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Motivation

A (Drinfeld-Jimbo type) quantum group Uq(g) is a deformation of the
universal enveloping algebra of a semisimple Lie algebra g. Why they’re
important:

Generalize the symmetries of a Lie group

Representation categories admit a braided tensor structure

Applications to knot theory and quantum integrable systems

The positive part U+
q (g) of a quantum group is a Nichols algebra of

diagonal type over a field of characteristic 0. We can recover the quantum
group structure via the Drinfeld double construction.

The Project

The recently discovered Nichols algebra B(C∗(q)) is not of diagonal type,
over a field of characteristic p > 2. We compute its Drinfeld Double in
hopes of obtaining a generalized quantum group.
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Hopf Algebras: Algebra Structure

A Hopf algebra over a field k has a k-algebra structure...

Multiplication map: µ : H ⊗ H → H

Unit map: η : k→ H

H ⊗ H ⊗ H H ⊗ H k⊗ H H ⊗ H H ⊗ k

H ⊗ H H H

idH⊗µ

µ⊗idH µ

η⊗idH

= µ

idH⊗η

=

µ

These commutative diagrams represent associativity and unitality:

µ(µ(x ⊗ y)⊗ z)) = µ(x ⊗ µ(y ⊗ z)),

η(1k) = 1H .
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Hopf Algebras: (Co)Algebra Structure

...and a k-coalgebra structure:

Comultiplication map: ∆ : H → H ⊗ H

Counit map: ε : H → k

H ⊗ H ⊗ H H ⊗ H H ⊗ k H ⊗ H k⊗ H

H ⊗ H H H

∆⊗idH idH⊗ε ε⊗idH

idH⊗∆ ∆

∆

= ∆ =

We shorthand ∆(x) =
∑

xi ⊗ xj to x(1) ⊗ x(2):

∆(x(1))⊗ x(2) = x(1) ⊗∆(x(2)) := x(1) ⊗ x(2) ⊗ x(3),

ε(x(1))x(2) = x(1)ε(x(2)) = x .

The algebra and coalgebra structures are compatible; that is, for x , y ∈ H,

(xy)(1) ⊗ (xy)(2) = x(1)y(1) ⊗ x(2)y(2).
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Hopf Algebras

In addition, elements in a Hopf algebra have an antipode S : H → H,
which is a generalized notion of the inverse:

S(x(1))x(2) = ε(x)1H = x(1)S(x(2)).

Example

The group algebra kG is the simplest example of a Hopf algebra. (Indeed,
the Hopf algebra is a generalization of the group algebra!)

µ(g ⊗ h) = gh

∆(g) = g ⊗ g

S(g) = g−1
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Braided Hopf Algebras

Definition

A braiding is a map c : H ⊗ H → H ⊗ H that satisfies

(c ⊗ idH)(idH ⊗ c)(c ⊗ idH) = (idH ⊗ c)(c ⊗ idH)(idH ⊗ c)

Example

The flip map τ : x ⊗ y 7→ y ⊗ x is a braiding:
x y z x y z

=

z y x z y x

In a braided Hopf algebra, the µ-∆ relation is modified by a braiding c .
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(Co)modules

Let V be a vector space, H a Hopf algebra. V has an H-(co)module
structure if:

Action: λ : H ⊗ V → V

Coaction: δ : V → H ⊗ V

H ⊗ H ⊗ V H ⊗ V k⊗ V H ⊗ V

H ⊗ V V V

µ⊗idV

idA⊗λ

∆⊗idV

λ

η⊗idV

=

ε⊗idV

λidkG⊗δ

λ

δ

δ

δ

We write δ(v) = v(−1) ⊗ v(0) as shorthand, so we have relations:

∆(v(−1))⊗ v(0) = v(−1) ⊗ δ(v(0) := v(−2) ⊗ v(−1) ⊗ v(0),

ε(v(−1))v(0) = v .
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Recovering a Quantum Group

The Nichols algebra B(V ) is a type of braided Hopf algebra constructed
from V , a kΓ (co)module, where Γ is an abelian group.

