . . . , pek − 1)r1+r2−1.

Proof. First, note that by the Chinese Remainder Theorem we have

OK/pOK
∼= OK/p1 × · · · × OK/pk ∼= Fpe1 × · · · × Fpek

as an isomorphism between rings. Thus, considering their multiplicative groups, we have

(OK/pOK)× ∼= F×
pe1 × · · · × F×

pek
∼= Z/(pe1 − 1)Z× · · · × Z/(pek − 1)Z.

Thus every element of (OK/pOK)× has order dividing lcm(pe1 − 1, . . . , pek − 1). Thus, each of the

r1+r2−1 fundamental units has order lcm(pe1−1, . . . , pek−1) and since in addition to µK they generate

all units, the image of the group of units has maximum size |µK | · lcm(pe1 −1, . . . , pek −1)r1+r2−1.

Corollary 4.2. If p splits completely in K, then the size of the reduction of the group of units modulo

p is at most 2(p−1)r1+r2−1, since in this case lcm(pe1 −1, . . . , pek −1) = lcm(p−1, . . . , p−1) = p−1.

We also prove a result relating the field norm of an element α ∈ OK with the finite field norms of

its reductions modulo OK/pi for each prime ideal pi in the splitting of p when p is unramified.

Lemma 4.3. Let K be a number field of degree n and let p be a rational prime which is unramified

in K which splits as p1 . . . pk, where each pi has inertial degree ei. Let ϕi : OK → Fpei denote the

reduction map modulo pi and let ϕp : OK → Fp denote the reduction map modulo p. Then for a given

element α ∈ K we have that

ϕp(NK/Q(α)) =

k∏
i=1

NFpei /Fp
(ϕi(α)).

Proof. We may consider residue classes of p1 . . . pk as elements of F = Fpe1 × · · · × Fpek , an n-

dimensional vector space over Fp. Then, viewing F as a direct sum of k independent subspaces we

may take a standard basis B of F in which ei of the basis vectors have nonzero projection to Fpei for

each 1 ≤ i ≤ k. If we let B̃ be a set of elements of K whose reduction modulo p is B, we find that

this must be a basis of K because if we could write 0 as a nontrivial Q-linear combination of elements

of B̃ then by scaling up to get a Z-linear combination and dividing by powers of p until one of the

coefficients is not a multiple of p, we find that the reduction of this linear combination is a nontrivial

linear combination of elements of B that equals 0, which would contradict the fact that B is a basis.

Now, considering F and K as n-dimensional vector spaces over Fp and Q with bases B and B̃

respectively, we see that multiplication by α in F and in K are both linear maps. Thus, we may

describe the map over F as an n× n matrix Mα with entries in Fp, and the map over K as an n× n

matrix M̃α with entries in Q. Now, since the basis used in Mα is the reduction of the basis used in

7



M̃α and it represents a reduction of the multiplication map of M̃α, we see that the entries of Mα are

the reductions of the entries of M̃α. Thus, we have that ϕp(NK/Q(α)) = ϕp(det M̃α) = detMα.

Now, it suffices to show that detMα =
∏k

i=1 NFpei /Fp
(ϕi(α)). To see this, first observe that since

each ei in B was picked to be a basis element of the independent subspace Fpei , a linear map on F

with basis B can be split up into the direct sum of linear maps on each Fpei so the matrix Mα can

be split up into the direct sum of the multiplication by α matrices over each Fpei . The determinant

of the multiplication by α matrix over Fpei has determinant NFpei /Fp
(ϕi(α)) and the determinant of

a direct sum of matrices is equal to the product of their determinants, so we have the relationship

between the norms

ϕp(NK/Q(α)) = detMα =

k∏
i=1

NFpei /Fp
(ϕi(α)).

Using this property of the norm, we find that a result analogous to Lemma 2.2 holds:

Theorem 4.4. Let K be a number field of degree n and let p be a rational prime unramified in K

which splits as p1 . . . pk, where each pi has inertial degree ei. Then the size of the reduction of the

group of units modulo p is at most 2
p−1

∏k
i=1(pei − 1).

Proof. By the Chinese Remainder Theorem, we have OK/pOK
∼= OK/p1 × · · · × OK/pk ∼= Fpe1 ×

· · · × Fpek , so an element of OK/pOK is uniquely determined by its residue classes modulo each pi.

Let ϕi : OK → Fpei denote the reduction map modulo pi. Then, consider any of the
∏k−1

i=1 (pei − 1)

choices of residue classes modulo each pi from i = 1 to k − 1. Then any element α which satisfies

each of these equivalences and is a unit must have

k∏
i=1

NFpei /Fp
(ϕi(α)) ≡ ±1 (mod p)

by Theorem 4.3. Thus,

NFpek /Fp
(ϕk(α)) ≡ ±

(
k−1∏
i=1

NFpei /Fp
(ϕi(α))

)−1

so the other residue classes determine two possibilities for the norm of ϕk(α) for a unit α.

Now, note that for each α ∈ F×
p the equation NFpek /Fp

(x) = α or x1+p+···+pek−1

= α has at most

1 + · · · + pek−1 roots in Fpek . Additionally, every one of the pek − 1 = (p− 1)(1 + p + · · · + pek−1)

elements of F×
pek has a norm that is equal to one of the p−1 elements of Fp. Thus, the preimages of all

the elements of F×
p under the norm map NFpek /Fp

: F×
pek → F×

p have the same size 1 + p+ · · ·+ pek−1.

It follows that the first k − 1 residue classes of an element α ∈ K determine 2 possible values for

NFpek /Fp
(ϕk(α)) so that α lies in one of 2

p−1 (pek − 1) possible residue classes modulo pk. Thus, there

are 2
p−1

∏k
i=1(pei − 1) possible k-tuples of residue classes modulo each pi for a unit, so this is the

maximum on the size of the image of the group of units under the reduction map.

Remark 4.5. This bound is sometimes larger than the one given in Theorem 4.1 and sometimes

smaller, depending on the different inertial degrees of the ideals that p splits into.
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5 Real Quadratic Fields

We now consider the case where n = 2. We also restrict our focus to real quadratic fields, as Dirichlet’s

Unit Theorem gives that the rank of the unit group is 0 in a complex quadratic field and 1 in a real

quadratic field. We will use a similar lifting argument to construct K = Q(α) for α a generator of a

given subgroup of UF×
p2

containing −1, but more work will need to be done to ensure this unit is

fundamental.

