
EXTENDING CC0 CIRCUIT UPPER BOUNDS BEYOND SYMMETRIC

FUNCTIONS

LUV UDESHI AND BRYNMOR CHAPMAN

MIT PRIMES-USA

Abstract. The class CC0[m] of constant-depth circuits built from unbounded-fan-in MODm

gates reveals a remarkable landscape: when m is prime, computational ability is limited in
small size, yet composite m unlocks unexpectedly rich capabilities. In this work, we illumi-
nate and extend the true power of composite-modulus counting by generalizing Chapman
and Williams’ result for computing symmetric functions in CC0, helping to support the fact
that CC0[m] is a versatile class capable of capturing complex structures with surprising ef-
ficiency. We additionally provide a Satisfiability Modulo Theories (SMT)-based framework
for explicitly constructing and enumerating small CC0[m] circuits, offering a computational
tool for future research.

1. Introduction

Constant-depth counting circuits, which are built exclusively from unbounded-fan-in MODm

gates, form the class CC0[m], and their study has revealed a striking difference in compu-
tational power between prime and composite moduli. Classical results of Razborov and
Smolensky [10, 11] showed that a MODp gate cannot be simulated by small AC0[q] circuits
when p ̸= q are prime, firmly establishing the hardness of prime-modulus counting in alter-
nating circuits. In contrast, Barrington, Beigel and Rudich demonstrated that over composite
modulus m, low-degree polynomials can capture significant counting power, and subsequent
work by Barrington–Immerman–Straubing [3] and Chen–Papakonstantinou [6] gave depth-
two MODa ◦MODb simulations of AND.

More recently, Chapman and Williams [5] proved that every symmetric Boolean function,
those which depend only on the number of 1s in the input, on n bits admits a depth-three

MODp1 ◦ MODp2···pr ◦ MODp1

circuit of size exp(O(n1/r log n)), where p1, . . . , pr are distinct primes. Their results highlight
the unexpectedly strong power of composite-modulus gates at constant depth, but leave open
a natural question to further gauge the power of MODm circuits. What other, non-symmetric
Boolean functions have similarly efficient CC0 implementations? In this paper, we shed some
light on this, as well as show minor improvements to their symmetric function construction.

The specific structure of the paper is as follows:

• In Section 2, we state some preliminary results that will guide what follows, heavily
discussing symmetric function ideas from [5].

• In Section 3, we show a constant factor improvement in the symmetric function con-
structions of [5], as well as generalize their Z/mZ polynomial detection result.

Date: February 3, 2026.

1

2 L. Udeshi and B. Chapman

• In Section 4, we use the symmetric result of [5] and apply it two different ways. The
first partitions the inputs into blocks of symmetry, yielding Theorem 4.2, while the
second tweaks their results by applying the generalization from Section 3, yielding
Theorem 4.3. We then combine both of these ideas, leading to Theorem 4.6, and
explore some examples for how these results can be used.

• In Section 5, we compose symmetric functions with other natural classes of Boolean
functions, to further analyze the scope of the power of MOD gates.

• In Section 6, we discuss directions for future research, including potential improve-
ments and broader generalizations of our results, as well as provide a solver tool to
facilitate further investigation of CC0 circuits.

• Appendix A provides the full satisfiability-modulo-theories (SMT) encoding used to
synthesize small CC0 circuits, as described in Section 6.

2. Preliminaries

We will assume basic computational complexity [1], and start with a few relevant definitions
and results that will be useful. We study counting circuits, which are composed of gates that
count the inputs modulo a fixed modulus. More formal definitions follow.

Definition 2.1. For a positive integer m, a MODm gate is a gate that outputs 1 iff the sum
of its input wires is an integer multiple of m. When m is irrelevant or implicitly understood,
we may say simply MOD gate.

Definition 2.2. A MODm circuit is a circuit consisting entirely of MODm gates. When m
is irrelevant or implicitly understood, we may say simply counting circuit.

We now note that although negation is not explicitly allowed by the definition, the inputs
to MOD gates can be negated with little overhead.

Lemma 2.3 (Folklore). For any vector of n wires x, any bit vector v ∈ {0, 1}n and any
modulus m, MODm(x ⊕ v) can be computed with a MODm gate of fan-in at most n +m +
||v||1(m− 2), where ⊕ denotes the bitwise XOR operation.

Proof. For each i where vi = 0, we use the input wire xi as is. For each i where vi = 1, we
instead use m input wires: m− 1 copies of xi and a constant 1. Finally, if there are at least
m constant 1 wires, we reduce the number of such wires modulo m. □

Similarly, the inputs (and output) of a
∑

MODm gate can be similarly negated. For the
remainder of this work, use of the above lemma will not always be explicitly noted.

Our next tool, proved in the 1800s, gives us a way to compute binomial coefficients modulo
a prime number.

Theorem 2.4 (Lucas’ Theorem [9]). For non-negative integers n, k and a prime p,(
n

k

)
≡

r∏
i=0

(
ni

ki

)
(mod p)

where n = (nrnr−1 . . . n0)p and k = (krkr−1 . . . k0)p are the base p representations of n, k.

This can be directly used for the polynomial representations of Boolean functions.

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 3

Lemma 2.5 (Barrington, Beigel, Rudich [2]). Let p be a prime, let n ∈ N, and let ei(x)
denote the i-th elementary symmetric polynomial on n variables. For a binary vector x, let∑

yi · pi = |x|1

be the base p expansion of |x|1. Here, |x|1 is the number of 1s in the binary vector x. Then
for every i, epi(x) ≡ yi mod p.

