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Knots and Links

Definitions

> A knot is an embedding of the circle S* in R.
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Definitions

> A knot is an embedding of the circle S* in R.
> A link is an embedding of several circles in R?.
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Link diagrams project knots and links onto two-dimensional space.
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Knots and Links

Examples

» Some knots:

O & O

Unknot (01), trefoil (31), figure-eight (41), and cinquefoil (51).
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Examples
» Some knots:
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Unknot (01), trefoil (31), figure-eight (41), and cinquefoil (51).

» Some links:

AT
S > H54, 23
9 Q
< |4
% $§
X, o
Y W~

PRIMES

On a Curious
Observation on the
Jones Polynomial,

And How to

Categorify It

Eddy Li

The Jones
Polynomial



On a Curious
Observation on the

Knots and Links
Jones Polynomial,

And How to
Categorify It
Eddy Li

The Jones

Examples
p Polynomial
» Some knots:

O & O

Unknot (01), trefoil (31), figure-eight (41), and cinquefoil (51).

» Some links:
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Hopf link (22), Whitehead link (5%), and Borromean link (63).
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Link Isotopy

Question

When do two link diagrams determine isotopic links?
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Not a priori clear that the knot in the top left corner is the unknot.
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Link Isotopy

Question

When do two link diagrams determine isotopic links?

Example

o

NS AT

Not a priori clear that the knot in the top left corner is the unknot.

Try to simplify the (topological) notion of isotopy to be more tractable.
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The Jones polynomial V,(t) € Z[t'/?] is defined by the recursive skein Palynomial
relations:
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The Jones Polynomial

Definition
The Jones polynomial V,(t) € Z[t'/?] is defined by the recursive skein
relations:
>tV (8) — Ve (t) = (£Y2 — t7Y/2) Vi, (t) for all triples of
(oriented) link diagrams (L, L_, Lo that differ only on a small disk:
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The Jones Polynomial

Definition
The Jones polynomial V,(t) € Z[t'/?] is defined by the recursive skein
relations:

>tV (8) — Vi (t) = (82 — t7Y2) Vi, (t) for all triples of
(oriented) link diagrams (L, L, Lo) that differ only on a small disk:

> N’ ><

» Vo, (t) =1, where 0; is the unknot.
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Definition
@The Jones
The Jones polynomial V,(t) € Z[t'/?] is defined by the recursive skein Felmemte!
relations:

>tV (8) — Vi (t) = (82 — t7Y2) Vi, (t) for all triples of
(oriented) link diagrams (L, L, Lo) that differ only on a small disk:

3 'Y ><

+

» Vo, (t) =1, where 0; is the unknot.

Theorem (Jones, 1985)

The Jones polynomial is a well-defined polynomial of (oriented) links.
Furthermore, it is invariant under isotopy.
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The Jones Polynomial

Example

The following is a skein triple:
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Example
. . . . @The Jones
The following is a skein triple: Polynomial

L

Observe that (L4, L, Lo) = (01,31,21). Thus

£ Vo, (8) — tVa, (1) = (62 — £ 1/%) Vip (1),
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. . . . @The Jones
The following is a skein triple: Polynomial

L

Observe that (Ly,L_, Lo) = (01,31,22). Thus

£ Vo, (8) — tVa, (1) = (62 — £ 1/%) Vip (1),

Applying further recursions, can compute that Vs, (t) = —t* + 3 + t.
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Eddy Li
Example

. . . . @The Jones
The following is a skein triple: Polynomial

L

Observe that (Ly,L_, Lo) = (01,31,22). Thus

t_1V01(t) - tV31(t) = (t1/2 - t_1/2)v2§(t)-

Applying further recursions, can compute that Vs, (t) = —t* + 3 + t.

Jones originally constructed the polynomial using representation theory.
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Fix an index n € N and a parameter g € C.
(@) The

Deﬁnition Temperley-Lieb
Algebra

The Temperley—Lieb algebra TL,(53) at § is spanned by all diagrams of
strings from n points above to n points below, where:
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The Temperley—Lieb Algebra

Fix an index n € N and a parameter g € C.

