On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

The Jones

Temperley–Lieb Algebra

Modules

(4) Exactness

5 Concluding Remarks

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li Mentor: Kenta Suzuki

MIT PRIMES-USA

19 October 2025 MIT PRIMES October Conference

Definitions

▶ A **knot** is an embedding of the circle S^1 in \mathbb{R}^3 .

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

Modules

4 Exactness

(5) Concluding Remarks

Definitions

- ▶ A **knot** is an embedding of the circle S^1 in \mathbb{R}^3 .
- ▶ A link is an embedding of several circles in \mathbb{R}^3 .

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

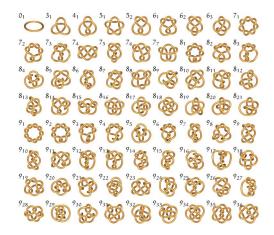
Modules

(4) Exactness

Definitions

- ▶ A knot is an embedding of the circle S^1 in \mathbb{R}^3 .
- ▶ A link is an embedding of several circles in \mathbb{R}^3 .

Link diagrams project knots and links onto two-dimensional space.



On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

3 Characters of the Standard Modules

Exactness

5 Concluding Remarks

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

(2) The Temperley–Lieb Algebra

the Standard Modules

4 Exactness

5 Concluding Remarks

Examples

► Some knots:

(2) The Temperley–Lieb Algebra

the Standard Modules

4 Exactness

5 Concluding Remarks

Examples

► Some knots:

Unknot (0_1) , trefoil (3_1) , figure-eight (4_1) , and cinquefoil (5_1) .

1 The Jones Polynomial

- (2) The Temperley–Lieb Algebra
- Modules
- 4 Exactness
- 5 Concluding Remarks

Examples

► Some knots:

Unknot (0_1) , trefoil (3_1) , figure-eight (4_1) , and cinquefoil (5_1) .

► Some links:

1 The Jones Polynomial

- (2) The Temperley–Lieb Algebra
- Modules
- 4 Exactness

Examples

Some knots:

Unknot (0_1) , trefoil (3_1) , figure-eight (4_1) , and cinquefoil (5_1) .

► Some links:

Hopf link (2_1^2) , Whitehead link (5_1^2) , and Borromean link (6_2^3) .

Link Isotopy

Question

When do two link diagrams determine isotopic links?

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

(2) The Temperley–Lieb Algebra

Modules

(4) Exactness

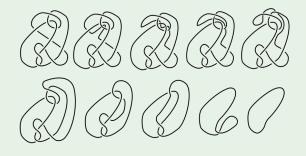
(5) Concluding Remarks

Link Isotopy

Question

When do two link diagrams determine isotopic links?

Example



On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

Modules

4) Exactness

Temperley–Lieb Algebra

Modules

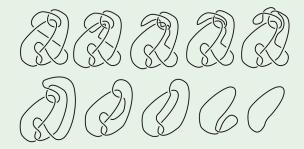
4 Exactness

5 Concluding Remarks

Question

When do two link diagrams determine isotopic links?

Example



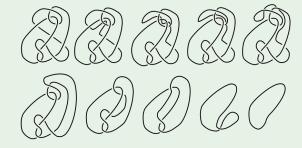
Not a priori clear that the knot in the top left corner is the unknot.

Link Isotopy

Question

When do two link diagrams determine isotopic links?

Example



Not a priori clear that the knot in the top left corner is the unknot.

Try to simplify the (topological) notion of isotopy to be more tractable.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

the Standard Modules

4 Exactness

(5) Concluding Remarks

The Jones Polynomial

Definition

The Jones polynomial $V_L(t) \in \mathbb{Z}[t^{1/2}]$ is defined by the recursive skein relations:

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

Modules

4 Exactness

5 Concluding Remarks

(3) Characters of the Standard Modules

4 Exactness

5 Concluding Remarks

Definition

The **Jones polynomial** $V_L(t) \in \mathbb{Z}[t^{1/2}]$ is defined by the recursive skein relations:

▶ $t^{-1}V_{L_+}(t) - tV_{L_-}(t) = (t^{1/2} - t^{-1/2})V_{L_0}(t)$ for all triples of (oriented) link diagrams (L_+, L_-, L_0) that differ only on a small disk:

2 The Temperley–Lieb Algebra

(3) Characters o the Standard Modules

4 Exactness

5 Concluding Remarks

Definition

The Jones polynomial $V_L(t) \in \mathbb{Z}[t^{1/2}]$ is defined by the recursive skein relations:

▶ $t^{-1}V_{L_+}(t) - tV_{L_-}(t) = (t^{1/2} - t^{-1/2})V_{L_0}(t)$ for all triples of (oriented) link diagrams (L_+, L_-, L_0) that differ only on a small disk:

 $ightharpoonup V_{0_1}(t)=1$, where 0_1 is the unknot.

3) Characters of the Standard Modules

4 Exactness

5 Concluding Remarks

Definition

The **Jones polynomial** $V_L(t) \in \mathbb{Z}[t^{1/2}]$ is defined by the recursive skein relations:

▶ $t^{-1}V_{L_+}(t) - tV_{L_-}(t) = (t^{1/2} - t^{-1/2})V_{L_0}(t)$ for all triples of (oriented) link diagrams (L_+, L_-, L_0) that differ only on a small disk:

 $V_{0_1}(t) = 1$, where 0_1 is the unknot.

Theorem (Jones, 1985)

The Jones polynomial is a well-defined polynomial of (oriented) links. Furthermore, it is **invariant** under isotopy.