We first focus on minimal polynomials of the form x2 − ax + 1 and x2 − ax− 1, and determine

when one of them has a root α = βk for β a root of another polynomial of that form and k an integer

greater than 1. The polynomials x2 − ax ± 1 for which no such β exist are precisely the ones for

which α is a fundamental unit in Q(α). To characterize exactly the set of a for which the root of

x2 − ax ± 1 for which no such β exists, we use a polynomial series in order to relate polynomials

whose roots are powers of each other.

Definition 5.1. For a real number b, we define the sequence of polynomials Pb,0, Pb,1, . . . recursively

with Pb,0(x) = 2, Pb,1(x) = x, and Pb,n+1(x) = xPb,n(x) − bPb,n−1(x).

This sequence is also called the sequence of Dickson polynomials Dn(x, b), where Pb,n(x) =

Dn(x, b). More on Dickson polynomials can be found in Section 9.6 of [MP13].

Lemma 5.2. If α is a root of the polynomial x2 − ax + b where b ̸= 0, then αk is a root of

x2 − Pb,k(a)x + bk for all nonnegative integers k.

Proof. We see that by Vieta’s formulas a = α + b
α so by Identity 7.8 from [LN87], Pb,k(a) = αk + bk

αk .

Additionally, αk · bk

αk = bk so by Vieta’s formulas αk and bk

αk are roots of x2 − Pb,k(a)x + bk.

For the sake of completeness, we provide a full proof by induction on k. For k = 0, 1 we have

α0 = 1 is a root of x2 − 2x + 1 and α1 is a root of x2 − ax + b. Now, assume that αk is a root of

x2 − Pb,k(a)x + bk for all k ≤ n. Then α is a root of x2 − ax + b, αn is a root of x2 − Pb,n(a)x + bn,

and αn−1 is a root of x2−Pb,n−1(a)x+ bn−1. Equivalently, α is a root of the polynomials x2−ax+ b,

x2n − Pb,n(a)x + bn, and x2(n−1) − Pb,n−1x
n−1 + bn−1 so it is a root of

(x2 + b)(x2n − Pb,n(a)xn + bn) + Pb,n(a)xn(x2 − ax + b) − bx2(x2(n−1) − Pb,n−1(a)xn−1 + bn−1)

which simplifies to

x2n+2 − (aPb,n(a) − bPb,n−1(a))xn+1 + bn+1 = x2n+2 − Pb,n+1(a) + bn+1,

so αn+1 is a root of x2 − Pb,n+1(a)x + bn+1 and our induction is complete.

Now, we have characterized all a for which the root of x2−ax±1 is a power of the root of another

quadratic polynomial x2 − a′x± 1 by giving a sequence of polynomials such that this property holds

when a is attained as a value of one of the polynomials. We will show that the natural density of

such values is 0.

Lemma 5.3. Let S1 denote the set of all integers a greater than 2 for which a root α of x2 − ax + 1

is not a fundamental unit in the real quadratic number field Q(α). Similarly, let S2 denote the set

of all integers a greater than 2 for which a root α of x2 − ax− 1 is not a fundamental unit in the

number field Q(α). Then the natural density of both S1 and S2 in the integers is 0.

9



Proof. Our proof will show that the values the Dickson polynomials take on over the integers has

density 0. To show this, we will make use of multiple properties specific to the Dickson polynomials,

and this result does not hold for general sequences of polynomials with increasing degree; see Remark

5.4.

We first consider the natural density of S2. If a root α of x2 − ax− 1 is not a fundamental unit in

the number field, then we must have that α can be written as βk for some unit β and integer k > 1.

Then, if we let β be a root of x2 − bx− 1, it follows from Lemma 5.2 that a = P−1,k(b). Thus, in

order for a to be in S2 it must be of the form P−1,k(b) for some integer b and positive integer k > 1.

We may further reduce the problem using the fact that every coefficient in P−1,k is positive and

that P−1,k is either an even polynomial or an odd polynomial. Thus, if b is negative and P−1,k is

odd then P−1,k(b) is negative and if P−1,k is even then P−1,k(b) = P−1,k(−b). Thus, it suffices to

show that the set

S ′
2 = N ∩

(⋃
b∈Z

{P−1,k(b) : k ≥ 2}

)
= N ∩

( ⋃
b∈N0

{P−1,k(b) : k ≥ 2}

)

has natural density 0.

To show this, we first note that the sequence P−1,2(0), P−1,3(0), . . . alternates between 0 and 2.

We also have that, up to a finite number of cases, the sequence P−1,0(1), P−1,1(1), . . . is greater than

geometric with ratio 3/2. To see this, we recognize the sequence as Lucas’ sequence with closed form

φk + (1 − φ)k for φ = 1+
√
5

2 > 3/2, and furthermore the (1 − φ)k term has absolute value strictly

less than 1 for k ≥ 1. Now, we also have that the sequence P−1,2(b), P−1,3(b), . . . is greater than

geometric with common ratio b. This is because P−1,n+1(b) = bP−1,n(b) + P−1,n−1(b) > bP−1,n(b).

To show S ′
2 has density 0, we may consider the cardinality of the intersection S ′

2 ∩ {1, 2, . . . n2}
for each positive integer n. From the fact that P−1,k(b) increases as k increases, we see that for a

fixed b we have that P−1,k(b) attains its minimum at k = 2, when P−1,k(b) = b2 + 2. Thus, in order

for {P−1,k(b) : k ≥ 2} to intersect {1, 2, . . . n2} at all, we need, b2 + 2 ≤ n2 or b < n. Then, for each

such b, we have that since P−1,k(b) is greater than geometric with common ratio b, its intersection

with {1, 2, . . . n2} has size at most logb(n
2). Thus, for some positive integer c,

1

n2

∣∣S ′
2 ∩ {1, 2, . . . , n2}

∣∣ ≤ 1

n2

(
c +

∞∑
b=1

∣∣{P−1,k(b) : k ≥ 2} ∩ {1, 2, . . . , n2}
∣∣)

=
1

n2

(
c + log3/2(n2) +

n−1∑
b=2

∣∣{P−1,k(b) : k ≥ 2} ∩ {1, 2, . . . , n2}
∣∣)

≤ 1

n2

(
c + log3/2(n2) +

n−1∑
b=2

logb(n
2)

)

≤ 1

n2

(
c + 2(n− 1) log3/2(n)

)
≤ 1

n2
(c + 2n log3/2(n))

≤ c + 6 log n

n

which approaches 0 as n grows large. So S ′
2 also has natural density 0 so S2 does, as desired.