Definition

The Temperley—Lieb algebra TL,(8) at 8 is spanned by all diagrams of
strings from n points above to n points below, where:

» Diagrams g and h multiply by concatenation (i.e. glue the bottom of

the first diagram to the top of the second):
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The Temperley—Lieb Algebra

Fix an index n € N and a parameter g € C.

Definition
The Temperley—Lieb algebra TL,(8) at 8 is spanned by all diagrams of
strings from n points above to n points below, where:

» Diagrams g and h multiply by concatenation (i.e. glue the bottom of
the first diagram to the top of the second):

» All closed loops may be factored out as .
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The Temperley—Lieb Algebra

Examples

» The dimension of TL3(/) is 5:

TL3(8) = span {

VAR
IAWa)

Y
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» The dimension of TL3(/) is 5:

(@) The

o[ ZIZT | 5
awaw

» A demonstration of diagram concatenation:

ZAan- 02l
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The Canonical Assignment

There is a canonical assignment of elements [ € TL,(f) to every oriented

link L. The method determining this assignment is not obvious.
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The Canonical Assignment Observation on the
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And How to
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There is a canonical assignment of elements [ € TL,(f) to every oriented Eddy Li
link L. The method determining this assignment is not obvious.

Example D
_ L1/2 —-1/2 _ . . . Temperley-Lieb
Ifg=t/"+t and n = 2, the trefoil 3; is assigned Algebra

§<1/2U D) 52 3/2+t1/2)g_
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On a Curious

The Canonical Assignment Observation on the
Jones Polynomial,
And How to
R Categorify It
There is a canonical assignment of elements L € TL,(8) to every oriented Eddy Li

link L. The method determining this assignment is not obvious.

Example e
_ L1/2 —-1/2 _ g . . Temperley-Lieb

Ifg=t/“+t and n = 2, the trefoil 3; is assigned Algebra
3_<1/2 D) - /ZHUZ)QD'

Remark

This demonstrates why you should not think of TL,(3) as “just” a
collection of diagrams. Another example: a generic element of TL3(3)
might look like

5] o Y
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Standard Modules

Let £ satisfy 0 < ¢ < n and £ = n (mod 2).

Definition
The C-vector space spanned by the set of all diagrams of strings from n
points above to £ points below forms the standard module W;'.

PRIMES

On a Curious
Observation on the
Jones Polynomial,

And How to

Categorify It

Eddy Li

(@) The
Temperley-Lieb
Algebra



On a Curious
Standard Modules Observation on the

Jones Polynomial,
And How to
Categorify It

Let ¢ satisfy 0 < ¢ < nand £ = n (mod 2).

Eddy Li
Definition
The C-vector space spanned by the set of all diagrams of strings from n @ The

points above to £ points below forms the standard module W;'. Temperley-Lieb

Algebra

Diagrams g € TL,(8) act upon x € W} by concatenation from above:

g
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Standard Modules

Let ¢ satisfy 0 < ¢ < nand £ = n (mod 2).

Definition
The C-vector space spanned by the set of all diagrams of strings from n
points above to £ points below forms the standard module W}

Diagrams g € TL,(8) act upon x € W} by concatenation from above:

g

Definition
> The trace tr(A) of a square matrix A sums its diagonal entries.

» The character xj: TL,(3) — C of the standard module W} is
defined as x7(g) = trw;(g). (Each g € TLa(B) acts as a linear
transformation on the standard module W;'.)
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Examples

The

We have dim W44 =1, dim W24 =3, and dim W04 = 2. In particular: Temperley-Lieb
Algebra
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Standard Modules

Examples

We have dim W, = 1, dim Wy = 3, and dim W§ = 2. In particular:

W, = span {

}

W;':span{ U,

|\

o

W(f:span{u U, w}
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Standard Modules

Examples (ctd.)

Consider the elements g € TLg(5)

|\
/)

and x € Wg:

|\

|\

v
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Examples (ctd.)
Consider the elements g € TLs(3) and x € W¢:
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Fix nonzero t € C, and let 8 = t1/2 4 712 Recall that: Eddy Li

> There is a canonical assignment of elements [ € TLn(B) to every
oriented link L.
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Fix nonzero t € C, and let 5 = t1/2 4 712 Recall that: Eddy Li

> There is a canonical assignment of elements [ € TLn(B) to every
oriented link L.

