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Definitions



Def: Semi-Standard Young Tableaux (SSYT)

A semi-standard Young Tableaux is defined as a grid of numbers with the following
properties:

° Rows are weakly increasing rightward, while columns are strictly increasing
downward.
° All rows are left-aligned, and all columns are top-aligned.

We define the shape A of the SSYT to list the number of cells in each row (here
A=(4,2,1)) and the content c to list the number of each element present in the SSYT. In
other words, c. is the number of elements with value i. Here, c=(1,2,1,1,1,0,1).
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Def: Schur Functions

For a given SSYT shape A, we define the Schur function s, by summing the over the
contents c of all SSYTs T of shape A:

S\ = E W(T).
SSYT T of shape A

where we define:

w(T) = 23 2525 .

Again, c_i represent the content of T. This turns out to be an infinite-variable
symmetric polynomial in the c_i.
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Def: Skew Semi-Standard Young Tableaux (SSYT)

e Same as the “normal” SSYT, except the shape has a smaller SSYT

removed.
e Theshapeis now A, where the skew SSYT has entries in 2
columns (pi, )\i] inrow .

o  Arepresents the right boundary ‘Z} 5 g
o Mrepresents the left boundary '

e We can analogously define the skew-Schur function Sui by
summing over the contents of every valid SSYT: 7

S\ = > w(T)

skew SSY'T' 'I" of shape A/u



Littlewood-Richardson Coefficients

A

We have the followingidentity: S}/, = CM »Sv

Here, the c , are the Littlewood-Richardson coefficients, which count the number of skew-Schur tableaux
with shape )\/p and content v (and are thus all nonnegative). A corollary of this is that Schur functions form a
basis for skew-Schur functions.

We call a group of symmetric functions Schur positive if they can be represented as a combination of Schur
functions with a nonnegative coefficient on each Schur function.

More on this soon!



The Jacobi-Trudi Identity

The Jacobi-Trudi identity states that X = det (h)\i_#j _7;+j) a5 where we have:

1<i,5<

i = Z B3 W sy, and 13 = B e Tos 5 5 5
0<iy <ip<ig<-<ip,

This gives us an explicit algebraic form for the skew-Schur functions. We can prove this by bijecting the
determinant to groups of paths connecting the sets (n — g oo) and (n — 7+ A, 1), with the
weight w of a path im. being the product of x_ over all steps(a, b) — (a + 1, b) . Specifically, by the
Lindstrom-Gessel-Viennot lemma, it suffices to sum over all noncrossing paths, giving us the desired
expansion.



Temperley-Lieb Immanants

In the wiring from the previous slide, modify the left and right endpoints L. and R to be (y;, 1) and (/\i, oo)
respectively, and relax the noncrossing condition to allow at most two paths to intersect per vertex. As
before, let w(H) = [[;_; w(m;) be the weight of the wiring H.

Next, at all intersections, disconnect all the paths and connect both incoming paths to each other, and

also connect both outgoing paths to each other. Let G(H) be the number of loops in the graph, and let t
be the type (“connectivity”) of the resulting graph - in other words, which L. and R. connect to each other.

We define the Temperley-Lieb immanant as the following sum over all configurations with the same type

and path matrix: N
Imm!"(A) = Z 2<(H)y(H)
i f



Wiring Example

Here is an example of a wiring and its corresponding Temperley-Lieb type, for sequences (9,6,6,4,3) and
(7,5,4,1,1):
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Wiring Example

Here is an example of a wiring and its corresponding Temperley-Lieb type, for sequences (9,6,6,4,3) and

(7,5,4,1,1):
W(Q




Jacobi-Trudi Matrices

We can also recast the skew-Schur functions explicitly in terms of symmetric functions:
Sx/u = det (h o ) -
A/,U, y )"L H 7’+.7 1SZ,JS"1

This is known as the Jacobi-Trudi identity and is central to motivating our main structure, shuffle tableaux.)

(Here, h’n = Z Ty Lijgljg . T4, and h/)\ = h’)\l h’)\Qh’Agg $&x )

0<iy <ip<ig<---<ip,



Jacobi-Trudi Matrices: Example

Here, we consider \ = (7,5,4,4), u=(3,3,2,1):

ha D
Sx/p = det }(L)l hf
0 O



Jacobi-Trudi Matrices: Example

Here, we consider A = (7,5,4,4), = (3,3,2, 1), but now look at minors:
ha hs hr hg

oy = det [T T2 ha e

0 1 hy b~y

0 O hy hs

These minors are themselves determinants that correspond to skew-Schur functions and thus skew
semi-standard Young tableaux. This motivates “breaking down” determinant expansions into two skew

SSYTs.