The Jones Polynomial

Example

The following is a skein triple:

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

Modules

4) Exactness

Modules

4 Exactness

Example

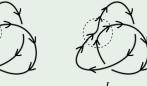
The following is a skein triple:

Observe that $(L_+, L_-, L_0) = (0_1, 3_1, 2_1^2)$. Thus

$$t^{-1}V_{0_1}(t) - tV_{3_1}(t) = (t^{1/2} - t^{-1/2})V_{2_1^2}(t).$$

Example

The following is a skein triple:



Observe that $(L_+, L_-, L_0) = (0_1, 3_1, 2_1^2)$. Thus

$$t^{-1}V_{0_1}(t) - tV_{3_1}(t) = (t^{1/2} - t^{-1/2})V_{2_1^2}(t).$$

Applying further recursions, can compute that $V_{3_1}(t) = -t^4 + t^3 + t$.

Modules

4) Exactness

Example

The following is a skein triple:

Observe that $(L_+, L_-, L_0) = (0_1, 3_1, 2_1^2)$. Thus

$$t^{-1}V_{0_1}(t) - tV_{3_1}(t) = (t^{1/2} - t^{-1/2})V_{2_1^2}(t).$$

Applying further recursions, can compute that $V_{3_1}(t) = -t^4 + t^3 + t$.

Jones originally constructed the polynomial using representation theory.

The Temperley-Lieb Algebra

Fix an index $n \in \mathbb{N}$ and a parameter $\beta \in \mathbb{C}$.

On a Curious
Observation on the
Jones Polynomial,
And How to
Categorify It

Eddy Li

1 The Jones Polynomial

2 The Temperley–Lieb Algebra

the Standard Modules

(4) Exactiless

The Temperley-Lieb Algebra

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2 The Temperley–Lieb Algebra

Modules

5 Concluding

Fix an index $n \in \mathbb{N}$ and a parameter $\beta \in \mathbb{C}$.

Definition

The **Temperley–Lieb algebra** $\mathsf{TL}_n(\beta)$ at β is spanned by all diagrams of strings from n points above to n points below, where:

the Standard Modules

4 Exactness

Eddy Li

Fix an index $n \in \mathbb{N}$ and a parameter $\beta \in \mathbb{C}$.

Definition

The **Temperley–Lieb algebra** $\mathsf{TL}_n(\beta)$ at β is spanned by all diagrams of strings from n points above to n points below, where:

▶ Diagrams g and h multiply by concatenation (i.e. glue the bottom of the first diagram to the top of the second):

Fix an index $n \in \mathbb{N}$ and a parameter $\beta \in \mathbb{C}$.

Definition

The **Temperley–Lieb algebra** $\mathsf{TL}_n(\beta)$ at β is spanned by all diagrams of strings from n points above to n points below, where:

Diagrams g and h multiply by concatenation (i.e. glue the bottom of the first diagram to the top of the second):

 \triangleright All closed loops may be factored out as β .

The Temperley-Lieb Algebra

Examples

▶ The dimension of $TL_3(\beta)$ is 5:

$$\mathsf{TL}_3(eta) = \mathsf{span} \left\{ igcup_{,} igc$$

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2 The Temperley–Lieb

the Standard Modules

Algebra

4 Exactness

Modules

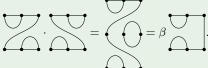
5 Concluding Remarks

Examples

▶ The dimension of $TL_3(\beta)$ is 5:

► A demonstration of diagram concatenation:

$$g \cdot h = g$$



The Canonical Assignment

There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link L. The method determining this assignment is not obvious.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones

2 The Temperley–Lieb Algebra

Modules

5 Concluding

There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link L. The method determining this assignment is not obvious.

Example

If $\beta = t^{1/2} + t^{-1/2}$ and n = 2, the trefoil 3_1 is assigned

$$\widehat{3}_1 = \left(t^{1/2} \bigcirc - \bigcirc \right)^3 = (t^{5/2} - t^{3/2} + t^{1/2}) \bigcirc - \bigcirc .$$

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones

2 The Temperley–Lieb Algebra

- the Standard Modules
- (5) Concluding

There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link L. The method determining this assignment is not obvious.

Example

If $\beta = t^{1/2} + t^{-1/2}$ and n = 2, the trefoil 3_1 is assigned

$$\widehat{3}_1 = \left(t^{1/2} \bigcirc - \bigcirc \right)^3 = \left(t^{5/2} - t^{3/2} + t^{1/2}\right) \bigcirc - \bigcirc .$$

Remark

This demonstrates why you should not think of $\mathsf{TL}_n(\beta)$ as "just" a collection of diagrams. Another example: a generic element of $\mathsf{TL}_3(\beta)$ might look like

$$x = \left(\frac{14 + \sqrt{6}}{5i}\right) + e^{2\pi i/7} - 34$$

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones

2 The Temperley–Lieb Algebra

- Modules
- 4 Exactness

Standard Modules

Let ℓ satisfy $0 \le \ell \le n$ and $\ell \equiv n \pmod{2}$.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2 The Temperley-Lieb Algebra

Modules

4 Exactness

Standard Modules

Let ℓ satisfy $0 \le \ell \le n$ and $\ell \equiv n \pmod{2}$.

Definition

The $\mathbb C$ -vector space spanned by the set of all diagrams of strings from n points above to ℓ points below forms the **standard module** W_ℓ^n .

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2 The Temperley–Lieb Algebra

Modules

5 Concluding

the Standard Modules

5 Concluding

Let ℓ satisfy $0 \le \ell \le n$ and $\ell \equiv n \pmod{2}$.

Definition

The \mathbb{C} -vector space spanned by the set of all diagrams of strings from n points above to ℓ points below forms the standard module W_{ℓ}^n .