V
Nichols alg.−−−−−−−→ B(V )

bosonization−−−−−−−→ B(V )#kΓ
Drinfeld double−−−−−−−−−→ D(B(V )#kΓ)

The bosonization B(V )#kΓ has underlying vector space structure
B(V )⊗ kΓ, and is a (non-braided) Hopf algebra.

The Drinfeld double D(B(V )#kΓ) has underlying vector space
structure

(B(V )#kΓ)⊗ (B(V )#kΓ)∗ = B(V )⊗ kΓ⊗ B(V ∗)⊗ kΓ∗

= B(V )︸ ︷︷ ︸
U+
q (g)

⊗ (kΓ⊗ k
Γ)︸ ︷︷ ︸

U0
q (g)

⊗B(V ∗)︸ ︷︷ ︸
U−
q (g)

.

The Nichols algebras associated with quantum groups via this construction
are of diagonal type and over a field of characteristic 0.
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The vector space C∗(q)

We now work in a field k of characteristic p > 2. Let q be an Nth root of
unity. The vector space C∗(q) is a kΓ (co)module, where Γ = C2N × C2pN .
It is generated by v1, v2 (the pale block), and v3 (the point).

Group actions:

g1 ⇀ v1 = −v1, g2 ⇀ v1 = −q−1v1,

g1 ⇀ v2 = −v2, g2 ⇀ v2 = −q−1(v2 + v1),

g1 ⇀ v3 = qv3, g2 ⇀ v3 = −v3.

Group coactions:

δ(v1) = g1 ⊗ v1, δ(v2) = g1 ⊗ v2, δ(v3) = g2 ⊗ v3.

This induces the braiding, not of diagonal type:

c(v1 ⊗ v1)= −v1 ⊗ v1, c(v1 ⊗ v2)= −v2 ⊗ v1, c(v1 ⊗ v3)= qv3 ⊗ v1,

c(v2 ⊗ v1)= −v1 ⊗ v2, c(v2 ⊗ v2)= −v2 ⊗ v2, c(v2 ⊗ v3)= qv3 ⊗ v2,

c(v3 ⊗ v1)= −q−1v1 ⊗ v3, c(v3 ⊗ v2)= −q−1(v2 + v1)⊗ v3, c(v3 ⊗ v3)= −v3 ⊗ v3.

Amelia Chen
October 19, 2025 MIT PRIMES Conference
9 / 13



The Drinfeld double D(B(C∗(q))#kΓ)

Recall: the double has vector space structure B(V )⊗ kΓ⊗ B(V ∗)⊗ k
Γ.

B(V ) → ⟨v1, v2, v3⟩ kΓ → ⟨α1, α2, α3⟩
B(V ∗) → ⟨u1, u2, u3⟩ k

Γ → ⟨τ1, τ2, τ3⟩
Some relations (between vi and ui ):

u1v1 = −v1u1,

u1v2 = 1− v2u1 − α1τ
−N
1 τ−2p−N

2 ,

u1v3 = −q−1v3u1,

u2v1 = 1− v1u2 − α1τ
−N
1 τ−2p−N

2 ,

u2v2 = −v2u2 − 2Nα1τ
−N
1 τ−2p−N

2 τ3,

u2v3 = −q−1(v3u2 + v3u1),

u3v1 = qv1u3,

u3v2 = qv2u3,

u3v3 = 1− v3u3 − g2τ
2
1 τ

−N
2 .
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Future Directions

Due to the exotic nature of the double, characterizing its structure is
difficult. A few paths to go down:

Express double as a superalgebra

Relating to known algebras:

Find exact sequence A ↪→ D ↠ C
Relation to osp(1|2)

Compute simple modules over D
New knot invariants
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