On Polynomial Evaluation at Algebraic Numbers

18–19 October 2025

- **₹** Timothy Chen
- Guanjie (Tony) Lu
- Alan Yao
- advised by **Dr. Felix Gotti**

Fall-Term PRIMES Conference

Mir Sillis

Overview

- Certain subsets of \mathbb{C} , which are closed under both standard addition and multiplication, are called **semirings**
- \mathbb{N}_{\circ} is a semiring, and we can consider its **simple extensions** $\mathbb{N}_{\circ}[\alpha]$
- Formally, for $\alpha \in \mathbb{C}$, we set $\mathbb{N}_{o}[\alpha] := \{f(\alpha) \mid f(x) \in \mathbb{N}_{o}[x]\}$ • Here $\mathbb{N}_{o}[x]$ is the set of polyonomials with nonnegative integer coefficients
- $\mathbb{N}_{o}[\alpha]$ has been actively studied in recent literature (by Chapman, Gotti, Polo, et al.)

Overview (cont.)

Our Main Algebraic Objects.

$$\mathbb{N}_{\mathsf{o}}[\alpha] := \{ f(\alpha) : f(x) \in \mathbb{N}_{\mathsf{o}}[x] \}$$

- An algebraic structure with no irreducibles is called antimatter
- Introduced in 1999 by Coykendall, Dobbs, and Mullins

Goal. Understand the antimatter property for semirings $\mathbb{N}_{\circ}[\alpha]$.

 $\mathbb{N}_0 := \{0, 1, 2, \dots, 6, 7, \dots\}$ denotes the nonnegative integers

- Not just a set, but has an operation addition
 - o Commutative, associative, and has identity (0)

Definition. Any set with a binary operation that satisfies the above properties is a monoid.

Multiplicative Closure

- \mathbb{N}_0 is a special monoid closed under multiplication
 - o Commutative, associative, has identity (1), and distributes over addition
- Can we find other monoids closed under multiplication?

Cyclic Extensions

The most natural way to extend \mathbb{N}_0 is to introduce an element

- Let $\alpha \in \mathbb{C}$ be any complex number
- Simply taking $\mathbb{N}_0 \cup \{\alpha\}$ might not produce a monoid it may not be possible to define addition or multiplication
 - Adding one element forces us to add more, like $6\alpha + \alpha^7$
- Instead, we must insert all finite sums of powers of α

Formalize with polynomial evaluation at α , like $6x + x^7$

Polynomial Evaluation

Definition. $\mathbb{N}_{0}[x] := \text{polynomials}$ with coefficients in \mathbb{N}_{0} .

• Analogous to $\mathbb{Z}[x]$

To ease notation, we denote $\mathbb{N}_{o}[\alpha]$ by $M_{\alpha} := \{p(\alpha) \mid p(x) \in \mathbb{N}_{o}[x]\}$

Definition. We call M_{α} the cyclic monoid generated by α

Example

When is M_{α} just the same as \mathbb{N}_0 ?

- If α is not already part of \mathbb{N}_{\circ} , then M_{α} strictly contains \mathbb{N}_{\circ}
- If α is already part of \mathbb{N}_{\circ} , then adjoining α does nothing

Remark. M_{α} is the *same monoid* as \mathbb{N}_{\circ} if and only if $\alpha \in \mathbb{N}_{\circ}$.

Isomorphism

What does it mean for two structures to be (essentially) the same?

- We can relabel their elements so they become indistinguishable
 - o Bijection invertible, i.e., one-to-one and onto
 - o Homomorphism compatible with operations of both monoids

Notation. This equivalence is denoted by \cong , read **isomorphic**.

$$M_{\alpha} \cong \mathbb{N}_{0}$$
 if and only if $\alpha \in \mathbb{N}_{0}$

Transcendental Extensions

What is M_{π} ?

- π is transcendental does not interact with anything else
- Similar to $\mathbb{N}_{0}[x]$, with the variable x

Remark. The monoid M_{π} is **isomorphic** to $\mathbb{N}_{\circ}[x]$.

Same happens with any transcendental

Algebraic Extensions

Definition. A complex number $\alpha \in \mathbb{C}$ is algebraic if α satisfies a nonzero polynomial with rational coefficients.