Diagrams $g \in \mathsf{TL}_n(\beta)$ act upon $x \in W_\ell^n$ by concatenation from above:

$$g \cdot x = g$$

(3) Characters of the Standard Modules

4 Exactness

5 Concluding Remarks

Let ℓ satisfy $0 \le \ell \le n$ and $\ell \equiv n \pmod{2}$.

Definition

The \mathbb{C} -vector space spanned by the set of all diagrams of strings from n points above to ℓ points below forms the **standard module** W_{ℓ}^n .

Diagrams $g \in \mathsf{TL}_n(\beta)$ act upon $x \in W^n_\ell$ by concatenation from above:

$$g \cdot x = g$$

Definition

- ightharpoonup The trace tr(A) of a square matrix A sums its diagonal entries.
- ► The character $\chi_\ell^n \colon \mathsf{TL}_n(\beta) \to \mathbb{C}$ of the standard module W_ℓ^n is defined as $\chi_\ell^n(g) = \mathsf{tr}_{W_\ell^n}(g)$. (Each $g \in \mathsf{TL}_n(\beta)$ acts as a linear transformation on the standard module W_ℓ^n .)

Standard Modules

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

Polynomial

2 The Temperley–Lieb Algebra

Modules

5 Concluding

Examples

We have dim $W_4^4=1$, dim $W_2^4=3$, and dim $W_0^4=2$. In particular:

Temperley-Lieb Algebra

We have dim $W_4^4 = 1$, dim $W_2^4 = 3$, and dim $W_0^4 = 2$. In particular:

$$W_4^4 = \operatorname{span}\left\{ \begin{array}{|c|c|} \hline & & \\ \hline & & \\ \hline & & \\ \end{array} \right\}$$

$$W_2^4 = \operatorname{span}\left\{ \begin{array}{|c|c|} \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline$$

Standard Modules

Examples (ctd.)

Consider the elements $g \in \mathsf{TL}_6(\beta)$ and $x \in W_2^6$:

x =

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2 The Temperley–Lieb Algebra

the Standard Modules

4 Exactness

5 Concluding Remarks

Standard Modules

Examples (ctd.)

Consider the elements $g \in \mathsf{TL}_6(\beta)$ and $x \in W_2^6$:

$$g =$$
 , $x =$

$$g \cdot x = g$$

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2 The Temperley–Lieb

the Standard Modules

Algebra

4 Exactness

The Jones Polynomial Revisited

Fix nonzero $t \in \mathbb{C}$, and let $\beta = t^{1/2} + t^{-1/2}$. Recall that:

▶ There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link L.

On a Curious
Observation on the
Jones Polynomial,
And How to
Categorify It

Eddy Li

1 The Jones Polynomial

(2) The
Temperley–Lieb
Algebra
(3) Characters of

the Standard Modules

(5) Concluding

The Jones Polynomial Revisited

Fix nonzero $t \in \mathbb{C}$, and let $\beta = t^{1/2} + t^{-1/2}$. Recall that:

- ▶ There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link L.
- \triangleright χ_{ℓ}^{n} is the character of the standard module W_{ℓ}^{n} of $\mathsf{TL}_{n}(\beta)$.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones Polynomial

(2) The Temperley–Lieb Algebra (3) Characters of

the Standard Modules

4 Exactiless

Fix nonzero $t \in \mathbb{C}$, and let $\beta = t^{1/2} + t^{-1/2}$. Recall that:

- ▶ There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link L.
- ▶ χ_{ℓ}^{n} is the character of the standard module W_{ℓ}^{n} of $\mathsf{TL}_{n}(\beta)$.

Proposition (Jones, 1987)

The Jones polynomial of an oriented link L is given by

$$V_L(t) = \pm rac{t^{c/2}}{1+t} \sum_{\substack{\ell=0,\2|(\ell+n)}}^n \left(\sum_{i=(n-\ell)/2}^{(n+\ell)/2} t^i
ight) \chi_\ell^n(\hat{L})$$

for some $c \in \mathbb{Z}$.

On a Curious
Observation on the
Jones Polynomial,
And How to
Categorify It

Eddy Li

1) The Jones

Temperley–Lieb Algebra

(3) Characters of

the Standard Modules

4 Exactness

Fix nonzero $t \in \mathbb{C}$, and let $\beta = t^{1/2} + t^{-1/2}$. Recall that:

- ► There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link L.
- $\triangleright \chi_{\ell}^{n}$ is the character of the standard module W_{ℓ}^{n} of $\mathsf{TL}_{n}(\beta)$.

Proposition (Jones, 1987)

The Jones polynomial of an oriented link L is given by

$$V_L(t) = \pm rac{t^{c/2}}{1+t} \sum_{\substack{\ell=0,\2|(\ell+n)}}^n \left(\sum_{i=(n-\ell)/2}^{(n+\ell)/2} t^i
ight) \chi_\ell^n(\hat{L})$$

for some $c \in \mathbb{Z}$.

What if t = -1?

On a Curious
Observation on the
Jones Polynomial,
And How to
Categorify It

Eddy Li

1) The Jones Polynomial

(2) The
Temperley–Lieb
Algebra
(3) Characters of

the Standard Modules

4 Exactness

- ▶ There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link L.
- χ_{ℓ}^n is the character of the standard module W_{ℓ}^n of $\mathsf{TL}_n(\beta)$.

Proposition (Jones, 1987)

The Jones polynomial of an oriented link L is given by

$$V_L(t) = \pm rac{t^{c/2}}{1+t} \sum_{\substack{\ell=0,\ 2|(\ell+n)}}^n \left(\sum_{i=(n-\ell)/2}^{(n+\ell)/2} t^i
ight) \chi_\ell^n(\hat{L})$$

for some $c \in \mathbb{Z}$.