Proof. Notice that epi(x) =

(
|x|1
pi

)
. Since pi is of the form 100 . . . 0p, Lucas’ Theorem can

directly be applied to get the result. □

We look at past results relating to polynomial representations of various functions over
Zm.

Theorem 2.6 (Hansen [8]). If m is the product of r primes and k is smaller than each of

the prime factors of m, then MODk can be represented by a degree O(n1/r) polynomial over
Zm.

We now present a result that we will directly improve later.

Theorem 2.7 (Chapman, Williams [5]). Let m = p1 . . . pk be a square-free integer. For every
n ∈ N and every T ∈ {0, 1, . . . , n}, there is a polynomial PT (x1, . . . , xn) of degree

k
max
j=1

{pj} k
√
n

such that for all a ∈ {0, 1}n, PT (a) = 0 mod m if and only if
∑

i ai = T .

We can follow ideas presented in BIS90 [3] to get depth-two MODm circuits for AND,
which can be useful for constructing CC0 circuits.

Proposition 2.8 ([3, 6]). Let a, b ≥ 2 be fixed integers with gcd(a, b) = 1. Every AND of
k MODb gates can be represented by an MODa ◦MODb circuit of O(bk) gates. Furthermore,
on all k-bit inputs, the sum of the inputs to the output gate of the circuit is always 0 (mod a)
or 1 (mod a).

Chapman and Williams noted that increasing the depth from two to just three gives a
drastically stronger bound for general symmetric functions.

Theorem 2.9 (Chapman, Williams [5, Theorem 1.1]). For every ε > 0, there is a modulus

m ≤ (1/ε)2/ε such that every symmetric function on n bits can be computed by depth-3 MODm

circuits of exp(O(nε)) size. In fact, the circuits have the form MODp1 ◦MODp2···pr ◦MODp1,
where p1, . . . , pr are distinct primes.

They then looked at varying the depth to d ≥ 3, and getting an asymptotic size-depth
tradeoff for large depths.

Theorem 2.10 (Chapman, Williams [5, Theorem 1.2]). Let d ≥ 3 be an integer, and let
m be a product of r ≥ 2 distinct primes. Then every symmetric function on n bits can be
computed by depth-d MODm circuits of size exp(Õ(n1/(r+d−3))).

4 L. Udeshi and B. Chapman

Theorem 2.11 (Chapman, Williams [5, Theorem 1.3]). There is a constant c ≥ 1 such that,
for all sufficiently large depths d, and all composite m with r prime factors, every symmetric
function can be computed by a MODm circuit of depth d and size exp

(
O
(
nc/((d−c)(r−1))

))
.

3. Polynomial Detectors of Boolean Functions

We begin by showing a constant improvement in the symmetric function construction de-
scribed in [5].

Recall Theorem 2.7. We show the following stronger statement:

Theorem 3.1. Let m = p1 . . . pk be a square-free integer. For every n ∈ N and every
T ∈ {0, 1, . . . , n}, there is a polynomial PT (x1, . . . , xn) of degree

k
max
j=1

{
pj

pj − 1

}
k
√
n

such that for all a ∈ {0, 1}n, PT (a) = 0 mod m if and only if
∑

i ai = T .

Proof. We follow much of the same structure as the proof of the original theorem. By
Lemma 2.5, epi(a1, . . . , an) mod p is equal to the ith digit in the base p representation of∑

i ai.

Now, for each pr | m, choose an integer tr such that pr · n1/k ≥ ptrr > n1/k. Suppose when
we write T in base pr, the tr lowest order digits are br(tr − 1), . . . , br(0). Then, for each pr,
we construct the polynomial

ppr(y1, . . . , yn) = 1−
tr−1∏
j=0

(1− (br(j)− eprj (y))
pr−1) mod pr,

noting that the degree of ppr is ptrr − 1. Now, here is where we make the constant factor
improvement. We can reduce the degree of the ppr by directly multi-linearizing each of them.

Explicitly, since for any Boolean variable x and positive integer k, we have xk = x, we can
reduce the power of any variable in the expansion of ppr to one, which will divide its degree
by pr − 1.

Note that for each pr, we have that ppr will be zero modulo pr precisely when the base pr
representation of

∑
ai matches br(tr−1), . . . , br(0) in the last tr digits. Then, by the Chinese

Remainder Theorem,
∑

ai = T if and only if

k∧
r=1

(∑
i

ai ≡ T (mod ptrr)
)

⇐⇒
k∧

r=1

(
ppr(y) ≡ 0 (mod pr)

)
⇐⇒

k∑
r=1

(
m
pr

ppr(y)
)
≡ 0 (mod m).

This polynomial has degree maxkj=1

{
pj

pj−1

}
k
√
n and satisfies the necessary condition. □

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 5

Applying this in the constructions for symmetric function CC0 circuits, we can reduce the
overall size of the circuit by the same constant factor.

We now generalize the statement of Theorem 2.7 beyond just symmetry.

Theorem 3.2. Let m = p1 . . . pk be a square-free integer. Let I(x) ∈ Z[x1, . . . , xn] of degree
d, whose maximum value over all Boolean inputs is M . For every n ∈ N and every T lying
in the range of I, there is a polynomial PT (x1, . . . , xn) of degree O(d ·M1/k) such that for all
a ∈ {0, 1}n, PT (a) = 0 mod m if and only if I(a1, . . . , an) = T .