• Every complex number is either transcendental or algebraic

Convention. Throughout our talk, we tacitly assume α is algebraic.

Correa-Morris and Gotti (2022) provide the first systematic study of the atomicity and factorization of M_{α} for algebraic α

Minimal Polynomials

- Recall α is algebraic if it is a root of a polynomial in $\mathbb{Q}[x]$
- Many polynomials have α as a root
 - Restrict to polynomials with *least degree* possible
 - Restrict to monic polynomials leading coefficient is 1

Those two conditions guarantee a unique polynomial $m_{\alpha}(x) \in \mathbb{Q}[x]$

Definition. This $m_{\alpha}(x)$ is called the minimal polynomial of α .

Algebraic Conjugates

Each α is only associated with one $m_{\alpha}(x)$

• However, a particular $m_{\alpha}(x)$ may have many roots

Definition. α and β are (algebraic) conjugates if $m_{\alpha}(x) = m_{\beta}(x)$.

• **Example.** $\{6+7i, 6-7i\}$, or $\{\sqrt{67}, -\sqrt{67}\}$, or even $\{\sqrt[6]{7}, e^{i\pi/3}\sqrt[6]{7}\}$

Algebraic Conjugates (cont.)

Algebraic conjugates are roots to the same polynomials

Theorem (Correa-Morris and Gotti, 2022)

If α and β are algebraic conjugates, then $M_{\alpha} \cong M_{\beta}$.

Recall M_{α} refers to the additive structure of the semiring $\mathbb{N}_{0}[\alpha]$

• Example. $M_{\sqrt{67}} \cong M_{-\sqrt{67}}$ since $m_{\sqrt{67}}(x) = m_{-\sqrt{67}}(x) = x^2 - 67$

Positive Conjugates

Suppose α has a positive conjugate, say β

- M_β only has nonnegative elements
 The only element with an *additive inverse* is the identity element o
- $M_{\alpha} \cong M_{\beta}$ also has 0 as the only element with an additive inverse

Suppose α has no positive conjugates

- M_{α} is an abelian group (Gotti, Hong, and Li, 202?)
- Divisibility structure is uninteresting

Convention. We take α to be positive and algebraic.

Atoms

- We can build up $M_{\sqrt{67}}$ with 1 and $\sqrt{67}$
- 1 and $\sqrt{67}$ cannot be built up from other elements themselves

Definition. An element a is an atom if a is nonzero, and whenever b + c = a, then either b or c is 0.

- **Example.** If $\alpha > 1$, then 1 is an atom in M_{α}
- **Example.** 7 is never an atom since 1 + 6 = 7

Atoms are building blocks, like primes in the natural numbers

A Monoid with No Atoms

Definition. A monoid is **atomic** if every nonzero element can be decomposed as a sum of atoms.

- **Example.** $M_{1/7}$ is the set of all nonnegative fractions with the denominator a power of seven
 - $\circ \ a = \frac{6a}{7} + \frac{a}{7} \text{ for any } a \text{, so } a \text{ is never an atom}$
- $M_{1/7}$ has no atoms, so it is not atomic

Antimatterness

Definition. A monoid is **antimatter** if it contains no atoms.

• First studied by Coykendall, Dobbs, and Mullins (1999)

Are atomicity and antimatterness related?

Theorem (Correa-Morris and Gotti, 2022)

The following statements are equivalent for positive (algebraic) α .

- (a) M_{α} is atomic.
- (b) M_{α} is not antimatter.
- (c) 1 is an atom of M_{α} .

Rational Antimatter Monoids

Start with the case where α is rational — take $q \in \mathbb{Q}$ and q > 0

Proposition. M_q is antimatter $\iff q^{-1} > 1$ is an integer.