What if t = -1?

▶ If *n* is odd, $\sum_{i=(n-\ell)/2}^{(n+\ell)/2} (-1)^i = 0$, so everything is fine.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones Polynomial

Temperley–Lieb
Algebra

(3) Characters of

Modules

(4) Exactness

Fix nonzero $t \in \mathbb{C}$, and let $\beta = t^{1/2} + t^{-1/2}$. Recall that:

- ▶ There is a canonical assignment of elements $\hat{L} \in \mathsf{TL}_n(\beta)$ to every oriented link I
- $\blacktriangleright \chi_{\ell}^n$ is the character of the standard module W_{ℓ}^n of $\mathsf{TL}_n(\beta)$.

Proposition (Jones, 1987)

The Jones polynomial of an oriented link L is given by

$$V_L(t) = \pm rac{t^{c/2}}{1+t} \sum_{\substack{\ell=0,\2|(\ell+n)}}^n \left(\sum_{i=(n-\ell)/2}^{(n+\ell)/2} t^i
ight) \chi_\ell^n(\hat{L})$$

for some $c \in \mathbb{Z}$.

What if t = -1?

- ▶ If *n* is odd, $\sum_{i=(n-\ell)/2}^{(n+\ell)/2} (-1)^i = 0$, so everything is fine.
- ▶ If *n* is even, $\sum_{i=(n-\ell)/2}^{(n+\ell)/2} (-1)^i = \pm 1...$ something strange is going on!

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones Polynomial

Temperley–Lieb
Algebra

(3) Characters of

Modules

(4) Exactness

Alternating Sum

When n is even, at t=-1 we obtain an identity for $\beta=0$:

$$\chi_0^n(\hat{L}) - \chi_2^n(\hat{L}) + \chi_4^n(\hat{L}) - \dots \pm \chi_n^n(\hat{L}) = \sum_{\substack{\ell=0,\\ \ell \text{ even}}}^n (-1)^{\ell/2} \chi_\ell^n(\hat{L}) = 0.$$

On a Curious
Observation on the
Jones Polynomial,
And How to
Categorify It

Eddy Li

1 The Jones Polynomial

Temperley–Lieb Algebra

(3) Characters of

the Standard Modules

5 Concluding

Alternating Sum

Observation on the Jones Polynomial, And How to Categorify It

On a Curious

1 The Jones

Algebra

Characters of the Standard

Modules

5 Concluding

When *n* is even, at t = -1 we obtain an identity for $\beta = 0$:

$$\chi_0^n(\hat{L}) - \chi_2^n(\hat{L}) + \chi_4^n(\hat{L}) - \dots \pm \chi_n^n(\hat{L}) = \sum_{\substack{\ell = 0, \\ \ell \text{ even}}}^n (-1)^{\ell/2} \chi_\ell^n(\hat{L}) = 0.$$

This is not a priori clear.

Alternating Sum

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

Algebra

3 Characters of the Standard

Modules

5 Concluding Remarks

When *n* is even, at t = -1 we obtain an identity for $\beta = 0$:

$$\chi_0^n(\hat{L}) - \chi_2^n(\hat{L}) + \chi_4^n(\hat{L}) - \dots \pm \chi_n^n(\hat{L}) = \sum_{\substack{\ell=0, \\ \ell \text{ even}}}^n (-1)^{\ell/2} \chi_\ell^n(\hat{L}) = 0.$$

This is not a priori clear.

Overarching Question

Is there a more conceptual way to make sense of the above sum?

A little tangent.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2 The Temperley–Lieb Algebra

Modules

4 Exactness

A little tangent.

Definition

Consider vector spaces U, V, and W equipped with linear maps $f\colon U\to V$ and $g\colon V\to W$. The sequence

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

is a short exact sequence if:

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones

(2) The Temperley–Lieb Algebra

Modules

4 Exactness

A little tangent.

Definition

Consider vector spaces U, V, and W equipped with linear maps $f \colon U \to V$ and $g \colon V \to W$. The sequence

$$0\longrightarrow U\stackrel{f}{\longrightarrow}V\stackrel{g}{\longrightarrow}W\longrightarrow 0$$

is a short exact sequence if:

▶ *f* is injective,

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

The Jones

(2) The Temperley–Lieb Algebra

Modules

4 Exactness

A little tangent.

Definition

Consider vector spaces U, V, and W equipped with linear maps $f \colon U \to V$ and $g \colon V \to W$. The sequence

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

is a short exact sequence if:

- ▶ *f* is injective,
- ▶ g is surjective, and

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones Polynomial

2 The Temperley–Lieb

the Standard Modules

4 Exactness

Temperley–Lieb Algebra

Modules

(4) Exactness

4 Exactness

A little tangent.

Definition

Consider vector spaces U, V, and W equipped with linear maps $f\colon U\to V$ and $g\colon V\to W$. The sequence

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

is a short exact sequence if:

- ▶ *f* is injective,
- ▶ g is surjective, and
- ightharpoonup im $f = \ker g$.

Modules

4 Exactness

A little tangent.

Definition

Consider vector spaces U, V, and W equipped with linear maps $f\colon U\to V$ and $g\colon V\to W$. The sequence

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

is a short exact sequence if:

- ▶ *f* is injective,
- ▶ g is surjective, and
- ightharpoonup im $f = \ker g$.

Note that $g \circ f = 0$.

4 Exactness

A little tangent.

Definition

Consider vector spaces U, V, and W equipped with linear maps $f: U \to V$ and $g: V \to W$. The sequence

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

is a short exact sequence if:

- f is injective,
- g is surjective, and
- ightharpoonup im $f = \ker g$.