Proof. We use a similar proof as in Theorem 2.7. Instead of the polynomials constructed
there, we can construct

ppr(y1, . . . , yn) = 1−
tr−1∏
j=0

(
1−

(
br(j)−

(
I(y)

pjr

))pr−1
)

mod pr

which has degree O(d ·M1/k). Once again combining via Chinese Remainder Theorem gives

us that the polynomial P (y) =
∑

1≤r≤k

(
m
pr

· ppr(y)
)
is zero modulo m precisely when I(y) =

T . □

4. Block Partitioning and Polynomial Invariants

In this section, we adapt the construction of Theorem 2.9 to extend to non-symmetric
functions.

We start with an extension of the concept of a symmetric function. The symmetric group
Sn acts naturally on the n-dimensional Boolean hypercube {0, 1}n by

(x1, x2, . . . , xn)
σ = (x1σ , x2σ , . . . , xnσ) .

This also induces an action on the set of n-variate Boolean functions given by

fσ(x) = f (xσ) .

Definition 4.1. The symmetry group G(f) of a Boolean function f : {0, 1}n → {0, 1} is its
stabilizer Stab(f) := {σ : fσ = f} under the above group action by Sn.

Note that f is symmetric iff its symmetry group is Sn. More generally, if G(f) contains as
a subgroup a large product of symmetric groups, then f can still be computed with a small
depth-three MOD circuit.

Theorem 4.2. Let f : {0, 1}n → {0, 1} and suppose its symmetry group G(f) contains a
subgroup H ∼= Sn1 × · · · × Snr , where

∑r
i=1 ni = n and L = maxni. Then, for integer k ≥ 2

and modulus m = p1 · · · pk, there is a depth-3 MODm circuit for f of size

exp
(
O(r log n+ L1/k logL)

)
.

6 L. Udeshi and B. Chapman

Proof. We can decompose the input variables as a product of symmetric groups of the blocks.
This means that the value of f depends on the bits {xj : j ∈ Bi} only through wi =

∑
j∈Bi

xj .

Then, f has a companion function g : {0, 1, . . . , n1} × · · · × {0, 1, . . . , nr} → {0, 1} such that
f(x) = g(w1, . . . , wr). Now, define T = g−1(1) to be the set of r-tuples of integers (T1, . . . , Tr)
where g outputs 1. Using this, we can express f in disjunctive normal form as

f(x) =
∨
T∈T

[(w1 = T1) ∧ · · · ∧ (wr = Tr)] .

To implement each conjunctive clause, we can use the exact construction as in Theorem 2.9

to get exp(O(n
1/k
i log ni)) size circuits for block Bi. Now, using Proposition 2.8 allows us

to eliminate the AND gates, while the OR gate can be replaced by a MOD gate, since it
is simply an arithmetic sum always in {0, 1} (as exactly one set of values can be true).

Our size is the combination of
∑r

i=1(ni + 1) exp
(
O
(
n
1/k
i log ni

))
gates for each block and

|T | ·O(pr1) = exp(O(r log n)) gates for the AND gadgets. This gives an overall size at most

exp
(
O
(
r log n+ L1/k logL

))
.

□

An illustration of how this construction works is provided in Figure 1.

x1 x2 x3

B1

w1 = T1

x4 x5 x6

B2

w2 = T2(w1 = T1) ∧ (w2 = T2)

MOD

∨
T∈T

f(x)

Figure 1. Sketch of the block-partitioning circuit from Theorem 4.2, showing
how each block Bi checks wi = Ti, the conjunction (w1 = T1) ∧ (w2 = T2),
and the final

∨
T∈T implemented by a MOD gate.

Our next idea is using different polynomial invariants. In particular, symmetric functions
are those that depend only on the polynomial

∑n
i=1 xi. If we have a function that is instead

dependent only on the value of a different polynomial, we can compute it in a similar manner.

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 7

Theorem 4.3. Let f be a Boolean function on n bits x1, . . . , xn and m be a product of k ≥ 2
distinct primes. Let I(x) ∈ Z[x1, . . . , xn] of degree d, whose maximum value over all Boolean
inputs is M . Then, every f that depends solely on the value of I(x) can be computed by

depth-3 MODm circuits of size exp(O(d ·M1/k logM)).

Proof. Let g : {0, 1, . . . ,M} → {0, 1} be the companion of f , so that f(x) = g
(
I(x)

)
, and set

T = {T : g(T) = 1}. By Theorem 3.2, for each T in the range of I, there is a polynomial

PT (x1, . . . , xn) of degree D = O
(
dM1/k

)
such that

PT (x) ≡ 0 (mod m) ⇐⇒ I(x) = T.

Write

PT (x) =

rT∑
j=1

cT,j MT,j(x),

where each monomial MT,j(x) is an AND of at most D literals and rT ≤ exp(O(D)).

The circuit for f has three layers of MODm gates as follows. The output gate is a MODp1

gate which

(a) sums over all T ∈ T , and
(b) for each such T sums the terms cT,1MT,1(x), . . . , cT,rTMT,rT (x).

Since exactly one T ∈ T can satisfy I(x) = T , and in that case all the corresponding
monomials sum to PT (x) ≡ 0 (mod m), the MODp1 sum is either 0 or 1 and in fact equals
f(x).

Each block of terms {cT,jMT,j(x)}rTj=1 is computed in the middle layer by a single MODm′

gate (with m′ = m/p1) summing those monomials. Finally, each bottom-layer monomial
MT,j(x) is an AND of at most D input bits; by Proposition 2.8 (since gcd(p1,m

′) = 1) each
such AND can be replaced by a small MODp1 ◦ MODm′ subcircuit, exactly as in the proof
of Theorem 2.9. Then, the resulting depth-3 MODm circuit has size

exp
(
O(dM1/k logM)

)
,

as claimed. □

Example 4.4. Consider f(x) =
∨n

i=1(xi∧xi+1). Taking I(x) =
∑n

i=1 xixi+1 gives us a degree
2 polynomial invariant on all the variables, and so we get depth-three MODm circuits of size
exp(O(n1/k log n)) computing f .

