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Definitions



Def: Semi-Standard Young Tableaux (SSYT)

A semi-standard Young Tableaux is defined as a grid of numbers with the following 

properties:

● Rows are weakly increasing rightward, while columns are strictly increasing 

downward.

● All rows are left-aligned, and all columns are top-aligned.

We define the shape λ of the SSYT to list the number of cells in each row (here 

λ=(4,2,1)) and the content c to list the number of each element present in the SSYT. In 

other words, c
i
 is the number of elements with value i. Here, c=(1,2,1,1,1,0,1).



Def: Schur Functions

For a given SSYT shape λ, we define the Schur function sλ by summing the over the 

contents c of all SSYTs T of shape λ:

where we define:

Again, c_i represent the content of T. This turns out to be an infinite-variable 

symmetric polynomial in the c_i.



Def: Skew Semi-Standard Young Tableaux (SSYT)

● Same as the “normal” SSYT, except the shape has a smaller SSYT 

removed.

● The shape is now λ/μ, where the skew SSYT has entries in 

columns (μ
i
, λ

i
] in row i. 

○ λ represents the right boundary

○ μ represents the left boundary

● We can analogously define the skew-Schur function sλ/μ by 

summing over the contents of every valid SSYT:



Littlewood-Richardson Coefficients

We have the following identity:

Here, the            are the Littlewood-Richardson coefficients, which count the number of skew-Schur tableaux 

with shape λ/μ and content 𝜈 (and are thus all nonnegative). A corollary of this is that Schur functions form a 

basis for skew-Schur functions. 

We call a group of symmetric functions Schur positive if they can be represented as a combination of Schur 

functions with a nonnegative coefficient on each Schur function.

More on this soon!



The Jacobi-Trudi Identity

The Jacobi-Trudi identity states that                                                                                               , where we have:

                                                                         and                                                 

This gives us an explicit algebraic form for the skew-Schur functions. We can prove this by bijecting the 

determinant to groups of paths connecting the sets                                           and                                    , with the 

weight ω of a path π
i
 being the product of x

b
 over all steps                                           . Specifically, by the 

Lindstrom-Gessel-Viennot lemma, it suffices to sum over all noncrossing paths, giving us the desired 

expansion. 



Temperley-Lieb Immanants

In the wiring from the previous slide, modify the left and right endpoints L
i
  and R

i
 to be                 and                    

respectively, and relax the noncrossing condition to allow at most two paths to intersect per vertex. As 

before, let                                                    be the weight of the wiring H. 

Next, at all intersections, disconnect all the paths and connect both incoming paths to each other, and 

also connect both outgoing paths to each other.  Let                 be the number of loops in the graph, and let τ 

be the type (“connectivity”) of the resulting graph - in other words, which L
i
 and R

i
 connect to each other.

We define the Temperley-Lieb immanant as the following sum over all configurations with the same type 

and path matrix:



Wiring Example

Here is an example of a wiring and its corresponding Temperley-Lieb type, for sequences (9,6,6,4,3) and 

(7,5,4,1,1):
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x2



Wiring Example

Here is an example of a wiring and its corresponding Temperley-Lieb type, for sequences (9,6,6,4,3) and 

(7,5,4,1,1):



Jacobi-Trudi Matrices

We can also recast the skew-Schur functions explicitly in terms of symmetric functions:

This is known as the Jacobi-Trudi identity and is central to motivating our main structure, shuffle tableaux.)

(Here,                                                                     and                                                  )



Jacobi-Trudi Matrices: Example

Here, we consider                                                                    :



Jacobi-Trudi Matrices: Example

Here, we consider                                                                    , but now look at minors:

These minors are themselves determinants that correspond to skew-Schur functions and thus skew 
semi-standard Young tableaux. This motivates “breaking down” determinant expansions into two skew 
SSYTs.



Shuffle Tableaux

We can interleave two skew SSYTs, provided that they follow some basic rules:



Temperley-Lieb Types

For each pair of cells                   , draw the lines                   if i > j and                  otherwise. 

Draw out the lines for the entire grid and look at how the leftmost/rightmost elements in each row are 

connected. This left-right connectivity is the Temperley-Lieb type τ of the shuffle tableaux:

(left/right flipped 
by convention)



Yamanouchi Tableaux

By examining the reading word of the shuffle tableaux, we can pair values of i and i+1 in the skew SSYT and 

change unmatched i+1 values to i. One specific operation that does this is known as the E
i
 crystal 

operator. Skew SSYTs that do not change upon the application of any E
i
 are known as Yamanouchi 

tableaux. We have the following theorem, by Son and Pylyavskyy, which is the premise of our entire 

project:

This generalization of Littlewood-Richardson coefficients allows us to investigate the Temperley-Lieb 

immanant through a purely elementary combinatorial perspective.



Temperley-Lieb Immanants

Temperley-Lieb immanants are a generalization of determinants that are central to many areas of 

enumerative combinatorics. One can calculate a given Temperley-Lieb immanant by summing over all 

shuffle tableaux with a given shape                   and a given Temperley-Lieb type τ. In particular:

● We include this definition here for completeness and for motivating the more direct 

representation of the Temperley-Lieb immanant on the next slide.

● For now, just focus on the algebraic form of the above definition.