Note that $g \circ f = 0$.

Think of U as a "subspace" of V and W as the "quotient space" V/U.

Prototypical Example

Let
$$(U, V, W) = (\mathbb{R}^n, \mathbb{R}^{n+m}, \mathbb{R}^m)$$
.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones Polynomial

2) The Temperley–Lieb Algebra

Modules

(4) Exactness

5 Concluding

(2) The Temperley–Lieb Algebra

Modules

4 Exactness

5 Concluding

Prototypical Example

Let $(U, V, W) = (\mathbb{R}^n, \mathbb{R}^{n+m}, \mathbb{R}^m)$.

Take $\iota:\mathbb{R}^n o \mathbb{R}^{n+m}$ such that

$$\iota(x_1,\ldots,x_n)=(x_1,\ldots,x_n,\underbrace{0,\ldots,0}_{m\ 0's}).$$

4 Exactness

Eddv Li

Prototypical Example

Let $(U, V, W) = (\mathbb{R}^n, \mathbb{R}^{n+m}, \mathbb{R}^m)$.

Take $\iota : \mathbb{R}^n \to \mathbb{R}^{n+m}$ such that

$$\iota(x_1,\ldots,x_n)=(x_1,\ldots,x_n,\underbrace{0,\ldots,0}_{m\ 0'c}).$$

Take $\pi: \mathbb{R}^{n+m} \to \mathbb{R}^m$ such that

$$\pi(x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})=(x_{n+1},\ldots,x_{n+m}).$$

Modules

4 Exactness

Prototypical Example

Let $(U, V, W) = (\mathbb{R}^n, \mathbb{R}^{n+m}, \mathbb{R}^m)$.

Take $\iota: \mathbb{R}^n \to \mathbb{R}^{n+m}$ such that

$$\iota(x_1,\ldots,x_n)=(x_1,\ldots,x_n,\underbrace{0,\ldots,0}_{m\ 0's}).$$

Take $\pi: \mathbb{R}^{n+m} \to \mathbb{R}^m$ such that

$$\pi(x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})=(x_{n+1},\ldots,x_{n+m}).$$

Note that ι is injective, π is surjective, and $\pi \circ \iota = 0$.

Modules

4 Exactness

Prototypical Example

Let $(U, V, W) = (\mathbb{R}^n, \mathbb{R}^{n+m}, \mathbb{R}^m)$.

Take $\iota : \mathbb{R}^n \to \mathbb{R}^{n+m}$ such that

$$\iota(x_1,\ldots,x_n)=(x_1,\ldots,x_n,\underbrace{0,\ldots,0}_{m\ 0's}).$$

Take $\pi: \mathbb{R}^{n+m} \to \mathbb{R}^m$ such that

$$\pi(x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})=(x_{n+1},\ldots,x_{n+m}).$$

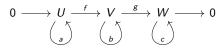
Note that ι is injective, π is surjective, and $\pi \circ \iota = 0$.

In particular

$$0 \longrightarrow \mathbb{R}^n \xrightarrow{\iota} \mathbb{R}^{n+m} \xrightarrow{\pi} \mathbb{R}^m \longrightarrow 0$$

is a short exact sequence.

Consider linear operators $a\colon U\to U,\ b\colon V\to V,\ \text{and}\ c\colon W\to W$ that intertwine with f and g (i.e. $f\circ a=b\circ f$ and $c\circ g=g\circ b$):



On a Curious Observation on the Jones Polynomial, And How to Categorify It

- 1 The Jones Polynomial
- Temperley–Lieb Algebra
- Modules

 A Exactness
- (5) Concluding

Consider linear operators $a\colon U\to U,\ b\colon V\to V,\ \text{and}\ c\colon W\to W$ that intertwine with f and g (i.e. $f\circ a=b\circ f$ and $c\circ g=g\circ b$):

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

It turns out that b must have matrix block structure $b = \begin{pmatrix} a & * \\ 0 & c \end{pmatrix}$.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

- 1 The Jones Polynomial
- (2) The Temperley–Lieb Algebra
- Modules
- 4 Exactness

Consider linear operators $a\colon U\to U,\ b\colon V\to V,\ \text{and}\ c\colon W\to W$ that intertwine with f and g (i.e. $f\circ a=b\circ f$ and $c\circ g=g\circ b$):

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad$$

It turns out that b must have matrix block structure $b = \begin{pmatrix} a & * \\ 0 & c \end{pmatrix}$. In particular

$$\operatorname{tr}(b) = \operatorname{tr}\begin{pmatrix} a & * \\ 0 & c \end{pmatrix} = \operatorname{tr}(a) + \operatorname{tr}(c).$$

On a Curious
Observation on the
Jones Polynomial,
And How to
Categorify It

- 1 The Jones Polynomial
- (2) The Temperley–Lieb Algebra
- Modules
- 4 Exactness
 5 Concluding

Consider linear operators $a\colon U\to U,\ b\colon V\to V,\ \text{and}\ c\colon W\to W$ that intertwine with f and g (i.e. $f\circ a=b\circ f$ and $c\circ g=g\circ b$):

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0$$

$$\downarrow f \qquad \downarrow f \qquad \downarrow$$

It turns out that b must have matrix block structure $b = \begin{pmatrix} a & * \\ 0 & c \end{pmatrix}$. In particular

$$\operatorname{tr}(b) = \operatorname{tr}\begin{pmatrix} a & * \\ 0 & c \end{pmatrix} = \operatorname{tr}(a) + \operatorname{tr}(c).$$

Lemma

If maps a, b, and c intertwine with f and g, then

$$\operatorname{tr}(a) - \operatorname{tr}(b) + \operatorname{tr}(c) = 0.$$

On a Curious
Observation on the
Jones Polynomial,
And How to
Categorify It

Eddy Li

1 The Jones Polynomial

Temperley–Lieb Algebra

Modules

(4) Exactness

4 Exactless

Recall that χ_ℓ^n is the trace of an operator (i.e. a character) on W_ℓ^n .