We now deal with the density of S1. Similarly to in the first case, note that a root α of x2−ax+ 1

10



not being a fundamental unit is equivalent to it being written as βk for some other unit β, which has

a minimal polynomial of the form x2 − bx± 1 for integer b. There are a finite number of cases where

Q(α) is not a totally real quadratic field, which occurs when a ≤ 2. Thus, by Lemma 5.2, up to a

finite number of cases, we have that a being in S is equivalent to a being written in the form P1,k(b)

for some integer k ≥ 2 and b ∈ Z or as P−1,k(b) for some even k ≥ 2 and b ∈ Z. Also, by the density

of S ′
2, the set of cases where a = P−1,k(b) has natural density 0. Thus, it only suffices to consider the

natural density of the set

S ′
1 = N ∩

(⋃
b∈Z

{P1,k(b) : k ≥ 2}

)
.

Now, observe that when |b| ≤ 2, we have that {P1,k(b) : k ≥ 2} is a subset of {−2,−1, 0, 1, 2}. To

show this, note that if |b| ≤ 2 then the root of x2 − bx + 1 is a root of unity so any kth power of the

root is also either 0 or a root of unity. Thus, the polynomial x2 − P1,k(b)x + 1 always has roots that

are roots of unity and it follows that |P1,k(b)| ≤ 2 as well.

Now, for |b| > 2, we will prove inductively that the sequence |P1,2(b)|, |P1,3(b)|, . . . is strictly

increasing and is greater than geometric with common ratio |b| − 1. For our base case, we note that

|P1,2(b)| = |b2 − 2| and |P1,1(b)| = |b3 − 3b| ≤ |b|(|b2 − 2| − 1) ≤ (|b| − 1)|b2 − 2| since |b| − 1 < |b2 − 2|
from the fact that |b| > 2, so this case works. Then, assuming |P1,n−1(b)| < |P1,n(b)|, we see that

|P1,n+1(b)| = |bP1,n(b) − P1,n−1(b)| ≥
∣∣∣|bP1,n(b)| − |P1,n−1(b)|

∣∣∣ ≥ (|b| − 1)|P1,n(b)|.

Thus, our induction is done.

To show S ′
1 has density 0, we may consider the cardinality of the intersection S ′

1 ∩ {1, 2, . . . n2}
for each positive integer n. From the fact that |P1,k(b)| increases as k increases, we see that for a

fixed b we have that |P1,k(b)| attains its minimum at k = 2, when P1,k(b) = b2 − 2. Thus, in order

for {P1,k(b) : k ≥ 2} to intersect {1, 2, . . . n2} at all, we need, b2 − 2 ≤ n2, which can be rewritten as

b ≤ n. Then, for each such b, we have that since |P1,k(b)| is greater than geometric with common

ratio |b| − 1, its intersection with {1, 2, . . . n2} has size at most log|b|−1(n2). Thus

1

n2

∣∣S ′
1 ∩ {1, 2, . . . , n2}

∣∣ ≤ 1

n2

5 +
∑

b∈Z,|b|>2

∣∣{P1,k(b) : k ≥ 2} ∩ {1, 2, . . . , n2}
∣∣

=
1

n2

5 +
∑

b∈Z,2<|b|≤n

∣∣{P1,k(b) : k ≥ 2} ∩ {1, 2, . . . , n2}
∣∣

≤ 1

n2

5 +
∑

b∈Z,2<|b|≤n

log|b|−1(n2)


=

1

n2

(
5 + 4

n−1∑
b=2

logb(n)

)

≤ 1

n2
(5 + 4(n− 2) log2(n))

≤ 4n log2(n)

n2

≤ 4

log 2
· log n

n
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which approaches 0 as n grows large. Thus, S ′
1 has natural density 0 so S1 has natural density 0.

Remark 5.4. Note that the density argument used in this result on the family of polynomials Pb,k for

b = ±1 is not true of general families of integer polynomials with increasing degrees. In fact, we may

take an example as simple as x2 + 1, x3 + 2, x4 + 3, . . . to see that the natural density of the values

attained by the polynomials can be 1. The families considered here are special in a sense due to the

fact that Pb,n(x) for b = ±1 only takes on a finite number of values for small x and is on the order of

xn for large x. Thus, the values attained by Pb,n(x) are roughly in correspondence with the perfect

powers, which have natural density 0.

Having shown that polynomials of the form x2 − ax± 1 “almost always” have a root α such that

α is a fundamental unit in K = Q(α), we now consider when p is inert in K. This is not immediate

because in the case where we want the image of the unit group to have size 2 or 4, we need α to

reduce to an element of Fp under ϕp, implying that the corresponding x2 − ax± 1 is reducible in

Fp[x]. Thus, we give the following criteria, leveraging the fact that OK need not be equal to Z[α]:

Lemma 5.5. Fix a prime p ≥ 3. Then the following quadratic polynomials f have a root α for which

p is inert in Q(α):

(i) x2 − (mp2k + 2)x + 1 for positive integer k and m congruent to a quadratic nonresidue modulo

p.

(ii) x2 − (2mp2 + 2q) − 1 when p ≡ 1 (mod 4), where m is congruent to a quadratic nonresidue

modulo p and q is an integer satisfying q2 ≡ −1 (mod p3).

(iii) x2 − ax + 1, where the reduction of the quadratic modulo p is irreducible in Fp[x].

Additionally, for (ii), we have that such a residue class (mod p3) corresponding to q exists.

Proof. For (i), we have by the quadratic formula that

α =
mp2k + 2 ±

√
(mp2k + 2)2 − 4

2
,

so Q(α) = Q(
√

(mp2k + 2)2 − 4) and thus if
√

(mp2k + 2)2 − 4 = b
√
d for squarefree d and integer b,

then Q(α) = Q(
√
d). By Section 5.9 of [Jar14] it suffices to show d is a quadratic nonresidue modulo

p. Then observe that

b
√
d =

√
(mp2k + 2)2 − 4 =

√
m2p4k + 4mp2k = pk

√
m2p2k + 4m

so b
pk =

√
m2p2k+4m

d is an integer so m2p2k+4m
d ≡ 4m

d is a quadratic residue modulo p. From the fact

that m is a quadratic nonresidue, it follows that d is also a nonresidue. Thus, p is inert in Q(α) in

this case.

For (ii), we first show that a residue class corresponding to such a q exists given p ≡ 1 (mod 4).

