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Knots and Links

Definitions

▶ A knot is an embedding of the circle S1 in R3.

▶ A link is an embedding of several circles in R3.

Link diagrams project knots and links onto two-dimensional space.
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Knots and Links

Examples

▶ Some knots:

Unknot (01), trefoil (31), figure-eight (41), and cinquefoil (51).

▶ Some links:

Hopf link (22
1), Whitehead link (52

1), and Borromean link (63
2).
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Link Isotopy

Question

When do two link diagrams determine isotopic links?

Example

Not a priori clear that the knot in the top left corner is the unknot.

Try to simplify the (topological) notion of isotopy to be more tractable.
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The Jones Polynomial

Definition

The Jones polynomial VL(t) ∈ Z[t1/2] is defined by the recursive skein
relations:

▶ t−1VL+(t)− tVL−(t) = (t1/2 − t−1/2)VL0(t) for all triples of
(oriented) link diagrams (L+, L−, L0) that differ only on a small disk:

▶ V01(t) = 1, where 01 is the unknot.

Theorem (Jones, 1985)

The Jones polynomial is a well-defined polynomial of (oriented) links.
Furthermore, it is invariant under isotopy.
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The Jones Polynomial

Example

The following is a skein triple:

Observe that (L+, L−, L0) = (01, 31, 2
2
1). Thus

t−1V01(t)− tV31(t) = (t1/2 − t−1/2)V221
(t).

Applying further recursions, can compute that V31(t) = −t4 + t3 + t.

Jones originally constructed the polynomial using representation theory.
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The Temperley–Lieb Algebra

Fix an index n ∈ N and a parameter β ∈ C.

Definition

The Temperley–Lieb algebra TLn(β) at β is spanned by all diagrams of
strings from n points above to n points below, where:

▶ Diagrams g and h multiply by concatenation (i.e. glue the bottom of
the first diagram to the top of the second):

▶ All closed loops may be factored out as β.
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The Temperley–Lieb Algebra

Examples

▶ The dimension of TL3(β) is 5:

TL3(β) = span

{
, , , ,

}
.

▶ A demonstration of diagram concatenation:

· = = β .
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The Canonical Assignment

There is a canonical assignment of elements L̂ ∈ TLn(β) to every oriented
link L. The method determining this assignment is not obvious.

Example

If β = t1/2 + t−1/2 and n = 2, the trefoil 31 is assigned

3̂1 =

(
t1/2 −

)3

= (t5/2 − t3/2 + t1/2) − .

Remark

This demonstrates why you should not think of TLn(β) as “just” a
collection of diagrams. Another example: a generic element of TL3(β)
might look like

x =

(
14 +

√
6

5i

)
+ e2πi/7 − 34 .
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Standard Modules

Let ℓ satisfy 0 ≤ ℓ ≤ n and ℓ ≡ n (mod 2).

Definition

The C-vector space spanned by the set of all diagrams of strings from n
points above to ℓ points below forms the standard module W n

ℓ .

Diagrams g ∈ TLn(β) act upon x ∈ W n
ℓ by concatenation from above:

Definition

▶ The trace tr(A) of a square matrix A sums its diagonal entries.

▶ The character χn
ℓ : TLn(β) → C of the standard module W n

ℓ is
defined as χn

ℓ(g) = trW n
ℓ
(g). (Each g ∈ TLn(β) acts as a linear

transformation on the standard module W n
ℓ .)
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Standard Modules

Examples

We have dimW 4
4 = 1, dimW 4

2 = 3, and dimW 4
0 = 2. In particular:

W 4
4 = span

{ }

W 4
2 = span

{
, ,

}

W 4
0 = span

{
,

}
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Standard Modules

Examples (ctd.)

Consider the elements g ∈ TL6(β) and x ∈ W 6
2 :

g = , x =

gx = =
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The Jones Polynomial Revisited

Fix nonzero t ∈ C, and let β = t1/2 + t−1/2. Recall that:

▶ There is a canonical assignment of elements L̂ ∈ TLn(β) to every
oriented link L.

▶ χn
ℓ is the character of the standard module W n

ℓ of TLn(β).

Proposition (Jones, 1987)

The Jones polynomial of an oriented link L is given by

VL(t) = ± tc/2

1 + t

n∑
ℓ=0,

2|(ℓ+n)

 (n+ℓ)/2∑
i=(n−ℓ)/2

t i

χn
ℓ(L̂)

for some c ∈ Z.

What if t = −1?

▶ If n is odd,
∑(n+ℓ)/2

i=(n−ℓ)/2(−1)i = 0, so everything is fine.

▶ If n is even,
∑(n+ℓ)/2

i=(n−ℓ)/2(−1)i = ±1... something strange is going on!
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Fix nonzero t ∈ C, and let β = t1/2 + t−1/2. Recall that:

▶ There is a canonical assignment of elements L̂ ∈ TLn(β) to every
oriented link L.

▶ χn
ℓ is the character of the standard module W n

ℓ of TLn(β).
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for some c ∈ Z.
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Alternating Sum

When n is even, at t = −1 we obtain an identity for β = 0:

χn
0(L̂)− χn

2(L̂) + χn
4(L̂)− · · · ± χn

n(L̂) =
n∑

ℓ=0,
ℓ even

(−1)ℓ/2χn
ℓ(L̂) = 0.

This is not a priori clear.

Overarching Question

Is there a more conceptual way to make sense of the above sum?
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Short Exact Sequences

A little tangent.

Definition

Consider vector spaces U, V , and W equipped with linear maps
f : U → V and g : V → W . The sequence

0 −→ U
f−−→ V

g−−→ W −→ 0

is a short exact sequence if:

▶ f is injective,

▶ g is surjective, and

▶ im f = ker g .