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

(2) The Temperley–Lieb Algebra

Modules

(4) Exactness

(5) Concluding

Recall that χ_ℓ^n is the trace of an operator (i.e. a character) on W_ℓ^n .

Using the Lemma:

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

Modules

(4) Exactness

© Canadadia

Temperley–Lieb Algebra

Modules

(4) Exactness

(5) Concluding

Recall that χ_{ℓ}^n is the trace of an operator (i.e. a character) on W_{ℓ}^n .

Using the Lemma:

Idea

If we can find a short exact sequence of $\mathsf{TL}_4(0)$ -modules

$$0 \longrightarrow W_4^4 \longrightarrow W_2^4 \longrightarrow W_0^4 \longrightarrow 0,$$

then the alternating sum for n = 4

$$\chi_0^4(\hat{\mathcal{L}}) - \chi_2^4(\hat{\mathcal{L}}) + \chi_4^4(\hat{\mathcal{L}}) = \sum_{\substack{\ell = 0, \\ \ell \text{ even}}}^4 (-1)^{\ell/2} \chi_\ell^4(\hat{\mathcal{L}}) = 0$$

follows immediately!

When
$$n = 4$$

Also recall that:

$$W_4^4 = \operatorname{span} \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$$
 $W_2^4 = \operatorname{span} \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$ $W_0^4 = \operatorname{span} \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$

On a Curious Observation on the Jones Polynomial, And How to Categorify It

- 1 The Jones Polynomial
- (2) The Temperley–Lieb Algebra
- Modules
- 4 Exactness
- 5 Concluding Remarks

When n = 4

Consider the maps $\phi_2^4\colon W_4^4 \to W_2^4$ and $\phi_0^4\colon W_2^4 \to W_0^4$ given by

and

$$\phi_0^4\left(\begin{array}{|c|c|} \hline \end{array}\right) = \phi_0^4\left(\begin{array}{|c|c|} \hline \end{array}\right) = \begin{array}{|c|c|} \hline \end{array}$$

We obtain the sequence

$$0 \longrightarrow W_4^4 \xrightarrow{\phi_2^4} W_2^4 \xrightarrow{\phi_0^4} W_0^4 \longrightarrow 0$$

which we check is exact!

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones olynomial

2) The Temperley–Lieb Algebra

Modules

(5) Concluding Remarks

When n = 4

Consider the maps $\phi_2^4\colon W_4^4 \to W_2^4$ and $\phi_0^4\colon W_2^4 \to W_0^4$ given by

and

$$\phi_0^4\left(\begin{array}{|c|c|} \hline \end{array}\right) = \phi_0^4\left(\begin{array}{|c|c|} \hline \end{array}\right) = \begin{array}{|c|c|} \hline \end{array}$$

We obtain the sequence

$$0 \longrightarrow W_4^4 \stackrel{\phi_2^4}{\longrightarrow} W_2^4 \stackrel{\phi_0^4}{\longrightarrow} W_0^4 \longrightarrow 0$$

which we check is exact!

This sheds light on the Overarching Question for n = 4.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones

2) The Temperley–Lieb Algebra

Modules

4 Exactness

Generalizing

We can generalize:

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

(2) The Temperley–Lieb Algebra

Modules

4 Exactness

Remarks

We can generalize:

Definition

Let V_1, V_2, \ldots, V_n be a collection of vector spaces with linear maps $f_i \colon V_{i-1} \to V_i$. Along with $V_0 = V_{n+1} = 0$, the sequence

$$0 \xrightarrow{f_1} V_1 \xrightarrow{f_2} V_2 \xrightarrow{f_3} \dots \xrightarrow{f_n} V_n \xrightarrow{f_{n+1}} 0$$

is an **exact sequence** if im $f_i = \ker f_{i+1}$ for all $1 \le i \le n$.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones Polynomial

(2) The Temperley–Lieb Algebra

Modules

4 Exactness

Definition

Let V_1, V_2, \ldots, V_n be a collection of vector spaces with linear maps $f_i \colon V_{i-1} \to V_i$. Along with $V_0 = V_{n+1} = 0$, the sequence

$$0 \xrightarrow{f_1} V_1 \xrightarrow{f_2} V_2 \xrightarrow{f_3} \dots \xrightarrow{f_n} V_n \xrightarrow{f_{n+1}} 0$$

is an exact sequence if im $f_i = \ker f_{i+1}$ for all $1 \le i \le n$.

One can show by induction an analogous version of the Lemma:

On a Curious Observation on the Jones Polynomial, And How to Categorify It

- 1) The Jones Polynomial
- Temperley–Lieb Algebra
- Modules
- 4 Exactness
- 5 Concluding Remarks

On a Curious

Observation on the

Modules

4 Exactness

We can generalize:

Definition

Let V_1, V_2, \ldots, V_n be a collection of vector spaces with linear maps $f_i \colon V_{i-1} \to V_i$. Along with $V_0 = V_{n+1} = 0$, the sequence

$$0 \xrightarrow{f_1} V_1 \xrightarrow{f_2} V_2 \xrightarrow{f_3} \ldots \xrightarrow{f_n} V_n \xrightarrow{f_{n+1}} 0$$

is an exact sequence if im $f_i = \ker f_{i+1}$ for all $1 \le i \le n$.