Observe that there exists a generator g of (Z/p3Z)× which has order p3 − p2 and that p3 − p2 ≡ 0

(mod 4). Thus, we may take any q in the residue class equivalent to g(p
3−p2)/4 modulo p, as it will
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have order 4 and thus satisfies q2 ≡ −1 (mod p3). Now, to show that p is inert in Q(α), we see that

by the quadratic formula

α =
2mp2 + 2q ±

√
(2mp2 + 2q)2 + 4

2
,

so Q(α) = Q(
√

(2mp + 2q)2 + 4) and thus if
√

(2mp + 2q)2 + 4 = b
√
d for squarefree d and integer

b, then Q(α) = Q(
√
d). Again, it suffices to show d is a quadratic nonresidue modulo p. Assume for

the sake of contradiction it were a quadratic residue modulo p. Then observe that

b
√
d =

√
(2mp2 + 2q)2 + 4 = 2

√
m2p4 + 2mp2q + q2 + 1 = 2p

√
m2p2 + 2mq + (q2 + 1)/p2

so b
2p =

√
m2p2+2mq+(q2+1)/p2

d is an integer so m2p2+2mq+(q2+1)/p2

d ≡ 2mq
d is a quadratic residue

modulo p. By similar reasoning to the previous case, it suffices to show that 2q is equivalent to a

quadratic residue modulo p.

To see this, we will consider p modulo 8 and make use of quadratic reciprocity, which states that

2 is a quadratic residue modulo an odd prime p if and only if p ≡ ±1 (mod 8). If p ≡ 1 (mod 8)

then q ≡ g(p
3−p2)/4 ≡ (g(p

3−p2)/8)2 (mod p) is a quadratic residue and by quadratic reciprocity 2

is a quadratic residue as well so 2q is. If p ≡ 7 (mod 8) then (p3 − p2)/4 is odd so q ≡ g(p
3−p2)/4

(mod p) is a quadratic nonresidue and by quadratic reciprocity 2 is also a quadratic nonresidue so 2q

is a quadratic residue. We conclude that d is a quadratic nonresidue, so p is inert in K.

For (iii), we have by Lemma 3.1 that p is inert in Q(α).

Theorem 5.6. For any odd prime p and subgroup G of UFp2
containing −1, there exists a real

quadratic number field K in which p is inert and the image of the group of units of K under ϕp is

exactly G.

Proof. We first treat the case where G is a subgroup of F×
p . Letting g be a generator of F×

p2 , we see

that G lies in F×
p if and only if its order divides p− 1. However, it also has order dividing 2(p + 1),

and it must also have an even number of elements. Thus, we find that the only possibilities are when

the order of G is 2 or when p ≡ 1 (mod 4) and the order of G is 4.

When G has size 2, consider the set of a for which a = mp2k + 2 for k an integer and m congruent

to a quadratic nonresidue modulo p. Then since the set of such a has positive natural density greater

than 1/p2, we have by Lemma 5.3 that there exists some such a for which the root α of x2 − ax + 1

is a fundamental unit in Q(α). Then take K to be Q(α). To show this works for this case, we first

note that by part (i) of Lemma 5.5 p is inert in Q(α). Now, by construction we have that α is a

fundamental unit in Q(α) so every other unit is of the form ±αk for k ∈ Z. Finally, note that the

reduction of α under ϕp is a root of x2 − ax + 1 which is equivalent to x2 − 2x + 1, so α reduces to 1

in Fp2 . Thus, every element in the unit group reduces to ±1 under ϕp so the image of O×
K under ϕp

has order 2.

For s = 4 and p ≡ 1 (mod 4), we have by part (ii) of Lemma 5.5 that there exists an integer

q for which q2 ≡ −1 (mod p). Also, we have that for this q and any m equivalent to a quadratic

nonresidue modulo p, p is inert in Q(α) for α a root of x2 − ax− 1 when a = 2mp2 + 2q − 1. Since

the set of such a has positive natural density greater than 1/p2, we have by Lemma 5.3 that some

such a has the property that α is a fundamental unit in Q(α), and we may take K = Q(α) for

this value of a. Thus, every element of O×
K is of the form ±αk for k ∈ Z. Let the reduction of α

modulo p be α. Then α is a root of the reduction of x2 − ax− 1 modulo p, which is equivalent to
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x2 − 2q − 1 = (x − q)2. Thus, α = q and the order of α is 4. Thus, the reduction of the group of

units has size 4 in this case.

Now, we consider when G is not a subgroup of F×
p . Then consider a generator gs of G. Since

gs is not in Fp, its minimal polynomial is of the form x2 − ax + 1 or x2 − ax− 1 for some a ∈ Fp.

Then, consider the set of a whose reductions modulo p map to a. Since the set of such a has positive

natural density equal to 1
p , we have by Lemma 5.3 that there exists some such a for which the root α

of x2 − ax + 1 or x2 − ax− 1 is a fundamental unit in Q(α). Then take K to be Q(α). To show this

works, we first note that p is inert in Q(α) by part (iii) of Lemma 3.1. We also have that the image

of α under ϕp is a root of x2 − ax + 1 in Fp2 so it is gs or g−1
s , both of which give that the reduction

of the unit group is exactly the group generated by gs which is G.

Thus, for every subgroup of UFp2
, we have exhibited a number field whose group of units has the

desired image when reduced under ϕp.

Example 5.7. We may construct a real quadratic number field K in which the prime p = 23 is inert

and whose unit group has size exactly 8 when reduced modulo p. We first find a polynomial in Fp[x]

of the form x2 − ax + 1 whose roots in Fp2 have order 8. This can be done by factoring the 8th

cyclotomic polynomial in Fp[x] as Φ8(x) = x4 + 1 = (x2 − 5x + 1)(x2 − 18x + 1) and choosing a to

be equivalent to 5 (mod p). Then we may lift a to be 5 and notice that by part (iii) of Lemma 5.5, p

is inert in K = Q(α). We also see that the element α has a minimal polynomial that reduces modulo

p to the minimal polynomial of an element of order 8 in UFp2
. Thus, the image of the reduction of

the group of units has size exactly 8. Finally, we have that 5 ̸∈ S1 so that α is a fundamental unit in

OK . Thus, the reduction of the group of units of OK is exactly the subgroup of size 8 in UFp2
.

Example 5.8. We may construct a real quadratic number field K in which the prime p = 5 is inert

and where the reduction of the group of units of OK modulo pOK has size exactly 2 (i. e., is the

subgroup {±1} of UFp2
). Using the process given in part (i) of Lemma 5.5, we first consider the

number field K = Q(α) where α is a root of the polynomial x2 − (2 · p2 + 2)x + 1 = x2 − 52x + 1.