> ¢ is the character of the standard module Wy of TL,(3).

@ Characters of
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. .. On a Curious
The Jones Polynomial Revisited Observation on the

Jones Polynomial,
And How to
Categorify It

Fix nonzero t € C, and let 5 = t1/2 4 712 Recall that: Eddy Li

> There is a canonical assignment of elements [ € TLn(B) to every
oriented link L.

> ¢ is the character of the standard module Wy of TL,(3).

. Characters of
Proposition (Jones, 1987) @ S

Modules
The Jones polynomial of an oriented link L is given by

2 (nt0)/2 A
Vi =+7— > | X XD
0=0, \i=(n—£)/2
2|(+n)

for some ¢ € Z.
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On a Curious

The Jones Polynomial Revisited Observation on the
Jones Polynomial,
And How to
Categorify It
Fix nonzero t € C, and let 5 = t1/2 4 712 Recall that: Eddy Li

> There is a canonical assignment of elements [ € TLn(B) to every
oriented link L.

> ¢ is the character of the standard module Wy of TL,(3).

@ Characters of

Proposition (Jones, 1987) the Standard

Modules
The Jones polynomial of an oriented link L is given by

2 (nt0)/2 A
Vi =+7— > | X XD
0=0, \i=(n—£)/2
2|(£+n)

for some ¢ € Z.

What if t = —17
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On a Curious

The Jones Polynomial Revisited Observation on the
Jones Polynomial,
And How to
Categorify It
Fix nonzero t € C, and let 5 = t/2 4 /2 Recall that: Eddy Li

> There is a canonical assignment of elements [ € TLn(B) to every
oriented link L.

> ¢ is the character of the standard module Wy of TL,(3).

@ Characters of

Proposition (Jones, 1987) the Standard

Modules
The Jones polynomial of an oriented link L is given by

ez (n+6)/2

Vi) =27— > | > ] xid)

=0, \i=(n—¢0)/2
2|(¢+n)

for some ¢ € Z.

What if t = —

> If nis odd, Z "Zf /62/2( 1) =0, so everything is fine.
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The Jones Polynomial Revisited

Fix nonzero t € C, and let 8 = t'/? + t~'/2. Recall that:
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> There is a canonical assignment of elements [ € TLn(B) to every

oriented link L.

> ¢ is the character of the standard module Wy of TL,(3).

Proposition (Jones, 1987)

The Jones polynomial of an oriented link L is given by

@ Characters of
the Standard
Modules

cj2 n (n+£)/2
t P TS
Vi =+7— > | X XD
=0, \i=(n—¢0)/2
2|(¢+n)
for some ¢ € Z.
What if t = —
> If nis odd, Z "Zf /62/2( 1) =0, so everything is fine.
> If niseven, >, "+f /62)/2( 1)’ = +1... something strange is going on!
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When n is even, at t = —1 we obtain an identity for 5 = 0:

net net net n Characters of
X6(L) = x3(L) +xa(L) — -+~ £ xn(L Z< 1)/2x3(L) = 0. e

Modules

Z even
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Alternating Sum

When n is even, at t = —1 we obtain an identity for 5 = 0:

Xo(L) = x3(L) + xa(L) — - £ xa(D) = > (-1)*xi(L) = 0.

This is not a priori clear.

£=0,
£ even
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Alternating Sum

When n is even, at t = —1 we obtain an identity for 5 = 0:

X8(L) = 3(L) + xi(D) =~ £ xa(D) = > (-1)*xi(L) = 0.

£=0,
£ even

This is not a priori clear.

Overarching Question

Is there a more conceptual way to make sense of the above sum?
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Short Exact Sequences

A little tangent.
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Short Exact Sequences

A little tangent.
Definition

Consider vector spaces U, V, and W equipped with linear maps
f: U— Vand g: V— W. The sequence

0——sU—""sv-E&.w_—o0

is a short exact sequence if:
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Short Exact Sequences

A little tangent.
Definition

Consider vector spaces U, V, and W equipped with linear maps
f: U— Vand g: V— W. The sequence

0——sU—""sv-E&.w_—o0

is a short exact sequence if:

» f is injective,
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Short Exact Sequences

A little tangent.
Definition

Consider vector spaces U, V, and W equipped with linear maps
f: U— Vand g: V— W. The sequence

0—U-S‘sv-Eisw—0
is a short exact sequence if:
» f is injective,

> g is surjective, and
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Short Exact Sequences

A little tangent.