Shuffle Tableaux

We can interleave two skew SSYTs, provided that they follow some basic rules:

1|8 2 |4
; and23 9 L




Temperley-Lieb Types

For each pair of cells ,draw the lines

i

3 — 1

J
ifi>jand | |otherwise.

Draw out the lines for the entire grid and look at how the leftmost/rightmost elements in each row are
connected. This left-right connectivity is the Temperley-Lieb type T of the shuffle tableaux:

RR—-1— — 3 — L,
| I
R, 2 — 2 — 2 — | — — 4 Ly
| | | | | I
Rs 1— —1 — 1 — 2 — 3 L,
|
Ry 1 | 2 — 1 — 4 — — 4 — L
1 | | | | | | |
R 1 — 2 — 2 — 3 Ls
I
Rs |—3——4—L.,

(left/right flipped
by convention)

—



Yamanouchi Tableaux

By examining the reading word of the shuffle tableaux, we can pair values of i and i+1 in the skew SSYT and
change unmatched i+1 values to i. One specific operation that does this is known as the E. crystal
operator. Skew SSYTs that do not change upon the application of any E. are known as Yamanouchi
tableaux. We have the following theorem, by Son and Pylyavskyy, which is the premise of our entire
project:

Theorem 6.2. For any partitions u,v, any Temperley-Lieb type 7, and any partition

A, the coefficient of the Schur function sy in Imm;FL(AMV) s the number of Yamanouchi

shuffle tableauz of shape p @ v, Temperley-Lieb type T, and content .

This generalization of Littlewood-Richardson coefficients allows us to investigate the Temperley-Lieb
immanant through a purely elementary combinatorial perspective.



Temperley-Lieb Immanants

Temperley-Lieb immanants are a generalization of determinants that are central to many areas of
enumerative combinatorics. One can calculate a given Temperley-Lieb immanant by summing over all
shuffle tableaux with a given shape @ v and a given Temperley-Lieb type 7. In particular:

For any basis element 7 of T L,(2) and partilions p, v, we have

Imm"(A,,) = Z w(T).

T of shape p@ v
Y(T)=r

e Weinclude this definition here for completeness and for motivating the more direct
representation of the Temperley-Lieb immanant on the next slide.
e For now, just focus on the algebraic form of the above definition.



Temperley-Lieb Immanants

Temperley-Lieb immanants are a generalization of determinants that are central to many areas of
enumerative combinatorics. One can calculate a given Temperley-Lieb immanant by summing over all
shuffle tableaux with a given shape u @ v and a given Temperley-Lieb type 7. In particular:

For any basis element 7 of T Ln(2) and partitions p, v, we have

Imm"(A4,,) = Z w(T).
T of shape p@ v
$(T)=1

e Here, T can be thought of as a tableau and omega(T) is the “weight” (a geometrically motivated
infinite dimensional polynomial) of the wirings that represents this tableaux.

e Weinclude this definition here for completeness and for motivating the more direct
representation of the Temperley-Lieb immanant on the next slide.

e For now, just focus on the algebraic form of the above definition.



Yamanouchi Tableaux

If we force our shuffle tableaux to satisfy an additional minimality condition known as being
Yamanouchi, we have the following theorem, by Nguyen and Pylyavskyy, which is the premise of our
entire project:

Theorem 6.2. For any partitions u,v, any Temperley-Lieb type 7, and any partition

A, the coefficient of the Schur function s, in Imm

sl
5

(A,.) is the number of Yamanouchi

shuffle tableaux of shape p @ v, Temperley-Lieb type T, and content \.

Notice that by restricting ourselves to Yamanouchi tableaux, the wiring weights reduce to Schur
functions!

This generalization of Littlewood-Richardson coefficients allows us to investigate the
Temperley-Lieb immanant through a purely elementary combinatorial perspective.

In particular, by examining what shuffle tableaux exist, we can infer what Schur functions have a
nonzero coefficient in the Temperley-Lleb immanant!



Our Initial Main Conjecture

Fix a shape A/u for a shuffle tableaux and a Temperley-Lieb type 1. Consider all possible contents v of such
Yamanouchi shuffle tableaux, which form a set P. Once again, v, is the number of elements equal to .