In this number field, p is inert and we also have that the reduction of the minimal polynomial of

α is x2 − 2x + 1, thus the reduction of α must be 1. However, we actually have that 52 ∈ S1, as

52 = P1,3(4). In other words, we see that α1/3 is a root of x2 − 4x+ 1, so α is not a fundamental unit

of K, and instead α1/3 is. Thus, this number field does not work. If we instead try letting α be a

root of x2 − (3 · p2 + 2)x + 1 = x2 − 77x + 1, we see again that p is inert in K and that the reduction

of the minimal polynomial of α is x2 − 2x + 1 so α must reduce to 1. A short computation shows

that 77 ̸∈ S1 so in this case α is a fundamental unit of K. Thus, we see that for this choice of K the

reduction of the group of units of OK modulo pOK is exactly the set {±1} with size exactly 2.

6 Non-Maximal Orders

It is also interesting to consider the same question for the unit group of a non-maximal ideal. Fixing

a prime p and number field K in which p is inert, we will consider varying a choice of order O ⊆ OK

to determine possible images of the unit group when reduced modulo pO.

In order to formulate the problem, we first define what it means for a prime p inert in K to

remain inert in an order O ⊆ OK .

Definition 6.1. We will say that a rational prime p which is inert in a number field K remains inert
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in an order O ⊆ OK if the ideal pO is a prime ideal of O.

For the purposes of describing when p remains inert, we prove the following equivalence:

Lemma 6.2. Let p be a rational prime and K be a number field of degree n in which p is inert. Let

O ⊆ OK be an order of K. Then the following statements are equivalent:

(1) The prime p remains inert in O, i.e. pO is a prime ideal.

(2) The quotient O/pO is isomorphic to Fpn .

(3) The conductor ideal c of O satisfies c + pO = O, i.e. is relatively prime to pO.

Proof. We first show that (1) =⇒ (2). Considering O as a finitely generated Z-module of rank

n, we may choose an additive basis B of O that has size n. Then, in the representation of any

element of O a reduction of each of the coefficients modulo p gives an isomorphism between O/pO
and (Z/pZ)n. Since pO is a prime ideal, it follows that O/pO is an integral domain of finite size pn,

so it is isomorphic to Fpn .

We also have that (2) =⇒ (1) because the quotient O/pO being a field implies that pO is a

maximal O-ideal, and thus it is a prime O-ideal. Thus, (1) is equivalent to (2).

To show that (2) =⇒ (3), we assume for the sake of contradiction that c + pO = a ̸= O but

O/pO ∼= Fpn . It follows that pO ⊆ a. However, from the fact that O/pO is a field we see that pO
is maximal. Thus, pO ⊆ a ≠ O implies that a = pO, and thus c ⊆ pO. Taking an element α ∈ c

we find that αOK is an O-ideal. Furthermore, since α
p ̸∈ c by the minimality of νp(α), we find that

α
pOK is not an O-ideal so αOK ̸⊆ pO. However, the ideal product αOK · αOK = α2OK ⊆ pO since

αOK is an O-ideal and α ∈ pO. Thus the ideal pOK is not prime, a contradiction.

We have that (3) =⇒ (2) from statement (2) in Theorem 3.8 of [Cona]. Thus, all three statements

are equivalent.

We now pose the question:

Question 6.3. Let K be a number field of degree n with ring of integers OK and let p be a prime

which is inert in K. Let U ⊆ UFp2
be the image of the group of units when reduced modulo pOK . For

a given subgroup G ⊆ U containing −1, does there exist an order O ⊆ OK such that p remains inert

in O and the group of units O has image G under the reduction map ϕ′
p : O → O/pO?

Lemma 6.4. For number field K of degree n and prime p inert in K, let ε be an element of OK . If

ϕp(ε) is a generator of Fpn , then p remains inert in the order Z[ε].

Proof. Let ε have minimal polynomial f(x) and let f(x) ∈ Fp[x] denote the reduction of f(x) modulo

p. Then we have

O/pO = Z[ε]/p ∼= (Z[x]/f(x))/p ∼= Z[x]/(f(x), p) ∼= (Z[x]/p)/f(x) ∼= Fp[x]/f(x).

In the case where ϕp(ε) is a generator of Fpn , we have that f(x) has degree n so O/pO ∼= Fp[x]/f(x) ∼=
Fpn so by Lemma 6.2 we get that p remains inert in O.

Lemma 6.5. Let K = Q(
√
d) be a real quadratic number field for squarefree d and let p be an odd

rational prime inert in K. Let ε = a + b
√
d be an element of O×

K , where 2a, 2b ∈ Z. Furthermore

assume that ε > 1, ε ≠ 3+
√
5

2 , and pνp(b) <
√
b. If b′ = bp−νp(b), then the order O = Z[b′

√
d] has p

remaining inert and ε as a fundamental unit.
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Proof. Note that gcd(b′, p) = 1. Then observe that the conductor of O is 2b′O in the case where d ≡ 1

(mod 4) and b′O otherwise. Thus, by Lemma 6.2 we see that p remains inert since the conductor of

O is coprime with pO.

We now show that ε is fundamental in O. Using the discriminant formula for a power basis gives

that Disc(O) = (2b′
√
d)2 = 4b′2d. By Eq. (1.1) of [JLW95], we find that the regulator R satisfies

R ≥ log

(
1

2
(
√

Disc(O) +
√

Disc(O) − 4)

)
≥ log(

√
Disc(O) − 4)

=
1

2
log(4b′2d− 4).

Thus, to show that ε is a fundamental unit, it suffices to show that

log ε < 2R = log(4b′2d− 4).

Note that since ε > 1, it follows that the conjugate of ε is equal to a− b
√
d = 1

ε < 1. Thus, it suffices

to show

4b′2d− 4 > ε = 2b
√
d + (a− b

√
d) > 2b

√
d.

From the fact that pνp(b) <
√
b, we have that b′ = b/pνp(b) >

√
b. Thus 4b′2d− 4 > 4bd− 4 so it

suffices to show 4bd− 4 > 2b
√
d or 2b(2d−

√
d) > 4 which holds in the case where b ≥ 1 since d ≥ 2.

In the case where b = 1
2 , we find that we need d ≡ 1 (mod 4) so we can only have the case d = 5

corresponding to ε = 3+
√
5

2 . Thus, we are done.

Lemma 6.6. Let K = Q(
√
d) be a real quadratic number field for squarefree d and let p be an odd

rational prime inert in K. For an element ε in OK , write ε = a + b
√
d for 2a, 2b ∈ Z and write

εp = a1 + b1
√
d for 2a1, 2b1 ∈ Z. If p ∤ a and p | b, then νp(b1) = νp(b) + 1.