Definition
Consider vector spaces U, V, and W equipped with linear maps
f: U— Vand g: V— W. The sequence

0——sU—""sv-E&.w_—o0

is a short exact sequence if:
» f is injective,
> g is surjective, and

» imf = kerg.
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Short Exact Sequences

A little tangent.

Definition
Consider vector spaces U, V, and W equipped with linear maps
f: U— Vand g: V— W. The sequence

0——sU—""sv-E&.w_—o0

is a short exact sequence if:
» f is injective,
> g is surjective, and

» imf = kerg.

Note that go f = 0.
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Short Exact Sequences

A little tangent.

Definition
Consider vector spaces U, V, and W equipped with linear maps
f: U— Vand g: V— W. The sequence

0——sU—""sv-E&.w_—o0

is a short exact sequence if:
» f is injective,
> g is surjective, and

» imf = kerg.

Note that go f = 0.
Think of U as a “subspace” of V and W as the “quotient space” V//U.
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Short Exact Sequences

Prototypical Example
Let (U, V, W) = (R, R™™ R™).
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On a Curious
Short Exact Sequences Observation on the
Jones Polynomial,

And How to

Categorify It

Eddy Li
Prototypical Example
Let (U, V, W) = (R",R™™™ R™).
Take ¢ : R” — R™™ such that
Xty .oy Xn) = (X1, oy Xn, 0,...,0).
——
mO0’'s @Exactness
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On a Curious

Short Exact Sequences Observation on the
Jones Polynomial,
And How to
Categorify It
Eddy Li
Prototypical Example
Let (U, V, W) = (R",R™™™ R™).
Take ¢ : R” — R™™ such that
Xty .oy Xn) = (X1, oy Xn, 0,...,0).
——
mO0’s @ Exactness

Take 7w : R™™ — R™ such that

7T(X17 sy Xny Xngly e 7Xn+m) = (Xn+17 O 7Xn+m)-
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On a Curious

Short Exact Sequences Observation on the

Jones Polynomial,

And How to
Categorify It
Eddy Li
Prototypical Example
Let (U, V, W) = (R",R™™™ R™).
Take ¢ : R” — R™™ such that
Xty .oy Xn) = (X1, oy Xn, 0,...,0).
——
mO0’s @ Exactness

Take 7 : R™™ — R™ such that
7T(X17 sy Xny Xngly e 7Xn+m) = (Xn+17 O 7Xn+m)~

Note that ¢ is injective, 7 is surjective, and mo¢ = 0.
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Short Exact Sequences

Prototypical Example
Let (U, V, W) = (R",R™™ R™).

Take ¢ : R” — R™ "™ such that

Xty .oy Xn) = (X1, oy Xn, 0,...,0).
——

Take 7w : R™™ — R™ such that

7T(X17 sy Xny Xngly e 7Xn+m) = (Xn+17 O 7Xn+m)~

Note that ¢ is injective, 7 is surjective, and mo¢ = 0.

In particular
0— R R"™ T R™” —0

is a short exact sequence.
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On a Curious

Short Exact Sequences @i ot
Jones Polynomial,
And How to
Categorify It
Consider linear operators a: U — U, b: V — V,and c: W — W that EdcyLi

intertwine with f and g (i.e. foa=bof and cog = gob):

f g

0 0

@ Exactness
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Short Exact Sequences

Consider linear operators a: U — U, b: V — V, and c: W — W that
intertwine with f and g (i.e. foa=bof and cog = gob):
Uu—t-sv-—-,w

. a *
It turns out that b must have matrix block structure b = ( ) .

0 0
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Short Exact Sequences

Consider linear operators a: U — U, b: V — V, and c: W — W that
intertwine with f and g (i.e. foa=bof and cog = gob):
Uu—t-sv-—-,w

. a *
It turns out that b must have matrix block structure b = ( ) .