One can show by induction an analogous version of the Lemma:

Stronger Lemma

If the V_i form an exact sequence and the linear operators $a_i \colon V_i \to V_i$ all intertwine, then

$$\operatorname{tr}(a_1) - \operatorname{tr}(a_2) + \operatorname{tr}(a_3) - \cdots \pm \operatorname{tr}(a_n) = \sum_{i=1}^n (-1)^{i-1} \operatorname{tr}(a_i) = 0.$$

Main Result

Main Theorem (L.)

We have explicit constructed an exact sequence of standard modules of the Temperley-Lieb algebra $\mathsf{TL}_n(0)$ at zero:

$$0 \xrightarrow{\phi_n^n} W_n^n \xrightarrow{\phi_{n-2}^n} W_{n-2}^n \xrightarrow{\phi_{n-4}^n} \cdots \xrightarrow{\phi_2^n} W_2^n \xrightarrow{\phi_0^n} W_0^n \longrightarrow 0.$$

On a Curious Observation on the Jones Polynomial, And How to Categorify It

- 1) The Jones Polynomial
- Temperley–Lieb Algebra
- Modules
- 4 Exactness

We have **explicit constructed** an exact sequence of standard modules of the Temperley-Lieb algebra $TL_n(0)$ at zero:

$$0 \xrightarrow{\phi_n^n} W_n^n \xrightarrow{\phi_{n-2}^n} W_{n-2}^n \xrightarrow{\phi_{n-4}^n} \cdots \xrightarrow{\phi_2^n} W_2^n \xrightarrow{\phi_0^n} W_0^n \longrightarrow 0.$$

By the Stronger Lemma, the above exact sequence decategorifies to the alternating sum $\ensuremath{\mathsf{S}}$

$$\chi_0^n(\hat{L}) - \chi_2^n(\hat{L}) + \chi_4^n(\hat{L}) - \dots \pm \chi_n^n(\hat{L}) = \sum_{\substack{\ell=0, \\ \ell \text{ order}}}^n (-1)^{\ell/2} \chi_\ell^n(\hat{L}) = 0.$$

On a Curious
Observation on the
Jones Polynomial,
And How to
Categorify It

- 1) The Jones Polynomial
- Temperley–Lieb Algebra
- Modules
- 4 Exactness
- (5) Concluding Remarks

Modules

4 Exactness

5 Concluding Remarks

Main Theorem (L.)

We have explicit constructed an exact sequence of standard modules of the Temperley-Lieb algebra $TL_n(0)$ at zero:

$$0 \xrightarrow{\phi_n^n} W_n^n \xrightarrow{\phi_{n-2}^n} W_{n-2}^n \xrightarrow{\phi_{n-4}^n} \cdots \xrightarrow{\phi_2^n} W_2^n \xrightarrow{\phi_0^n} W_0^n \longrightarrow 0.$$

By the Stronger Lemma, the above exact sequence decategorifies to the alternating sum

$$\chi_0^n(\hat{L}) - \chi_2^n(\hat{L}) + \chi_4^n(\hat{L}) - \dots \pm \chi_n^n(\hat{L}) = \sum_{\substack{\ell = 0, \\ \ell \text{ even}}}^n (-1)^{\ell/2} \chi_\ell^n(\hat{L}) = 0.$$

This generalizes the picture from n=4, and gives a conceptual explanation of our alternating sum identity.

Modules

4 Exactness

5 Concluding Remarks

Main Theorem (L.)

We have explicit constructed an exact sequence of standard modules of the Temperley-Lieb algebra $TL_n(0)$ at zero:

$$0 \xrightarrow{-\phi_n^n} W_n^n \xrightarrow{\phi_{n-2}^n} W_{n-2}^n \xrightarrow{\phi_{n-4}^n} \cdots \xrightarrow{-\phi_2^n} W_2^n \xrightarrow{-\phi_0^n} W_0^n \longrightarrow 0.$$

By the Stronger Lemma, the above exact sequence decategorifies to the alternating sum

$$\chi_0^n(\hat{L}) - \chi_2^n(\hat{L}) + \chi_4^n(\hat{L}) - \dots \pm \chi_n^n(\hat{L}) = \sum_{\substack{\ell=0,\\ \ell \text{ even}}}^n (-1)^{\ell/2} \chi_\ell^n(\hat{L}) = 0.$$

This generalizes the picture from n=4, and gives a conceptual explanation of our alternating sum identity.

This resolves the Overarching Question!

Acknowledgments

▶ I am grateful to my mentor, Kenta Suzuki, for introducing me to knot theory and representation theory as well as his invaluable guidance, assistance, and support throughout the research and writing phases.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

(2) The Temperley–Lieb Algebra

the Standard Modules

(4) Exactness

5 Concluding

Acknowledgments

writing phases.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

- The Jones
- Temperley-Lieb Algebra
- Modules
- 5 Concluding
- We also extend our appreciation to the MIT PRIMES-USA program and its organizers—Dr. Slava Gerovitch, Dr. Tanya Khovanova, and Prof. Pavel Etingof—for creating this research opportunity and providing us with resources and opportunities that would otherwise have been unimaginable.