Proof. Let ε = a + b
√
d for 2a, 2b ∈ Z. Observe that, by the binomial theorem,

εp = (a + b
√
d)p = ap + ap−1b

√
d

(
p

1

)
+ ap−2(b

√
d)2
(
p

2

)
+ ap−3(b

√
d)3
(
p

3

)
+ · · · + (b

√
d)p.

Extracting the
√
d component, we find that it is equal to the sum of the terms with odd b

√
d exponent:

ap−1b
√
d

(
p

1

)
+ ap−3b3d

√
d

(
p

3

)
+ · · · + bpd(p−1)/2

√
d.

Note that the p-adic valuation of the
√
d-coefficient of each term in the sum strictly increases due to

the fact that the kth coefficient has p-adic valuation

νp

(
ap−kbkd(k−1)/2

(
p

k

))
= (p− k)νp(a) + kνp(b) +

k − 1

2
νp(d) + νp

((
p

k

))
= kνp(b) + 1,

and the last term has p-adic valuation pνp(b) which is larger than the rest. It follows from the

non-Archimedian property of p-adic valuation that

νp(b1) = νp

(
ap−1b

(
p

1

)
+ ap−3b3d

(
p

3

)
+ · · · + bpd(p−1)/2

)
= νp

(
ap−1b

(
p

1

))
= νp(b) + 1.
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Thus, we are done.

Theorem 6.7. Let K be a real quadratic number field with ring of integers OK , and let p be a

rational prime which is inert in K. Let U ⊆ UFp2
be the image of the group of units when reduced

modulo pOK . Then for a given subgroup G ⊆ U containing −1, there exists an order O ⊆ OK

such that p remains inert in O and the group of units O has image G under the reduction map

ϕ′
p : O → O/pO.

Proof. Let K = Q(
√
d) for squarefree d, and let ε ∈ OK/pOK denote a generator of G. We consider

cases, depending on whether ε is an element of Fp ⊂ OK/pOK (note that this embedding of Fp is

canonical).

We first consider the case where ε is not sent to an element of Fp. Since the image of O×
K under

reduction modulo p has an image U of which G is a subgroup, we may lift ε to an element ε of O×
K

satisfying ϕp(ε) = ε. We may also assume that ε ̸= (3 +
√

5)/2 by raising it to the power of p2 if

necessary, as ϕp(ε) = ϕp(εp
2

) due to the Frobenius endomorphism. Considering O = Z[ε], we have

by Lemma 6.4 that p remains inert in O.

Now, by Theorem 3.8 of [Cona] it follows that there is a natural ring isomorphism O/pO ∼=
OK/pOK given by inclusion. Thus this isomorphism sends ϕ′

p(ε) to ϕp(ε) so they have the same

multiplicative order. Thus, the subgroup of O/pO generated by ϕ′
p(ε) has the same size as the

subgroup of OK/pOK generated by ϕp(ε), which is G. Thus, it suffices to show that O× is generated

by ε. Since ε ≠ (3 +
√

5)/2, we have by Theorem 1 in [Ste08] that ε is a fundamental unit of O, so

we are done in this case. (Note that this can also be obtained by a similar argument to 6.5.)

We now consider if the generator ε of G is an element of Fp. Since the image of O×
K under

reduction modulo p has an image U of which G is a subgroup, we may lift ε to an element ε of O×
K

satisfying ϕp(ε) = ε. We may also assume that ε ≠ (3 +
√

5)/2 by raising it to the power of p if

necessary, as ϕp(ε) = ϕp(εp) due to the Frobenius endomorphism. We may also negate it and take

its multiplicative inverse if necessary so that ε > 1 so that we may write ε = a + b
√
d for 2a, 2b ∈ N.

In order to apply Lemma 6.5 we wish to find a power of ε with the same reduction such that the

p-adic valuation of the
√
d coefficient is sufficiently small.

From the fact that ϕp(ε) ∈ Fp we have that p | b and from the fact that ϕp(ε) has finite

multiplicative order in F×
p2 , we find that ϕp(ε) ̸= 0 so p ∤ a. Thus, applying Lemma 6.6 we see that

if εp = a1 + b1
√
d for 2a1, 2b1 ∈ N, then νp(b1) = νp(b) + 1. Repeating this process by defining

εk = εp
k

= ak + bk
√
d for 2ak, 2bk ∈ N, we find that p ∤ ak and p | bk since εp

k

reduces to the

same nonzero element under ϕp by the Frobenius endomorphism. Thus νp(bk+1) = νp(bk) + 1

so νp(bk) = νp(b) + k. For each one, we see that ak − bk
√
d = ε−k satisfying 0 < ε−k < 1 so

εk = 2bk + (ak − bk) satisfies 2bk < εk < 2bk + 1. This gives

pνp(bk) = pνp(b)+k < 2bpk < pkε and
√

bk >
√

εk/2 =
√
εpk/2.

Thus, in order to have pνp(bk) <
√
bk it suffices to have pkε <

√
εpk/2. Taking the logarithm of both

sides it suffices to have k log p + log ε < 1
2 (pk log ε− log 2). Since the exponential term grows faster

than the linear term, there exists sufficiently large k for which this holds. Taking such a k, we find

that we may apply Lemma 6.5 to εk to find an order O in which p is inert and εk is fundamental.

By a similar argument to the first case, ϕp(εk) has the same multiplicative order as ϕ′
p(εk) so they

generate the same subgroup G. Thus, the image of O× under ϕ′
p is G.
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We conjecture that a similar result holds in a number field of arbitrary degree, provided that the

unit group is infinite:

Conjecture 6.8. Let K be a number field of degree n, and let p be a rational prime which is inert

in K. Let U ⊆ UFpn
be the image of the group of units when reduced modulo pOK . Then for a given

subgroup G ⊆ U containing −1, there exists an order O of K such that p remains inert in O and the

group of units O has image G under the reduction map ϕ′
p : O → O/pO.

7 S-Unit Group Reduction

The S-unit group is another generalization of the unit group for which many similar results hold. We

use the definition given in page 70 of [NS13]. For a number field K and a finite set S of prime ideals

of K, the ring of S-integers is the subring of K defined by OS
K = {α

β : α, β ∈ OK , β ̸∈ p for all p ̸∈ S}.

The group of S-units (OS
K)× is defined to be the set of invertible elements in OS

K . We now describe

what it means for a prime p inert in K to remain inert in OS
K .

Definition 7.1. We will say that a rational prime p which is inert in a number field K remains inert

in the S-integers OS
K when the ideal pOS

K is prime.