Example 4.5. We can compute the inversion-count threshold

finv≤R(x) =
[
#{ i < j : xi = 1 > xj = 0} ≤ R

]
=
[
I(x) ≤ R

]
in exp

(
O(n2/k log n)

)
size by taking

I(x) =
∑

1≤i<j≤n

xi (1− xj).

In fact, we can combine these results by partitioning the inputs into different invariant
blocks, by using the circuits in Theorem 4.3 for each block from Theorem 4.2, rather than
just the pure symmetric one.

8 L. Udeshi and B. Chapman

Theorem 4.6. Let f : {0, 1}n → {0, 1} and suppose its symmetry group G(f) contains a
subgroup H = H1 × · · · × Hr, where each Hi ≤ Sni preserves an integer-valued polynomial
Ii(xi,1, . . . , xi,ni) ∈ Z[xi,1, . . . , xi,ni] of degree di whose maximum value over all Boolean inputs
is Mi. Let L = maxni. Then, for k ≥ 2 and m = p1 · · · pk, f can be computed by a depth-three
MODm circuit of size

exp
(
O
(
r log n + max

1≤i≤r
(diM

1/k
i logMi)

))
.

Essentially, the idea behind using this theorem is to strategically partition the input vari-
ables into various blocks, so that the value of the overall function only depends on each block.
In particular, it should depend only on the value of a fixed polynomial on each block.

5. Composing Symmetric Functions

We now explore composing symmetry with other classes of functions, and seeing how to
compute these using MODm circuits.

Lemma 5.1 (SYM ◦AND). Let m = p1 · · · pk be the product of the first k primes, and let
g : {0, 1}n → {0, 1} be symmetric. For each 1 ≤ i ≤ n, let hi(x) be an AND of fan-in s.
Then f(x) := g

(
h1(x), . . . , hn(x)

)
has a depth-5 MODm circuit of size

exp
(
O(n1/k log n+ s k log k)

)
.

Proof. First, for each input, feed it and p1−1 constant 1 wires into a MODp1 gate. We observe
then that AND of s literals can be implemented by a two-layer modular gadget that replaces
an s-input AND by a MODm/p1 ◦MODp1 subcircuit of size (m/p1)

s via Proposition 2.8.
Using the estimate pk = O(k log k) one checks

m

p1
=

k∏
i=2

pi ≤ p k−1
k = (O(k log k))k−1,

so (m/p1)
s = exp

(
O(s k log k)

)
. On the other hand, by Theorem 2.9, any symmetric g on

n bits has a depth-3 MODm circuit of size exp(O(n1/k log n)). Substituting each of the n
AND-gadgets into the bottom layer and collapsing gives a depth-5 circuit whose size is

exp
(
O(n1/k log n+ s k log k)

)
.

□

Lemma 5.2 (SYM ◦OR). Let m = p1 · · · pk be the product of the first k primes and let
g : {0, 1}n → {0, 1} be symmetric. Let hi(x) be an OR of fan-in t for each i. Then f(x) =
g
(
h1(x), . . . , hn(x)

)
has a depth-5 MODm circuit of size

exp
(
O(n1/k log n+ t1/k log t)

)
.

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 9

Proof. We first observe that each OR of t literals can be implemented by Theorem 2.9.
Substituting these n OR-gadgets into the depth-3 MODm circuit for the symmetric function
g of size exp

(
O(n1/k log n)

)
yields a depth-6 circuit of size

exp
(
O(n1/k log n+ t1/k log t)

)
.

The third and fourth layers of MODp1 gates can then collapse, as the fourth is a sum mod
p1. This yields a depth-5 circuit with the same size. □

Theorem 5.3 (SYM ◦OR ◦AND). Let m = p1 · · · pk and let g : {0, 1}n → {0, 1} be sym-
metric. Let hi(x) be a DNF with O(t) terms each of width O(s) for each i. Then f(x) =
g
(
h1(x), . . . , hn(x)

)
admits a depth-7 MODm circuit of size

exp
(
O(n1/k log n+ t1/k log t+ s k log k)

)
.

Proof. Simply composing the circuit for Lemma 5.2 with the AND construction from Lemma 5.1,
we get depth-7 circuits computing SYM ◦OR ◦AND. □

Corollary 5.4. Let g be an n-variate symmetric function. For each 1 ≤ i ≤ n, let hi be a
DNF with polynomially many terms each of subpolynomial width. Then

f(x) := g(h1(x), . . . , hn(x))

can be computed with counting circuits of depth seven and subexponential size.

Theorem 5.5 (SYM ◦ NC). Let m = p1 · · · pk be a product of k distinct primes, and let g be
an n-variate symmetric function. For each 1 ≤ i ≤ n, let hi be a function that depends only
on nϵ inputs. Then f(x) := g(h1(x), . . . , hn(x)) can be computed with depth-three MODm

circuits of size exp(O(n2/k+ϵ logm)).