0 0

In particular
a

tr(b) = tr (0 z) = tr(a) + tr(c).
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Short Exact Sequences

Consider linear operators a: U — U, b: V — V, and c: W — W that
intertwine with f and g (i.e. foa=bof and cog = gob):

. a *
It turns out that b must have matrix block structure b = ( ) .

0 0

In particular
a

tr(b) = tr (0 z) = tr(a) + tr(c).

Lemma

If maps a, b, and c intertwine with f and g, then

tr(a) — tr(b) + tr(c) = 0.
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Short Exact Sequences

Recall that x7 is the trace of an operator (i.e. a character) on Wy
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Recall that x7 is the trace of an operator (i.e. a character) on Wy
Using the Lemma:
@Exactness
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Recall that x7 is the trace of an operator (i.e. a character) on Wy
Using the Lemma:
Idea
If we can find a short exact sequence of TL4(0)-modules
@Exactness

0— W, — Wy — W, — 0,

then the alternating sum for n = 4

4
xo(D) = x3(D) +x3(D) = > (1)’ XD =0
=0,
£ even

follows immediately!
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Also recall that:

Wf = span

@ Exactness

4
W5 = span , ,

W \VARW) @
o = span :

PRIMES



When n =4

Consider the maps ¢3: W, — W5 and ¢4

Wy — W given by

¢g<

)-[T7-

|\

o

+

and

(] )- 3<U

We obtain the sequence

0— W 2wy 22

which we check is exact!

-7

Wy — 0
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When n =4
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Consider the maps ¢3: W, — W5 and ¢g: Wy — W given by

(1)
(1)

We obtain the sequence

|\

oY

+

@ Exactness

:qbé(U

-7

4 4
0— Wi 2w 2w o

which we check is exact!

This sheds light on the Overarching Question for n = 4.
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Generalizing

We can generalize:
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Definition
Let Vi, Va,..., V, be a collection of vector spaces with linear maps
fi: Vi1 — Vi. Along with Vp = V,41 = 0, the sequence
f f f fo fo
00— Vi 2 Vo ... Vo =50

@Exactness

is an exact sequence if imf; = ker fiy; for all 1 < i < n.
V.
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Definition
Let Vi, Va,..., V, be a collection of vector spaces with linear maps
fi: Vi1 — Vi. Along with Vp = V,41 = 0, the sequence
f f f 7 f,
O 1 Vl 2 V2 3 . n Vn n+1 0
@Exactness
is an exact sequence if imf; = ker fiy; for all 1 < i < n.

One can show by induction an analogous version of the Lemma:

PRIMES



Generalizing

We can generalize:

Definition
Let Vi, Va,..., V, be a collection of vector spaces with linear maps
fi: Vi1 — Vi. Along with Vp = V,41 = 0, the sequence

fi f; f; f, fo+1
0—— V; =V, 2 , = Ve s )

is an exact sequence if imf; = ker fiy; for all 1 < i < n.

One can show by induction an analogous version of the Lemma:

Stronger Lemma

If the V; form an exact sequence and the linear operators a;: Vi — V; all
intertwine, then

n

tr(a1) — tr(a:) + tr(as) — -~ £ tr(a,) = > _(—1)" " tr(a) = 0.

i=1
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Main Theorem (L.)
We have explicit constructed an exact sequence of standard modules of
the Temperley-Lieb algebra TL,(0) at zero:
@5 P n— @3 #g
0 W22 W, 2 W T s W 0.
@ Exactness
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Main Result

Main Theorem (L.)

We have explicit constructed an exact sequence of standard modules of

the Temperley-Lieb algebra TL,(0) at zero:

@5

#n n—2 =t %0
n n n— n n— n 0
0 w, 2 e W,

Wy — 0.

By the Stronger Lemma, the above exact sequence decategorifies to the

alternating sum

Xo(L) = x5(L) + xa(D) — -~ £ xi(L Z( 1)2xi(D) =o.