Equivalently, by Proposition 11.1 in Chapter 1 of [NS13], a rational prime p inert in K remains

inert in OS
K if p ̸∈ S.

Lemma 7.2. When a rational prime p is inert in K and remains inert in OS
K , the reduction map

ϕp : OK → OK/pOK extends uniquely to a reduction map

ϕS
p : OS

K → OK/pOK .

Furthermore, we derive from ϕS
p an induced map

Φ : OS
K/pOS

K → OK/pOK

which is an isomorphism.

Proof. Since every element of OS
K may be written as α/β where p ∤ β for all p ̸∈ S, we may extend

the reduction map by setting ϕS
p (α/β) = ϕp(α)/ϕp(β). Since p remains inert in OS

K , we have that

p ̸∈ S so p ∤ β implying ϕp(β) ̸= 0, allowing this extension to be defined. We see that the kernel of

this extended reduction map is exactly

{α/β : α, β ∈ OK , p ∤ β for all p ̸∈ S, p | α} = pOS
K

so the map induces an injective homomorphism Φ : OS
K/pOS

K → OK/pOK . This homomorphism is

also surjective from the fact that OK ⊂ OS
K and ϕp is surjective. Thus, Φ is an isomorphism.

It follows that OS
K/pOS

K
∼= Fpn . We consider the question:

Question 7.3. Let p be an odd rational prime inert in a number field K. Suppose that U ⊆
(OK/pOK)× is the image of O×

K under reduction modulo pOK . Then, for any subgroup G satisfying

U ⊆ G ⊆ (OK/pOK)×, does there exist a prime q ∈ OK such that if S = {qOK} the image of (OS
K)×

under reduction modulo pOS
K is G?
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Lemma 7.4. For a real quadratic number field K = Q(
√
d), odd rational prime p which is inert in

K, and nonzero residue a ∈ Z/pZ, there exists a rational prime q which is inert in K and equivalent

to a modulo p.

It suffices to find a prime q such that
(

d
q

)
= −1 and q ≡ a (mod p). The first condition can

be rewritten as an equivalence modulo 4d by quadratic reciprocity. From the fact that p is odd

and inert in K, we have that (4d, a) = 1. Thus, we simply wish to find a prime q which satisfies

a congruence condition modulo 4dp, which exists by Dirichlet’s theorem on primes in arithmetic

progressions (Theorem 2.2 in [Mil20]).

Then, in the case where K is a quadratic number field of choice and q must be rational, we have

the following result:

Theorem 7.5. Let p be an odd rational prime, and let G be a subgroup of F×
p2 of even index. Then

there exists a quadratic number field K and rational prime q ≠ p such that p and q are inert in K

and setting S = {qOK} the image of (OS
K)× under reduction modulo pOS

K is G.

Proof. Consider the subgroups

T = G ∩ F×
p and U = G ∩ UF×

p2
.

We wish to show that G is equal to the subgroup G′ of F×
p2 generated by T and U . It is clear

that G′ ⊆ G since its generators lie in G. Now, for an element g ∈ G, note that since the

index of G is even the element gp/2 can be defined such that (gp/2)2 = gp. Then we find that

(gp/2)p+1 = NFp2/Fp
(gp/2) ∈ T and (gp/2)p−1 satisfies NFp2/Fp

((gp/2)p−1) = (gp/2)p
2−1 = 1 so

(gp/2)p−1 ∈ U . Thus, g = gp
2

= (gp/2)p+1(gp/2)p−1 so g is generated by T and U . We conclude that

G′ = G.

By Theorem 5.6 there exists a real quadratic number field K in which p is inert and the image of

O×
K under reduction modulo pOK is exactly U . Also, by Lemma 7.4 there exists a rational prime q

inert in K such that q ≡ t (mod p), where t denotes a generator of T . Then, we may consider the

S-unit group of pOS
K , where S = {qOK}. By the exactness at

⊕
p̸∈S K×/O×

p in Theorem 11.6 of

[NS13], we have that (OS
K)× is generated by O×

K and q. Thus, the reduction of (OS
K)× is generated

by U and t, so it is equal to G′ = G.

We now prove an analogue of Dirichlet’s theorem on primes in arithmetic progressions for number

fields:

Theorem 7.6. Let p be an odd prime inert in a number field K of degree n. Let U ⊆ (OK/pOK)×

be the image of O×
K under reduction modulo pOK . Then for a given element α ∈ (OK/pOK)×, there

exists a (not necessarily rational) prime q in K such that the reduction of q modulo pOK lies in αU .

Proof. We provide a proof based on [Cha]. Set m0 = pOK , m∞ = 1, and m = m0m∞ and consider the

ray class group with modulus m, which we denote by Cm. By Takagi’s existence theorem (Theorem

0.5 in [Mil20] there exists a class field Km corresponding to the trivial subgroup of Cm such that

Gal(Km/K) ∼= Cm =

⊕
ν∤p Z

Km,1
.
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Lifting α to an arbitrary element α̃ ∈ OK , we may let [α] = [(α̃)] ∈ Cm. This is well defined because

if α̃ and α̃′ are liftings of α then νp( α̃
α̃′ − 1) = νp(α̃− α̃′) − νp(α̃) ≥ 1 = νp(m) so α̃

α̃′ ∈ Km,1.

By the Chebotarev Density Theorem (Theorem 7.4 in [Mil20]), since Cm is abelian there exists

a positive density of prime ideals q ⊂ OK such that (q,Km/K) = θ([α]). By Artin reciprocity

(Theorem 0.8 in [Mil20]) and the fact that (q,Km/K) = θ([q]), we have [q] = [α]. We conclude that

(q) = (α̃β) for β ∈ Km,1. Thus, q is principal and may be written as q = (q) for some prime q ∈ OK .

It follows that q = α̃βε for ε ∈ O×
K , so reducing both sides modulo p we have that ϕp(q) ∈ αU .

Using this, we are able to answer our original question:

Theorem 7.7. Let p be an odd rational prime inert in a number field K. Suppose that U ⊆
(OK/pOK)× is the image of O×

K under reduction modulo pOK and G is a subgroup satisfying

U ⊆ G ⊆ (OK/pOK)×. Then there exists a prime q ∈ OK such that if S = {qOK} the image of

(OS
K)× under reduction modulo pOS

K is G.

Proof. Let α ∈ (OK/pOK)× be a generator of G. By Theorem 7.6 there exists a prime element

q ∈ OK satisfying ϕp(q) ∈ αU . We will show that such a q works. Setting S = {qOK} we find that

by the exactness at
⊕

p̸∈S K×/O×
p in Theorem 11.6 of [NS13] that (OS

K)× is generated by O×
K and q.