Proof. For simplicity of notation, let b = nϵ. As in Theorem 2.9, we represent f as a sum

mod p (of fan-in 2O(n1/k logn)) of ANDs (of fan-in O(n1/k)) of MODm/p1 (of fan-in 2O(n1/k)) of

ANDs (of fan-in O(n1/k)) of functions of fan-in b. The second layer ANDs can be immediately

replaced via Proposition 2.8 to give a sum mod p1 of fan-in (m/p1)
O(n1/k). We now observe

that each AND in the fourth layer computes a function that depends only on O(bn1/k)
inputs. Using Proposition 2.8 again, these can be replaced with a sum mod m/p1 of fan-in

O
(
pbn

1/k

1

)
. Collapsing the sum mod p1 and sum mod m/p1 into the layers above them, we

get a MODp1 ◦MODm/p1 ◦MODp1 circuit of size

exp(O(n2/k log n logm+ bn2/k logm)),

which is exp(O(n2/k+ϵ logm)). □

Corollary 5.6. Let g be an n-variate symmetric function. For each 1 ≤ i ≤ n, let hi be a
function that depends only on a subpolynomial number of inputs. Then

f(x) := g(h1(x), . . . , hn(x))

can be computed with a counting circuit family of depth three and subexponential size.

10 L. Udeshi and B. Chapman

Corollary 5.7. Let g be an n-variate symmetric function. For each 1 ≤ i ≤ n, let hi be a
function computable with an NC circuit family of depth o(log n). Then

f(x) := g(h1(x), . . . , hn(x))

can be computed with a counting circuit family of depth three and subexponential size.

6. Future Work and SMT-Based Circuit Synthesis

Our work here further helps to show the power of CC0 compared to initial belief, even at
low depth levels. A natural direction for future work would be to consider computing other
Boolean functions, which may not have the nice forms described in this paper, using MODm

circuits. In addition, it would be helpful to find ways to more naturally characterize some of
the results described, especially those from Section 4. Extending these ideas, another step
that could be taken would be to apply similar ideas to compute these classes of functions in
ACC0, similar to what was done in [5]. Improving the explicit symmetric function construction
itself would also be relevant, as that would immediately improve all these other constructions
relying on that one.

6.1. SMT for Explicit Computation of Small CC0[m] Circuits. To experimentally ex-
plore the structure of small CC0[m] circuits, we implemented an SMT-based synthesizer using
the Z3 solver. For fixed input size n, modulus m, depth bound d, and gate budget s, the
solver searches for a depth-d circuit of s MODm gates computing a given Boolean function
exactly on all 2n inputs.

Each input bit is treated as a depth-0 gate. Every additional gate gi computes a modular
linear form

gi(x) =
[
ci +

∑
k<i

ci,k gk(x) ≡ 0 (mod m)
]
,

with coefficients ci,k ∈ {0, . . . ,m − 1}. Correctness is enforced simultaneously for all inputs
by equating the output gate with the target truth table.

The encoding uses several symmetry-breaking constraints that are essential for improv-
ing speed and scalability. First, each gate is assigned an explicit depth variable, enforcing
acyclicity and bounding the circuit depth. Second, gates at the same depth are required to
be lexicographically ordered by their coefficient vectors, eliminating permutation symmetry
within layers. Third, multiplicative symmetry in modular equations is removed by requiring
the first nonzero coefficient of each gate to lie in the set of proper divisors of m, yielding
a canonical representative. Additional normalization constraints on constant terms further
reduce equivalent encodings.

The solver is run incrementally over increasing gate budgets, guaranteeing minimality of
the synthesized circuit when a solution is found. All arithmetic is performed using fixed-width
bit-vectors, allowing efficient use of Z3’s quantifier-free bit-vector engine.

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 11

While this approach is limited to small n, it provides concrete examples of minimal CC0[m]
circuits and may guide future analytic constructions. The full implementation is provided in
Appendix A. Appendix A.1 contains code for extracting the solver’s first satisfying model,
while Appendix A.2 provides code for enumerating all circuits of a given size up to symmetry.

Acknowledgments

We would like to express gratitude to MIT PRIMES-USA for making this research expe-
rience possible.

References

[1] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press,
2009.

[2] David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing Boolean functions as poly-
nomials modulo composite numbers. Comput. Complexity, 4:367–382, 1994.

[3] David Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC1. Journal of Com-
puter and System Sciences, 41, 1990.

[4] David A. Mix Barrington, Howard Straubing, and Denis Therien. Non-uniform automata over groups.
Inf. Comput., 89(2):109–132, 1990.

[5] Brynmor Chapman and Ryan Williams. Smaller ACC0 circuits for symmetric functions. arXiv preprint
arXiv:2107.04706, 2021.

[6] Shiteng Chen and Periklis A. Papakonstantinou. Depth reduction for composites. SIAM J. Comput.,
48(2):668–686, 2019.

[7] Vince Grolmusz and Gábor Tardos. Lower bounds for (MODp-MODm) circuits. SIAM J. Comput.,
29(4):1209–1222, 2000.

[8] Kristoffer Arnsfelt Hansen. On modular counting with polynomials. In 21st Annual IEEE Conference on
Computational Complexity (CCC 2006), pages 202–212. IEEE Computer Society, 2006.

[9] Edouard Lucas. Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions
trigonométriques suivant un module premier. Bulletin de la Société Mathématique de France, 6:49–54,
1878.

[10] Alexander A. Razborov. Lower bounds on the size of bounded-depth networks over the complete basis
with logical addition. Mathematical Notes of the Academy of Sciences of the USSR, 41(4):333–338, 1987.

[11] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In
STOC, pages 77–82, 1987.

[12] Andrew Chi-Chih Yao. On ACC and threshold circuits. In FOCS, pages 619–627, 1990.