We conjecture that there exist Vp,in, Vmaz € P satisfying:

Veine = 'S Wynaw Jor obl v € P

Here, the inequalities denote majorization, which is the standard partial order among partitions:

r < yYy— Zle x; < Zle Y; forallk



Our Progress



Our Strengthened Main Conjecture

We chose to examine the v < 1,42 half of the conjecture in our research.

e Notice that being higher in the partial order corresponds to having more small elements, but

overall, this is a global condition.
e Through alarge-scale computer search, we have found that for every example we checked, the
shuffle tableau T corresponding to the upper bound is not only unique but is also minimal in

every element.
e Trivially, if this new conjecture is true, then it solves the above half of the original conjecture.



Our Strengthened Main Conjecture

We chose to examine the v < 1,42 half of the conjecture in our research.

This improved conjecture motivates a purely local approach to the problem.
In particular, we examine specific cases where we can decrease an element by one unit based on

the value of its neighbors without changing the Temperley-Lieb type.

o  Under the conjecture that every element is itself minimal, we can iteratively minimize various parts of our
shuffle tableaux.

e Inparticular, by extending this method to a complete set of local rules, it may be possible to prove

that these rules are sufficient to uniquely determine the coefficients of T __ . We leave this to the
next generation.



Our Strengthened Main Conjecture

We chose to examine the v < v, half of the conjecture in our research.

Notice that being higher in the partial order corresponds to having more small elements, but overall, this
is a global condition. Through a large-scale computer search, we have found that for every example we
checked, the tableau T corresponding to the upper bound is not only unique but is also minimal in
every element. Trivially, if this new conjecture is true, then it solves the above half of the original
conjecture.

This improved conjecture motivates a purely local approach to the problem. In particular, we examine
specific cases where we can decrease an element by one unit based on the value of its neighbors without
changing the Temperley-Lieb type.

In particular, by extending this method to a complete set of local rules, it may be possible to prove that
these rules are sufficient to uniquely determine the coefficients of T__ . We leave this to the next
generation.



Local Rules

Again, we used a large-scale computer search.

Our code appears to indicate that an element falling into one of the following cases is necessary (but not
sufficient) for it to be able to be decremented without changing the Temperley-Lieb type:

0. All trivial cases.



Local Rules

Again, we used a large-scale computer search.

Our code appears to indicate that an element falling into one of the following cases is necessary (but not
sufficient) for it to be able to be decremented without changing the Temperley-Lieb type:

L (A) —z—-1 4 =z-1
| | (Decreasing the central value by 1 is
(B) r— (D) = (B)—-z-—1 (D) guaranteed to preserve the TL type when
both (C)/(D) and (A)/(B) are connected

I
x (€ z — (C) externally.)



Local Rules

Again, we used a large-scale computer search.

Our code appears to indicate that an element falling into one of the following cases is necessary (but not
sufficient) for it to be able to be decremented without changing the Temperley-Lieb type:

2. (A) -<z-2 A) —<Lz-2
(B) #— (D) =5 (B)-d—1—(D) (Here, decreasing the central value by 1is
| l guaranteed to preserve the TL type when
z &) B—E) at least one of (C)/(D) and (A)/(B) are
”””””” Ofmmmmm= connected externally.)
(A) —z-1 (A) r—1

| |
B)—z— (D) => (B)-z—1 (D)

>z - (C) >z — (C)



Local Rules

Again, we used a large-scale computer search.

Our code appears to indicate that an element falling into one of the following cases is necessary (but not
sufficient) for it to be able to be decremented without changing the Temperley-Lieb type:

3.

o — I .
Y r—y * (In this configuration, decreasing the

|
r4+1— = T | central value by 1 preserves TL type
| | under certain conditions for x,y>0.)
r—y+1




Local Rules

Our code appears to indicate that an element falling into one of the following cases is necessary (but not sufficient) for it to be
able to be decremented without changing the Temperley-Lieb type (besides all trivial cases, including cases where an E, can
be applied, as well as a generalized nonlocal version of the Ei):

A)-z-1 4 z-1

|
3 r— (D) — (B)-z-1 (D)
|

(1) (2)

] — =z z—y | T (4) - z—1 (A) 1 >z (C) >z — (C)
1 |
| le_ = . (B) z— (D) = (B)-z-1 (D) (4) - < (z-2) (4) <@-2)
| |
r—y+1 b T o b ; ©) % — (6 or (B) = (D) = (B)—xl—l (D)

| |
T () z — (C)

(Decreasing the central value by 1is

(Decreasing the central value by 1
preserves TL type under certain
conditions for x,y>0.)

guaranteed to preserve the TL type when both
(C)/(D) and (A)/(B) are connected externally.)

(Here, decreasing the central value by 1is
guaranteed to preserve the TL type when at
least one of (C)/(D) and (A)/(B) are connected
externally.)
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