Thus, the reduction of (OS
K)× is generated by U and an element of αU , so it is equal to G.

8 Cubic Fields

When considering totally real cubic fields, the problem of obtaining all subgroups of UFp3
becomes

more complex due to the unit group having rank 2. We prove a theorem that suggests that this

should be possible, by focusing on constructing number fields in which a unit of our choice becomes

a Minkowski unit. Here, by Minkowski unit we mean a unit that forms a system of fundamental

units with its conjugate. This property would be helpful because the conjugates of an element α of

Fpn are of the form αpk

due to the Frobenius endomorphism. Thus, any subgroup of Fp3 generated

by the reduction of a Minkowski unit of a number field K automatically contains the reduction of

all of its conjugates. Therefore it contains the reduction of the system of fundamental units so it

contains the reduction of the entire unit group.

In terms of constructing number fields to have Minkowski units with a given minimal polynomial,

we have the following result on when the roots of a polynomial of the form P (x) = x3+ax2+bx+1 are

Minkowski units, subject to an assumption that they generate a Galois field and whose discriminant

is not too far from Disc(P ):

Theorem 8.1. For a fixed positive integer D and constant ε > 0, there exists a constant C = C(D, ε)

such that the following holds. Assume integers a and b satisfy |a|2−ε > |b| > |a| + 2 > C and the

number field K with defining polynomial P (x) = x3 + ax2 + bx + 1 is Galois. Furthermore assume

Z[α] for α a root of P has index d < D inside OK . Then any two roots of P form a system of

fundamental units for OK .

Proof. First note that since |b| > |a| + 2 we have that either P (1) = 2 + a + b or P (−1) = a− b is

negative. It follows by the Intermediate Value Theorem that P has a root between -1 and 1, we

will call this root u. Then let the other two roots be s1 and s2. We see that at least one of |s1|, |s2|
is greater than 1 because the product s1s2u is equal to −1. Furthermore, note that |s1|, |s2| > 1
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because if one had absolute value less than 1, P would have two roots in the interval [−1, 1] so P (1)

and P (−1) would be the same sign, but this is not possible from the fact that P (1) = 2 + a + b,

P (−1) = a− b, and |b| > |a| + 2.

Since P has constant coefficient 1, each of u, s1, and s2 are units in OK . Since any choice of two

roots from u, s1, and s2 form a system of units that generate the third one, it suffices to show that

s1 and s2 form a system of fundamental units.

A result from Cusick [Cus84] states that the regulator R of K satisfies R ≥ 1
16 log2(Disc(K)/4).

Now, observe that Disc(K) = 1
d2 Disc(Z[α]) by Proposition 3.22 from [Jar14]. It follows that

Disc(K) =
1

d2
Disc(P ) =

1

d2
(−27 − 4a3 + 18ab + a2b2 − 4b3).

From the fact that a2 ≫ |b| > |a| + 2 this is greater than 1
d2 a

2b2 which is greater than 1
d2 b

3 for

sufficiently large a and b. Thus, we have that

R ≥ 1

16
log2(Disc(P )/4) ≥ 1

16
log2

(
b3

d2

)
≥ 1

16
log2

(
b3

D2

)
.

Since D is fixed, for sufficiently large b relative to D this is greater than (1 − ε1) · 1
16 log2(b3) =

(1 − ε1) · 9
16 log2 b for any fixed ε1 > 0, so that R ≥ (1 − ε1) 9

16 log2 b.

At the same time, we have that the regulator R′ of the system of fundamental units formed by r1

and r2 is

R′ =

∣∣∣∣∣log |s1| log |s2|
log |s2| log |u|

∣∣∣∣∣ =

∣∣∣∣∣log |s1| log |s2|
log |s2| − log |s1s2|

∣∣∣∣∣ = log2 |s1| + log |s1| log |s2| + log2 |s2|.

Now, since |s1|, |s2| > 1, we have log |s1| log |s2| ≥ 0 so

R′ = log2 |s1| + log |s1| log |s2| + log2 |s2| ≤ log2 |s1| + 2 log |s1| log |s2| + log2 |s2| = log2 |s1s2|.

We also have that b = s1s2 + s1u+ s2u = s1s2 + 1
s2

+ 1
s1

so s1s2 is within 2 of b. Thus, for sufficiently

large b we may approximate R′ ≤ (1−ε1) log2 b using the same sufficiently small ε1 > 0. Setting ε1 to

be a constant such as 0.01, we may choose C(D, ε) such that all of the “sufficiently large” conditions

on a and b hold. For this value of C(D, ε), we conclude that R′ ≤ (1 − ε1) log2 b < 16
9 R < 2R by

taking ε1 < 0.01. Since R′

R is the index of the units generated by s1 and s2 over the group of units in

OK , it follows that R′

R is a positive integer which is less than 2 so it must be 1, implying that s1 and

s2 form a system of fundamental units.

Due to this result, it suffices to consider the following: Let f ∈ Fp[x] be the minimal polynomial

of a given generator of a subgroup G of UFp3
. Then there exists a Galois field K defined by the

polynomial f̃ reducing to f modulo p such that f has large coefficients with respect to [OK : Z[α]],

where α denotes a root of f̃ .

9 Future directions

For the totally real cubic case, considering the problem for orders would also be interesting. For

Theorem 8.1, the conditions may be be satisfied more often in specific orders. After constructing a

21



polynomial of the form x3 + ax2 + bx + 1 with roots r1 and r2 which defines a number field K, it

may be helpful to consider the unit group of the order Z[r1, r2] rather than the unit group of OK .

This is because we expect [OK : Z[r1]] > [Z[r1, r2] : Z[r1]], loosening the conditions on a and b.

Additionally, in order to prove the totally real cubic case from Theorem 8.1, it becomes important

to consider possible ways to construct families of Galois fields, which have been studied by Shanks

[Sha74] in his consideration of cubic fields defined by polynomials of the form x3 − ax2 − (a+ 3)x− 1.

Such fields are always Galois, but it is not always true that the minimal polynomial of a generator of

a subgroup of UFp3
will be of such a form. Thus, we turn to Balady [Bal16], who gives a method of

generating families of cubic fields and a result on these families similar to Theorem 8.1, conditional on

the squarefreeness of a specific quantity. In combination with Poonen’s work on squarefree values of

multivalued polynomials ([Poo03]), it may be possible to use Balady’s general families of polynomials

to prove the cubic case.
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