12 L. Udeshi and B. Chapman

Appendix A. Full Code for Computation of Small CC0[m] Circuits

A.1. First Model. This code uses an SMT encoding to synthesize a minimum-size depth-
bounded CC0[m] circuit computing a specified Boolean function.

import time

from z3 import *

def adder_bitwidth(m):

return max(2, (2 * m - 1).bit_length())

def mod_add(a, b, m_bv, w):

s = a + b

return If(UGE(s, m_bv), s - m_bv, s)

def mod_wsum(const_bv, coeffs, sel_bools, m_bv, w):

zero = BitVecVal(0, w)

acc = const_bv

for c, sel in zip(coeffs, sel_bools):

term = If(sel, c, zero)

acc = mod_add(acc, term, m_bv, w)

return acc

def prop_div(m):

return [d for d in range(1, m) if m % d == 0]

def build_circ(f, m, max_s, max_depth):

n = (len(f) - 1).bit_length()

N = 1 << n

assignments = [list(map(int, format(i, ’0’ + str(n) + ’b’))) for i in range(N)]

w = adder_bitwidth(m)

m_bv = BitVecVal(m, w)

allowed_first_vals = prop_div(m)

for s in range(4, max_s + 1):

total = n + s

max_d_cap = max_depth if max_depth is not None else total

wd = max(2, (max_d_cap + 1).bit_length())

zero_d = BitVecVal(0, wd)

one_d = BitVecVal(1, wd)

max_dv = BitVecVal(max_d_cap, wd)

solver = SolverFor("QF_BV")

depth = [BitVec("d_" + str(i), wd) for i in range(total)]

for i in range(n):

solver.add(depth[i] == zero_d)

if max_depth is not None:

for i in range(total):

solver.add(ULE(depth[i], max_dv))

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 13

const_conn = {}

connections = {}

def bv_in_range(x):

return ULT(x, m_bv)

for i in range(n, total):

c1 = BitVec("c1_" + str(i), w)

const_conn[i] = c1

solver.add(bv_in_range(c1))

for k in range(i):

c = BitVec("c_" + str(i) + "_" + str(k), w)

connections[(i, k)] = c

solver.add(bv_in_range(c))

used = (c != BitVecVal(0, w))

solver.add(Implies(used, UGE(depth[i], depth[k] + one_d)))

solver.add(UGE(depth[i], one_d))

zero_w = BitVecVal(0, w)

def row_vec(i):

base = [const_conn[i]] + [connections[(i, k)] for k in range(i)]

need = total - len(base)

if need > 0:

base += [zero_w] * need

return base

def lex_le(xs, ys):

eq_so_far = BoolVal(True)

lt_acc = BoolVal(False)

for a, b in zip(xs, ys):

lt_here = And(eq_so_far, ULT(a, b))

lt_acc = Or(lt_acc, lt_here)

eq_so_far = And(eq_so_far, a == b)

return Or(lt_acc, eq_so_far)

rows = {i: row_vec(i) for i in range(n, total)}

for i in range(n, total):

for j in range(i + 1, total):

same_layer = (depth[i] == depth[j])

solver.add(Implies(same_layer, lex_le(rows[i], rows[j])))

allowed_vals_bv = [BitVecVal(v, w) for v in allowed_first_vals]

for i in range(n, total):

head = [const_conn[i]] + [connections[(i, k)] for k in range(i)]

L = len(head)

for t in range(L):

if t == 0:

14 L. Udeshi and B. Chapman

pre_zero = BoolVal(True)

else:

pre_zero = And(*[head[p] == zero_w for p in range(t)])

is_first_nonzero = And(pre_zero, head[t] != zero_w)

solver.add(Implies(is_first_nonzero, Or(*[head[t] == v for v in

allowed_vals_bv])))

g = [[Bool("g_" + str(i) + "_" + str(j)) for j in range(N)] for i in range(total)]

for j, bits in enumerate(assignments):

for i in range(n):

solver.add(g[i][j] == (bits[i] == 1))

for i in range(n, total):

coeffs_row = [connections[(i, k)] for k in range(i)]

for j in range(N):

sels = [g[k][j] for k in range(i)]

total_mod = mod_wsum(const_conn[i], coeffs_row, sels, m_bv, w)

solver.add(g[i][j] == (total_mod == BitVecVal(0, w)))

for j in range(N):

solver.add(g[total - 1][j] == (f[j] == 1))

if solver.check() == sat:

return solver.model(), s

return None, None

execution for specific function:

function’s truth table goes here

f = [int(bin(i).count("1") % 4 == 0) for i in range(1 << 7)] #MOD4 function on 7 bits

m = 5

max_s = 5

max_d = 2

start_time = time.time()

model, s = build_circ(f, m, max_s, max_d)

end_time = time.time()

elapsed = end_time - start_time

if not model:

print("no circuit for size<=" + str(max_s) + " and depth<=" + str(max_d))

exit(1)

print("circuit with " + str(s) + " gates (depth<=" + str(max_d) + ")")

print("elapsed time: {:.3f} seconds".format(elapsed))

n = (len(f) - 1).bit_length()

total_gates = n + s

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 15

connections = {}

const_conn = {}

for i in range(n, total_gates):

const_conn[i] = BitVec("c1_" + str(i), adder_bitwidth(m))

for k in range(i):

connections[(i, k)] = BitVec("c_" + str(i) + "_" + str(k), adder_bitwidth(m))

depth = [BitVec("d_" + str(i), max(2, (max_d + 1).bit_length())) for i in range(total_gates)]

print("\ninputs:")

for i in range(n):