Temperley-Lieb Immanants

Temperley-Lieb immanants are a generalization of determinants that are central to many areas of 
enumerative combinatorics. One can calculate a given Temperley-Lieb immanant by summing over all 
shuffle tableaux with a given shape                   and a given Temperley-Lieb type τ. In particular:

● Here, T can be thought of as a tableau and omega(T) is the “weight” (a geometrically motivated 
infinite dimensional polynomial) of the wirings that represents this tableaux. 

● We include this definition here for completeness and for motivating the more direct 
representation of the Temperley-Lieb immanant on the next slide.

● For now, just focus on the algebraic form of the above definition.



Yamanouchi Tableaux

● If we force our shuffle tableaux to satisfy an additional minimality condition known as being 
Yamanouchi, we have the following theorem, by Nguyen and Pylyavskyy, which is the premise of our 
entire project:

● Notice that by restricting ourselves to Yamanouchi tableaux, the wiring weights reduce to Schur 
functions!

● This generalization of Littlewood-Richardson coefficients allows us to investigate the 
Temperley-Lieb immanant through a purely elementary combinatorial perspective.

● In particular, by examining what shuffle tableaux exist, we can infer what Schur functions have a 
nonzero coefficient in the Temperley-LIeb immanant! 



Our Initial Main Conjecture

Fix a shape λ/μ for a shuffle tableaux and a Temperley-Lieb type τ. Consider all possible contents 𝜈 of such 

Yamanouchi shuffle tableaux, which form a set P. Once again, 𝜈
i
 is the number of elements equal to i.

We conjecture that there exist                                                  satisfying:

Here, the inequalities denote majorization, which is the standard partial order among partitions:

for all k.



Our Progress



Our Strengthened Main Conjecture

We chose to examine the                             half of the conjecture in our research. 

● Notice that being higher in the partial order corresponds to having more small elements, but 

overall, this is a global condition. 

● Through a large-scale computer search, we have found that for every example we checked, the 

shuffle tableau T
max

 corresponding to the upper bound is not only unique but is also minimal in 
every element. 

● Trivially, if this new conjecture is true, then it solves the above half of the original conjecture.



Our Strengthened Main Conjecture

We chose to examine the                             half of the conjecture in our research. 

● This improved conjecture motivates a purely local approach to the problem. 

● In particular, we examine specific cases where we can decrease an element by one unit based on 

the value of its neighbors without changing the Temperley-Lieb type. 
○ Under the conjecture that every element is itself minimal, we can iteratively minimize various parts of our 

shuffle tableaux.

● In particular, by extending this method to a complete set of local rules, it may be possible to prove 

that these rules are sufficient to uniquely determine the coefficients of T
max

. We leave this to the 

next generation.



Our Strengthened Main Conjecture

We chose to examine the                             half of the conjecture in our research. 

Notice that being higher in the partial order corresponds to having more small elements, but overall, this 
is a global condition. Through a large-scale computer search, we have found that for every example we 
checked, the tableau T

max
 corresponding to the upper bound is not only unique but is also minimal in 

every element. Trivially, if this new conjecture is true, then it solves the above half of the original 
conjecture.

This improved conjecture motivates a purely local approach to the problem. In particular, we examine 
specific cases where we can decrease an element by one unit based on the value of its neighbors without 
changing the Temperley-Lieb type. 

In particular, by extending this method to a complete set of local rules, it may be possible to prove that 
these rules are sufficient to uniquely determine the coefficients of T

max
. We leave this to the next 

generation.



Local Rules

Again, we used a large-scale computer search.

Our code appears to indicate that an element falling into one of the following cases is necessary (but not 

sufficient) for it to be able to be decremented without changing the Temperley-Lieb type:

0. All trivial cases.
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Our code appears to indicate that an element falling into one of the following cases is necessary (but not 

sufficient) for it to be able to be decremented without changing the Temperley-Lieb type:
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(Decreasing the central value by 1 is 
guaranteed to preserve the TL type when 
both (C)/(D) and (A)/(B) are connected 
externally.)



Local Rules

Again, we used a large-scale computer search.

Our code appears to indicate that an element falling into one of the following cases is necessary (but not 
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(Here, decreasing the central value by 1 is 
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connected externally.)~~~~~~or~~~~~~



Local Rules

Again, we used a large-scale computer search.

Our code appears to indicate that an element falling into one of the following cases is necessary (but not 

sufficient) for it to be able to be decremented without changing the Temperley-Lieb type:

3.

(In this configuration, decreasing the 
central value by 1 preserves TL type 
under certain conditions for x,y>0.)



Local Rules

Our code appears to indicate that an element falling into one of the following cases is necessary (but not sufficient) for it to be 

able to be decremented without changing the Temperley-Lieb type (besides all trivial cases, including cases where an E
i
 can 

be applied, as well as a generalized nonlocal version of the E
i
):

(1)                                                                   (2)                                                                                 (3)

(Decreasing the central value by 1 is 
guaranteed to preserve the TL type when both 
(C)/(D) and (A)/(B) are connected externally.)

(Decreasing the central value by 1 
preserves TL type under certain 
conditions for x,y>0.)

or

(Here, decreasing the central value by 1 is 
guaranteed to preserve the TL type when at 
least one of (C)/(D) and (A)/(B) are connected 
externally.)
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