► I am grateful to my mentor, Kenta Suzuki, for introducing me to knot theory and representation theory as well as his invaluable guidance, assistance, and support throughout the research and

References

- Elias, B., Hogancamp, M. (2017). Categorical diagonalization of full twists. arXiv:1801.00191.
- James, G., Mathas, A. (1995). A q-analogue of the Jantzen-Schaper theorem. *Proc. Lond. Math. Soc.* 74, 241–274.
- Jones, V. F. R. (1985). A polynomial invariant for knots via von Neumann algebras. *Bull. Amer. Math. Soc.* 12, 103–111.
- Jones, V. F. R. (1987). Hecke algebra representations of braid groups and link polynomials. *Ann. Math.* 126, 335–388.
- Ridout, D., Saint-Aubin, Y. (2012). Standard modules, induction and the structure of the Temperley-Lieb algebra. *Adv. Theor. Math. Phys.* 18, 957–1041.
- Temperley, H. N. V., Lieb, E. H. (1971). Relations between the "percolation" and "coloring" problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the "percolation" problem. *Proc. Roy. Soc. London Ser. A.* 322, 251–280.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

- 1) The Jones Polynomial
- (2) The Temperley–Lieb Algebra
- Modules
- 4 Exactness
- 5 Concluding Remarks

Q & A

THANK YOU!

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

2) The Temperley–Lieb Algebra

Modules

4 Exactness

5 Concluding Remarks

Extra! Extra! Read all about it!

In fact, we can explicitly formulate every map in the long exact sequence on the standards.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

The Jones olynomial

2) The Temperley–Lieb Algebra

Modules

5 Concluding Remarks

Modules

5 Concluding

In fact, we can explicitly formulate every map in the long exact sequence on the standards.

Definition

For any $1 \le i \le \ell+1$, let $\delta_i \in W_\ell^{\ell+2}$ be the element given by:

Modules

4 Exactness

5 Concluding
Remarks

In fact, we can explicitly formulate every map in the long exact sequence on the standards.

Definition

For any $1 \le i \le \ell+1$, let $\delta_i \in W_\ell^{\ell+2}$ be the element given by:

Remark

The element $x\delta_i \in W_\ell^n$ is exactly the diagram formed by joining the ith and (i+1)th leftmost points on the bottom.

Modules

4 Exactness

5 Concluding
Remarks

In fact, we can explicitly formulate every map in the long exact sequence on the standards.

Definition

For any $1 \le i \le \ell+1$, let $\delta_i \in W_\ell^{\ell+2}$ be the element given by:

Remark

The element $x\delta_i \in W_\ell^n$ is exactly the diagram formed by joining the ith and (i+1)th leftmost points on the bottom.

Extra! Extra! Read all about it!

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1 The Jones Polynomial

Definition

Let $\phi_\ell^n \colon W_{\ell+2}^n \to W_\ell^n$ be given by

$$\phi_{\ell}^{n}(x) = x \sum_{i=0}^{\ell/2} (-1)^{i} \delta_{2i+1}.$$

the Standard Modules

4 Exactness

5 Concluding Remarks

Definition

Let $\phi_\ell^n \colon W_{\ell+2}^n o W_\ell^n$ be given by

$$\phi_{\ell}^{n}(x) = x \sum_{i=0}^{\ell/2} (-1)^{i} \delta_{2i+1}.$$

Theorem (L.)

The maps $\phi_\ell^n:W_{\ell+2}^n\to W_\ell^n$ are homomorphisms that constitute a long exact sequence on the standard $\mathsf{TL}_n(0)$ -modules given by

$$0 \xrightarrow{\phi_n^n} W_n^n \xrightarrow{\phi_{n-2}^n} W_{n-2}^n \xrightarrow{\phi_{n-4}^n} \cdots \xrightarrow{\phi_2^n} W_2^n \xrightarrow{\phi_0^n} W_0^n \longrightarrow 0.$$

Extra! Extra! Read all about it!

▶ For generic β , the standard modules W_{ℓ}^n are precisely the irreducible modules of $\mathsf{TL}_n(\beta)$.

On a Curious Observation on the Jones Polynomial, And How to Categorify It

Eddy Li

1) The Jones

(2) The Temperley–Lieb Algebra

Modules

5 Concluding Remarks

- The Jones
- (2) The Temperley–Lieb Algebra
- Modules
- 4 Exactness
- 5 Concluding Remarks

- ▶ For generic β , the standard modules W_{ℓ}^n are precisely the irreducible modules of $\mathsf{TL}_n(\beta)$.
- ▶ However, when $\beta = t^{1/2} + t^{-1/2}$ and t is a root of unity, some standard modules cease to be irreducible.

- The Jones
- (2) The Temperley–Lieb Algebra
- Modules
- 4 Exactness
- 5 Concluding Remarks

- ► For generic β , the standard modules W_{ℓ}^n are precisely the irreducible modules of $\mathsf{TL}_n(\beta)$.
- ▶ However, when $\beta = t^{1/2} + t^{-1/2}$ and t is a root of unity, some standard modules cease to be irreducible.

Theorem (Ridout-Saint-Aubin, 2012)

When $\beta=0$, there exist irreducible modules L^n_ℓ for even $2\leq \ell\leq n$ for such that each standard module has composition factors L^n_ℓ and $L^n_{\ell+2}$.

- The Jones
- (2) The Temperley–Lieb Algebra
- the Standard Modules
- 4 Exactness
- 5 Concluding Remarks

- ► For generic β , the standard modules W_{ℓ}^n are precisely the irreducible modules of $\mathsf{TL}_n(\beta)$.
- ▶ However, when $\beta = t^{1/2} + t^{-1/2}$ and t is a root of unity, some standard modules cease to be irreducible.

Theorem (Ridout-Saint-Aubin, 2012)

When $\beta=0$, there exist irreducible modules L^n_ℓ for even $2\leq \ell\leq n$ for such that each standard module has composition factors L^n_ℓ and $L^n_{\ell+2}$.

However, the above result only implies the existence of the L^n_ℓ , without detailing the structure of such modules.