- If $q \ge 1$, then 1 is the *least non-zero element* (hence, atom) • We modify this argument slightly for q < 1
- **Example.** Generators in $M_{6/7}$ are 1, 6/7, $(6/7)^2 = 36/49$, and so on \circ 1 is the *least non-zero element with odd numerator* (hence, atom)
- More generally, 1 is an atom if q = 1 or q is not a unit fraction o From before, 1 is not an atom if q < 1 and q is a unit fraction

Algebraic Integers

 M_{α} can be antimatter even when α is irrational

• If $\alpha = 1/\sqrt[6]{7}$, then $\alpha^6 = 1/7$, so M_{α} is still antimatter

Lemma. If M_{α} is antimatter, then α^{-1} is an algebraic integer.

- Algebraic integers generalize the definition of the rational integers
 - \circ 67 is an integer, and $m_{67}(x) = x 67$
 - 6.7 is not an integer, and $m_{6.7}(x) = x 6.7$
- α is an algebraic integer if $m_{\alpha}(x) \in \mathbb{Z}[x]$

An Irrational Example

Example. For φ the golden ratio, $M_{\varphi^{-1}}$ is antimatter.

- $m_{\omega}(x) = x^2 x 1 \in \mathbb{Z}[x]$, which makes φ an algebraic integer
- Define $\alpha := \varphi^{-1}$, and manipulate to get $1 = \alpha + \alpha^2$
 - Hence $\alpha^n = \alpha^{n+1} + \alpha^{n+2}$ for every $n \in \mathbb{N}_2$
 - Indeed, for any $p(\alpha) \in M_{\alpha}$, then $p(\alpha) = p(\alpha)\alpha + p(\alpha)\alpha^2$
- Every element is a sum of smaller positive elements, so no atoms
- $M_{\varphi^{-1}}$ is antimatter

Antimatter Decomposition

Definition. For a given α , an antimatter decomposition of 1 is a polynomial $h(x) \in \mathbb{Z}[x]$ with a root at α such that each coefficient is nonnegative except for the constant term of -1.

Crucial part of $M_{\phi^{-1}}$ was decomposing 1 as the sum of powers of ϕ^{-1}

- Recall $1 = (\phi^{-1})^2 + \phi^{-1}$
- Equivalently, ϕ^{-1} is a root to $h(x) = x^2 + x 1$

Decomposition may not exist even when α^{-1} is an algebraic integer

Algebraic Integer Counterexample (cont.)

Proposition. If M_{α} is antimatter, then $m_{\alpha}(x)$ has one positive root.

Suppose $h(x) \in \mathbb{Z}[x]$ is any antimatter decomposition

- Aside from the constant, each coefficient is nonnegative \circ ax^n is increasing when $a, n \ge 0$, meaning h(x) as a whole is increasing
- h(x) has precisely one positive root by monotonicity
- Each root to $m_{\alpha}(x)$ is also a root to h(x)

Exact Characterization

The antimatter decomposition allows us to prove one more condition about the relative magnitudes of roots.

Theorem (Chen, Gotti, Lu, and Yao, 2025)

If $\alpha \in (0,1)$ is algebraic, then M_{α} is antimatter if and only if

- α has no positive conjugate aside from itself,
- α^{-1} is an algebraic integer, and
- $|\rho| \leqslant \alpha^{-1}$ for every conjugate ρ to α^{-1} .

- D.D. Anderson, D.F. Anderson, and M. Zafrullah (1990). "Factorization in integral domains". In: Journal of Pure and Applied Algebra 69.1.
- J. Coykendall, D.E. Dobbs, and B. Mullins (1999). "On integral domains with no atoms". In: Communications in Algebra 27.12.
- F. Gotti and M. Gotti (2017). "Atomicity and boundedness of monotone Puiseux monoids". In: Semigroup Forum 96.3.
- J. Correa-Morris and F. Gotti (2022). "On the additive structure of algebraic valuations of polynomial semirings". In: Journal of Pure and Applied Algebra 226.11.
- F. Gotti, L. Hong, and B. Li (202?). "On divisibility and factorizations in cyclic semidomains". Preprint (Submitted).

Thank you!

The presenters

- deeply appreciate their wonderful mentor Dr. Felix Gotti for his constant guidance, encouragement, and wisdom, and for guiding us through this research project,
- are incredibly indebted to the MIT PRIMES-USA program and its organizers for making this collaboration possible,
- and thank our **families** and **friends** for their support throughout the research processs.