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Algebras

A k-algebra is a k-vector space A with a linear multiplication map
µ : A⊗ A → A and a linear unit map η : k → A satisfying

A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗id

id⊗µ µ

µ

i.e classic associativity: (xy)z = x(yz) for all x , y , z ∈ A.
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Algebras

It also satisfies

k⊗ A A⊗ A A⊗ k

A

η⊗id

∼= µ

id⊗η

∼=

i.e. η(1)x = x = xη(1) for all x ∈ A.
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Modules

A left A-module is a vector space V with a linear action map
λ : A⊗ V → V satisfying

A⊗ A⊗ V A⊗ V

A⊗ V V

µ⊗idV

idA⊗λ λ

λ

If we denote λ(a⊗ v) = a · v , this says that (xy) · v = x · (y · v) for all
x , y ∈ A and v ∈ V .
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Modules

It also satisfies

k⊗ V A⊗ V

V

η⊗id

∼= λ

i.e. η(1) · v = v for all v ∈ V .
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Coalgebras

Flip the arrows to define a k-coalgebra C , or a k-vector space C with a
linear comultiplication map ∆ : C → C ⊗ C and a linear counit map
ε : C → k satisfying

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ id⊗∆

∆⊗id

and

k⊗ C C ⊗ C C ⊗ k

A

ε⊗id

∼= ∆

id⊗ε

∼= .
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Comodules

A left C-comodule is a vector space V with a linear coaction map
δ : V → C ⊗ V satisfying:

V C ⊗ V

C ⊗ V C ⊗ C ⊗ V

δ

δ ∆⊗id

id⊗∆

and

k⊗ C C ⊗ V

V

ε⊗id

∼= δ .
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Example: The Group Algebra

The group algebra kG has

an algebra structure: group multiplication and the group unit.

a coalgebra structure: ∆(g) = g ⊗ g and ε(g) = 1 for all g ∈ G .

a bialgebra structure: ∆(xy) = ∆(x)∆(y) and ε(xy) = ε(x)ε(y).

an inverse: the group inverse.
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Hopf Algebras

A Hopf algebra H is a bialgebra with a linear antipode map S : H → H
satisfying:

h(1)S(h(2)) = ε(h)η(1) = S(h(1))h(2)

where ∆(h) = h(1) ⊗ h(2).

The most natural symmetry induced by the tensor product is the flip map
τX ,Y : X ⊗ Y → Y ⊗ X taking x ⊗ y to y ⊗ x .

τH,H′ is a Hopf algebra map for H and H ′ Hopf algebras

τV ,W is not necessarily a (co)module map for V and W (co)modules
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Yetter-Drinfeld Modules

A Yetter-Drinfeld module V over a Hopf algebra H is a vector space with
a module and comodule structure λ : H ⊗ V → V and δ : V → H ⊗ V ,
v 7→ v(−1) ⊗ v(0) satisfying

δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0).

For V ,W ∈ H
HYD, the map cV ,W : V ⊗W → W ⊗ V with

cV ,W (v ⊗ w) = v(−1) · w ⊗ v(0) is both a module and a comodule map.

If cV ,W = τV ,W : classical symmetry

If cV ,W ̸= τV ,W : quantum symmetry
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Primitives and Infinitesimal Symmetry

For H a Hopf algebra, we say h ∈ H is primitive if ∆(h) = 1⊗ h + h ⊗ 1.
Then, for V and W modules over H,

h · (v ⊗ w) = h · v ⊗ w + v ⊗ h · w

... h acts like a derivative (it’s the algebraic analog of infinitesimal
symmetry).
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The Quantum Case - More Constructions

For V ∈ H
HYD, the Nichols Algebra is the “smallest” object in H

HYD
generated by its primitives V :

B(V ) := T (V )/I (V )

where T (V ) = {v1v2...vn : vi ∈ V , n ∈ N} is the tensor algebra.

The Drinfeld Double twists H and H∗ to get a quantum group with

D(H)-mod ≃ H
HYD.
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Our Project - Big Picture

Yetter-Drinfeld Module in Characteristic 2
↓

Nichols Algebra
↓

Hopf Algebra
↓

Drinfeld Double
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Our Project - Yetter-Drinfeld Module

In 2021, Andruskiewitsch, Angiono, and Giusti introduced

E3,−(q) ∈ k(Cm×C4m)
k(Cm×C4m)

YD with (co)action given by:

g · x4 = qx4, g · xi = xi ∀1 ≤ i ≤ 3,

h · x1 = q−1x1, h · x2 = q−1(x1 + x2),

h · x3 = q−1(x2 + x3), h · x4 = x4,

δ(x4) = h ⊗ x4, δ(xi ) = g ⊗ xi ∀1 ≤ i ≤ 3.
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Our Results - The Nichols Algebra

B (E3,−(q)) is generated by x1, x2, x3, x4 with the relations

x2i = 0, xixj = xjxi ∀1 ≤ i ̸= j ≤ 3,

x24 = 0, x1x4 = qx4x1,

z22 = 0, z43 = 0,

z23 z2 + z2z
2
3 + z2z3z2 = 0, z3z2z3z2 + z2z3z2z3 = 0

where

zi = x4xi + q−1(xi + xi−1)x4,

w = z2x3 + q−1(x3 + x2)z2,

y = z2z3 + z3z2.
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Our Results - The Hopf Algebra

H = B (E3,−(q))#k(Cm × C4m) is generated by x1, x2, x3, x4, g and h
with the relations

x2i = 0, xixj = xjxi ∀1 ≤ i ̸= j ≤ 3,

x24 = 0, x1x4 = qx4x1,

z22 = 0, z43 = 0,

z23 z2 + z2z
2
3 + z2z3z2 = 0, z3z2z3z2 + z2z3z2z3 = 0,

gm = h4m = 1, gh = hg ,

gx4 = qx4g , xig = gxi ∀1 ≤ i ≤ 3,

hx1 = q−1x1h, hx2 = q−1(x1 + x2)h,

hx3 = q−1(x2 + x3)h, hx4 = x4h.
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Our Results - The Drinfeld Double

D(H) has 15 generators and over 50 relations.

Since D(H)-mod ≃ H
HYD, we are particularly interested in the

modules over D(H). We have explicit presentations of some of the

simples, i.e. (for ζn = e
2πi
n ):

g · 1 = ζ
eg
m , g · w1 = ζ

eg
m w1,

h · 1 = ζ−eu
m , h · w1 = qζ−eu

m w1,

v · 1 = ζ
−eg
m , v · w1 = ζ

−eg
m w1,

u · 1 = ζeum , u · w1 = q−1ζeum w1,

s · 1 = 0, s · w1 = 0,

t · 1 = 1, t · w1 = 1,

xi · 1 = 0 ∀i ̸= 3, xi · w1 = 0 ∀i ̸= 3,

x3 · 1 = 0, x3 · w1 = 1,

wi · 1 = 0 ∀i ̸= 1, wi · w1 = 0 ∀1 ≤ i ≤ 4.
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