Note that g ◦ f = 0.

Think of U as a “subspace” of V and W as the “quotient space” V /U.
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Short Exact Sequences

Prototypical Example

Let (U,V ,W ) = (Rn,Rn+m,Rm).

Take ι : Rn → Rn+m such that

ι(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸
m 0’s

).

Take π : Rn+m → Rm such that

π(x1, . . . , xn, xn+1, . . . , xn+m) = (xn+1, . . . , xn+m).

Note that ι is injective, π is surjective, and π ◦ ι = 0.

In particular
0 −→ Rn ι−−→ Rn+m π−−→ Rm −→ 0

is a short exact sequence.
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Short Exact Sequences

Consider linear operators a : U → U, b : V → V , and c : W → W that
intertwine with f and g (i.e. f ◦ a = b ◦ f and c ◦ g = g ◦ b):

0 U V W 0

a

f

b

g

c

It turns out that b must have matrix block structure b =

(
a ∗
0 c

)
.

In particular

tr(b) = tr

(
a ∗
0 c

)
= tr(a) + tr(c).

Lemma

If maps a, b, and c intertwine with f and g , then

tr(a)− tr(b) + tr(c) = 0.
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Short Exact Sequences

Recall that χn
ℓ is the trace of an operator (i.e. a character) on W n

ℓ .

Using the Lemma:

Idea

If we can find a short exact sequence of TL4(0)-modules

0 −→ W 4
4 −→ W 4

2 −→ W 4
0 −→ 0,

then the alternating sum for n = 4

χ4
0(L̂)− χ4

2(L̂) + χ4
4(L̂) =

4∑
ℓ=0,
ℓ even

(−1)ℓ/2χ4
ℓ(L̂) = 0

follows immediately!
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When n = 4

Also recall that:

W 4
4 = span

{ }

W 4
2 = span

{
, ,

}

W 4
0 = span

{
,

}
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When n = 4

Consider the maps ϕ4
2 : W

4
4 → W 4

2 and ϕ4
0 : W

4
2 → W 4

0 given by

ϕ4
2

( )
= − +

and

ϕ4
0

( )
= ϕ4

0

( )
= .

We obtain the sequence

0 −→ W 4
4

ϕ4
2−−−→ W 4

2

ϕ4
0−−−→ W 4

0 −→ 0

which we check is exact!

This sheds light on the Overarching Question for n = 4.
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Generalizing

We can generalize:

Definition

Let V1,V2, . . . ,Vn be a collection of vector spaces with linear maps
fi : Vi−1 → Vi . Along with V0 = Vn+1 = 0, the sequence

0
f1−−−→ V1

f2−−−→ V2
f3−−−→ . . .

fn−−−→ Vn
fn+1−−→ 0

is an exact sequence if im fi = ker fi+1 for all 1 ≤ i ≤ n.

One can show by induction an analogous version of the Lemma:

Stronger Lemma

If the Vi form an exact sequence and the linear operators ai : Vi → Vi all
intertwine, then

tr(a1)− tr(a2) + tr(a3)− · · · ± tr(an) =
n∑

i=1

(−1)i−1 tr(ai ) = 0.
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Main Result

Main Theorem (L.)

We have explicit constructed an exact sequence of standard modules of
the Temperley-Lieb algebra TLn(0) at zero:

0
ϕn
n−−−→ W n

n

ϕn
n−2−−−→ W n

n−2

ϕn
n−4−−−→ · · ·

ϕn
2−−−→ W n

2

ϕn
0−−−→ W n

0 −→ 0.

By the Stronger Lemma, the above exact sequence decategorifies to the
alternating sum

χn
0(L̂)− χn

2(L̂) + χn
4(L̂)− · · · ± χn

n(L̂) =
n∑

ℓ=0,
ℓ even

(−1)ℓ/2χn
ℓ(L̂) = 0.

This generalizes the picture from n = 4, and gives a conceptual
explanation of our alternating sum identity.

This resolves the Overarching Question!
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Q & A

THANK YOU!
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Extra! Extra! Read all about it!

In fact, we can explicitly formulate every map in the long exact sequence
on the standards.

Definition

For any 1 ≤ i ≤ ℓ+ 1, let δi ∈ W ℓ+2
ℓ be the element given by:

δi =

1 2 i ℓ + 2

· · · · · · .

Remark

The element xδi ∈ W n
ℓ is exactly the diagram formed by joining the ith

and (i + 1)th leftmost points on the bottom.
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Extra! Extra! Read all about it!

Definition

Let ϕn
ℓ : W

n
ℓ+2 → W n

ℓ be given by

ϕn
ℓ(x) = x

ℓ/2∑
i=0

(−1)iδ2i+1.

Theorem (L.)

The maps ϕn
ℓ : W n

ℓ+2 → W n
ℓ are homomorphisms that constitute a long

exact sequence on the standard TLn(0)-modules given by

0
ϕn
n−→ W n

n

ϕn
n−2−−−→ W n

n−2

ϕn
n−4−−−→ · · ·

ϕn
2−→ W n

2

ϕn
0−→ W n

0 −→ 0.
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Extra! Extra! Read all about it!

▶ For generic β, the standard modules W n
ℓ are precisely the irreducible

modules of TLn(β).

▶ However, when β = t1/2 + t−1/2 and t is a root of unity, some
standard modules cease to be irreducible.

Theorem (Ridout–Saint-Aubin, 2012)

When β = 0, there exist irreducible modules Ln
ℓ for even 2 ≤ ℓ ≤ n for

such that each standard module has composition factors Ln
ℓ and Ln

ℓ+2.

However, the above result only implies the existence of the Ln
ℓ , without

detailing the structure of such modules.
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