print(" gate " + str(i) + ": input x" + str(i))

print("\nMOD gates:")

for i in range(n, total_gates):

parts = []

mult1 = model.eval(const_conn[i]).as_long()

if mult1 > 0:

if mult1 == 1:

parts.append("1")

else:

parts.append(str(mult1) + "*1")

for k in range(i):

mult = model.eval(connections[(i, k)]).as_long()

if mult > 0:

if mult == 1:

parts.append("g" + str(k))

else:

parts.append(str(mult) + "*g" + str(k))

if parts:

driver_str = ", ".join(parts)

else:

driver_str = "-"

d_val = model.eval(depth[i]).as_long()

print(" Gate " + str(i) + " (depth " + str(d_val) + "): MOD_" + str(m) + "(" +

driver_str + ")")

final_depth = model.eval(BitVec("d_" + str(total_gates - 1), max(2, (max_d + 1).bit_length())

)).as_long()

print("\noutput at gate " + str(total_gates - 1) + " with depth " + str(final_depth))

A.2. Enumeration. This code extends the SMT encoding to enumerate all depth-bounded
CC0[m] circuits of a fixed size computing a given Boolean function, up to symmetry.

import time

from z3 import *

def adder_bitwidth(m):

return max(2, (2 * m - 1).bit_length())

def mod_add(a, b, m_bv, w):

s = a + b

16 L. Udeshi and B. Chapman

return If(UGE(s, m_bv), s - m_bv, s)

def mod_wsum(const_bv, coeffs, sel_bools, m_bv, w):

zero = BitVecVal(0, w)

acc = const_bv

for c, sel in zip(coeffs, sel_bools):

term = If(sel, c, zero)

acc = mod_add(acc, term, m_bv, w)

return acc

def prop_div(m):

return [d for d in range(1, m) if m % d == 0]

def lex_le(xs, ys):

eq_so_far = BoolVal(True)

lt_acc = BoolVal(False)

for a, b in zip(xs, ys):

lt_here = And(eq_so_far, ULT(a, b))

lt_acc = Or(lt_acc, lt_here)

eq_so_far = And(eq_so_far, a == b)

return Or(lt_acc, eq_so_far)

def row_vec(i, total, const_conn, connections, zero_w):

base = [const_conn[i]] + [connections[(i, k)] for k in range(i)]

need = total - len(base)

if need > 0:

base += [zero_w] * need

return base

def canonical_forms_by_depth(model, n, total, m, max_depth):

w = adder_bitwidth(m)

wd = max(2, (((max_depth if max_depth is not None else total)) + 1).bit_length())

const_conn = {}

connections = {}

for i in range(n, total):

const_conn[i] = BitVec(f"c1_{i}", w)

for k in range(i):

connections[(i, k)] = BitVec(f"c_{i}_{k}", w)

depth = [BitVec(f"d_{i}", wd) for i in range(total)]

depth_vals = [model.eval(d).as_long() for d in depth]

max_d_in_model = max(depth_vals) if total > 0 else 0

gates_at_depth = {d: [] for d in range(max_d_in_model + 1)}

for i in range(n, total):

gates_at_depth[depth_vals[i]].append(i)

gate_cf = {}

def coef(i, k):

return model.eval(connections[(i, k)]).as_long()

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 17

def const(i):

return model.eval(const_conn[i]).as_long()

for d in range(1, max_d_in_model + 1):

layer_items = []

for i in gates_at_depth.get(d, []):

c0 = const(i)

input_coeffs = []

for k in range(n):

val = coef(i, k)

if val != 0:

input_coeffs.append(val)

input_coeffs.sort()

ref_items = []

for k in range(n, i):

val = coef(i, k)

if val == 0:

continue

src = k

ref_items.append((val, gate_cf[src]))

ref_items.sort()

cf = (d, c0, tuple(input_coeffs), tuple(ref_items))

layer_items.append((i, cf))

for i, cf in layer_items:

gate_cf[i] = cf

return depth_vals, gate_cf

def circuit_fingerprint_perm_invariant(model, n, total, m, max_depth):

depth_vals, gate_cf = canonical_forms_by_depth(model, n, total, m, max_depth)

all_cfs = [gate_cf[i] for i in range(n, total)]

all_cfs.sort()

return tuple(all_cfs)

def enumerate_minimal_circuits(f, m, max_s, max_depth=2, max_models=None):

n = (len(f) - 1).bit_length()

N = 1 << n

assignments = [list(map(int, format(i, ’0’ + str(n) + ’b’))) for i in range(N)]

w = adder_bitwidth(m)

m_bv = BitVecVal(m, w)

allowed_first_vals = prop_div(m)

for s in range(1, max_s + 1):

total = n + s

18 L. Udeshi and B. Chapman

max_d_cap = max_depth if max_depth is not None else total

wd = max(2, (max_d_cap + 1).bit_length())

zero_d = BitVecVal(0, wd)

one_d = BitVecVal(1, wd)

max_dv = BitVecVal(max_d_cap, wd)

solver = SolverFor("QF_BV")

depth = [BitVec(f"d_{i}", wd) for i in range(total)]

for i in range(n):

solver.add(depth[i] == zero_d)

if max_depth is not None:

for i in range(total):

solver.add(ULE(depth[i], max_dv))

const_conn = {}

connections = {}

def bv_in_range(x):

return ULT(x, m_bv)

for i in range(n, total):

c1 = BitVec(f"c1_{i}", w)

const_conn[i] = c1

solver.add(bv_in_range(c1))

for k in range(i):

c = BitVec(f"c_{i}_{k}", w)

connections[(i, k)] = c

solver.add(bv_in_range(c))

used = (c != BitVecVal(0, w))

solver.add(Implies(used, UGE(depth[i], depth[k] + one_d)))

solver.add(UGE(depth[i], one_d))

zero_w = BitVecVal(0, w)

rows = {i: row_vec(i, total, const_conn, connections, zero_w) for i in range(n, total