Z even

PRIMES

On a Curious
Observation on the
Jones Polynomial,

And How to

Categorify It

Eddy Li

@ Exactness



. On a Curious
M ain ReSU |t Observation on the
Jones Polynomial,

And How to

Categorify It

Eddy Li
Main Theorem (L.)
We have explicit constructed an exact sequence of standard modules of
the Temperley-Lieb algebra TL,(0) at zero:
0 b5 W n—2 " =t . Wy %0 We — 0.
(@) Exactness

By the Stronger Lemma, the above exact sequence decategorifies to the
alternating sum
Xo(L) = X3(L) + xa(L) — - £ xa(D) = > (-1)*xi(L) = 0.

£=0,
£ even

This generalizes the picture from n = 4, and gives a conceptual
explanation of our alternating sum identity.
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Main Theorem (L.)
We have explicit constructed an exact sequence of standard modules of
the Temperley-Lieb algebra TL,(0) at zero:
0 b5 W n—2 " =t . Wy %0 We — 0.
(@) Exactness

By the Stronger Lemma, the above exact sequence decategorifies to the
alternating sum

n

Xo(L) = x3(L) + xa(L) — - £ xn(D) = > (-1)"*xi(D) = 0.
£=0,
£ even

This generalizes the picture from n = 4, and gives a conceptual
explanation of our alternating sum identity.

This resolves the Overarching Question!
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In fact, we can explicitly formulate every map in the long exact sequence
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In fact, we can explicitly formulate every map in the long exact sequence
on the standards.
Definition
Forany 1 <i</+1,let 5; € W/" be the element given by:
1 2 i L2
\W (5) Concluding
.. Remarks

PRIMES



On a Curious

EXtra! EXtra! Read a” abOUt |t| Observation on the
Jones Polynomial,
And How to
Categorify It
Eddy Li
In fact, we can explicitly formulate every map in the long exact sequence
on the standards.
Definition
Forany 1 <i</+1,let 5; € W/" be the element given by:
1 2 i L2
U (5) Concluding
. Remarks

Remark

The element x§; € Wy is exactly the diagram formed by joining the ith
and (i + 1)th leftmost points on the bottom.
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In fact, we can explicitly formulate every map in the long exact sequence
on the standards.
Definition
Forany 1 <i</+1,let 5; € W/" be the element given by:
1 2 i L2
U (5) Concluding
. Remarks

Remark

The element x§; € Wy is exactly the diagram formed by joining the ith
and (i + 1)th leftmost points on the bottom.

PRIMES



. On a Curious
H : H Observation on the
Extra! Extra! Read all about it!
Jones Polynomial,
And How to
Categorify It

Eddy Li
Definition
Let ¢y: W/, — W, be given by

/2

di(x) = XZ(—l)'52i+1~
=0
Concludi
Remarks
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Definition
Let ¢y: W/, — W, be given by

)2

$e(x) = x (1) 6.

i=0

v
(5) Concluding
Remarks

Theorem (L.)

The maps ¢y : W/, — W' are homomorphisms that constitute a long
exact sequence on the standard TL,(0)-modules given by

S1a B .
N Ny VL B N NV ¥/ K YV N )
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» For generic (3, the standard modules W;" are precisely the irreducible
modules of TL,(8).
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» For generic (3, the standard modules W;" are precisely the irreducible
modules of TL,(8).
> However, when 8 = t'/2 + t7'/2 and t is a root of unity, some
standard modules cease to be irreducible.
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» For generic (3, the standard modules W;" are precisely the irreducible
modules of TL,(8).
> However, when 8 = t'/2 + t7'/2 and t is a root of unity, some
standard modules cease to be irreducible.
Theorem (Ridout-Saint-Aubin, 2012) (8) Concluding

Remarks

When 3 = 0, there exist irreducible modules Lj for even 2 < ¢ < n for
such that each standard module has composition factors Ly and Lj,,.
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Extra! Extra! Read all about it!

» For generic (3, the standard modules W;" are precisely the irreducible
modules of TL,(8).

> However, when 8 = t'/2 + t7'/2 and t is a root of unity, some
standard modules cease to be irreducible.
Theorem (Ridout-Saint-Aubin, 2012)

When 8 = 0, there exist irreducible modules L} for even 2 < ¢ < n for
such that each standard module has composition factors Ly and Lj,,.

However, the above result only implies the existence of the Ly, without
detailing the structure of such modules.
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