)}

for i in range(n, total):

for j in range(i + 1, total):

same_layer = (depth[i] == depth[j])

solver.add(Implies(same_layer, lex_le(rows[i], rows[j])))

allowed_vals_bv = [BitVecVal(v, w) for v in allowed_first_vals]

for i in range(n, total):

head = [const_conn[i]] + [connections[(i, k)] for k in range(i)]

L = len(head)

for t in range(L):

pre_zero = BoolVal(True) if t == 0 else And(*[head[p] == zero_w for p in

range(t)])

is_first_nonzero = And(pre_zero, head[t] != zero_w)

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 19

solver.add(Implies(is_first_nonzero, Or(*[head[t] == v for v in

allowed_vals_bv])))

g = [[Bool(f"g_{i}_{j}") for j in range(N)] for i in range(total)]

for j, bits in enumerate(assignments):

for i in range(n):

solver.add(g[i][j] == (bits[i] == 1))

for i in range(n, total):

coeffs_row = [connections[(i, k)] for k in range(i)]

for j in range(N):

sels = [g[k][j] for k in range(i)]

total_mod = mod_wsum(const_conn[i], coeffs_row, sels, m_bv, w)

solver.add(g[i][j] == (total_mod == BitVecVal(0, w)))

for j in range(N):

solver.add(g[total - 1][j] == (f[j] == 1))

unique_models = []

seen_fps = set()

block_vars = []

for i in range(n, total):

block_vars.append(const_conn[i])

for k in range(i):

block_vars.append(connections[(i, k)])

block_vars += [depth[i] for i in range(total)]

while solver.check() == sat:

model = solver.model()

fp = circuit_fingerprint_perm_invariant(model, n, total, m, max_depth)

if fp not in seen_fps:

seen_fps.add(fp)

unique_models.append(model)

diseqs = []

for v in block_vars:

try:

val = model.eval(v, model_completion=True)

except Z3Exception:

continue

diseqs.append(v != val)

if not diseqs:

break

solver.add(Or(*diseqs))

if max_models is not None and len(unique_models) >= max_models:

break

if unique_models:

return unique_models, s

20 L. Udeshi and B. Chapman

return [], None

def print_circuit_from_model(model, f, m, s, max_depth):

n = (len(f) - 1).bit_length()

total_gates = n + s

w = adder_bitwidth(m)

wd = max(2, (((max_depth if max_depth is not None else total_gates)) + 1).bit_length())

const_conn = {}

connections = {}

for i in range(n, total_gates):

const_conn[i] = BitVec(f"c1_{i}", w)

for k in range(i):

connections[(i, k)] = BitVec(f"c_{i}_{k}", w)

depth = [BitVec(f"d_{i}", wd) for i in range(total_gates)]

print("\ninputs:")

for i in range(n):

print(f" gate {i}: input x{i}")

print("\nMOD gates:")

for i in range(n, total_gates):

parts = []

mult1 = model.eval(const_conn[i]).as_long()

if mult1 > 0:

parts.append("1" if mult1 == 1 else f"{mult1}*1")

for k in range(i):

mult = model.eval(connections[(i, k)]).as_long()

if mult > 0:

parts.append(f"g{k}" if mult == 1 else f"{mult}*g{k}")

driver_str = ", ".join(parts) if parts else "-"

d_val = model.eval(depth[i]).as_long()

print(f" Gate {i} (depth {d_val}): MOD_{m}({driver_str})")

final_depth = model.eval(depth[total_gates - 1]).as_long()

print(f"\noutput at gate {total_gates - 1} with depth {final_depth}")

#execution for specific function

function’s truth table goes here

f = [int(bin(i).count("1") % 4 == 0) for i in range(1 << 8)] # MOD4 function on 8 bits

m = 5

max_s = 5

max_d = 2

start_time = time.time()

models, s = enumerate_minimal_circuits(f, m, max_s, max_depth=max_d, max_models=None)

end_time = time.time()

elapsed = end_time - start_time

if not models:

Extending CC0 Circuit Upper Bounds Beyond Symmetric Functions 21

print("no circuit for size<=" + str(max_s) + " and depth<=" + str(max_d))

exit(1)

print("Found " + str(len(models)) + " unique circuit(s) of minimal size " + str(s) +

" (depth<=" + str(max_d) + ")")

print("elapsed time: {:.3f} seconds".format(elapsed))

for idx, model in enumerate(models, 1):

print("\n=== Circuit #" + str(idx) + " ===")

print_circuit_from_model(model, f, m, s, max_d)

Thomas Jefferson High School for Science and Technology
Email address: luv.udeshi@gmail.com

Massachusetts Institute of Technology
Email address: brynmor@mit.edu

	1. Introduction
	2. Preliminaries
	3. Polynomial Detectors of Boolean Functions
	4. Block Partitioning and Polynomial Invariants
	5. Composing Symmetric Functions
	6. Future Work and SMT-Based Circuit Synthesis
	6.1. SMT for Explicit Computation of Small CC0[m] Circuits

	Acknowledgments
	References
	Appendix A. Full Code for Computation of Small CC0[m] Circuits
	A.1. First Model
	A.2. Enumeration

