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Overview

• Certain subsets ofC, which are closed under both standard
addition andmultiplication, are called semirings

• N0 is a semiring, and we can consider its simple extensionsN0[α]

• Formally, for α ∈ C, we setN0[α] := {f (α) | f (x) ∈N0[x]}
◦ HereN0[x] is the set of polyonomials with nonnegative integer coefficients

• N0[α] has been actively studied in recent literature
(by Chapman, Gotti, Polo, et al.)



Introduction Background Antimatterness References

Overview (cont.)

OurMain Algebraic Objects.

N0[α] := {f (α) : f (x) ∈N0[x]}

• An algebraic structure with no irreducibles is called antimatter

• Introduced in 1999 by Coykendall, Dobbs, andMullins

Goal. Understand the antimatter property for semiringsN0[α].



Introduction Background Antimatterness References

ThePrototypical Monoid

N0 := {0, 1, 2, . . . , 6, 7, . . . } denotes the nonnegative integers

• Not just a set, but has an operation— addition
◦ Commutative, associative, and has identity (0)

Definition. Any set with a binary operation that satisfies the above
properties is amonoid.
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Multiplicative Closure

• N0 is a special monoid— closed under multiplication
◦ Commutative, associative, has identity (1), and distributes over addition

• Can we find other monoids closed under multiplication?
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Cyclic Extensions

Themost natural way to extendN0 is to introduce an element

• Let α ∈ C be any complex number
• Simply takingN0 ∪ {α}might not produce a monoid— it may not
be possible to define addition or multiplication
◦ Adding one element forces us to addmore, like 6α+ α7

• Instead, wemust insert all finite sums of powers of α

Formalize with polynomial evaluation at α, like 6x + x7
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Polynomial Evaluation

Definition.N0[x] := polynomialswith coefficients inN0.

• Analogous toZ[x]

To ease notation, we denoteN0[α] byMα := {p(α) | p(x) ∈N0[x]}

Definition.We callMα the cyclicmonoid generated by α
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Example

When isMα just the same asN0?

• If α is not already part ofN0, thenMα strictly containsN0

• If α is already part ofN0, then adjoining α does nothing

Remark.Mα is the samemonoid asN0 if and only if α ∈N0.
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Isomorphism

What does it mean for two structures to be (essentially) the same?
• We can relabel their elements so they become indistinguishable

◦ Bijection— invertible, i.e., one-to-one and onto
◦ Homomorphism— compatible with operations of both monoids

Notation.This equivalence is denoted by ∼=, read isomorphic.

Mα
∼=N0 if and only if α ∈N0
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Transcendental Extensions

What isMπ?

• π is transcendental—does not interact with anything else

• Similar toN0[x], with the variable x

Remark.ThemonoidMπ is isomorphic toN0[x].

Same happens with any transcendental
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Algebraic Extensions

Definition. A complex number α ∈ C is algebraic if α satisfies a
nonzero polynomial with rational coefficients.

• Every complex number is either transcendental or algebraic

Convention.Throughout our talk, we tacitly assumeα is algebraic.

Correa-Morris and Gotti (2022) provide the first systematic study of
the atomicity and factorization ofMα for algebraic α
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Minimal Polynomials

• Recall — α is algebraic if it is a root of a polynomial inQ[x]
• Many polynomials have α as a root

◦ Restrict to polynomials with least degree possible
◦ Restrict tomonic polynomials — leading coefficient is 1

Those two conditions guarantee a unique polynomialmα(x) ∈ Q[x]

Definition.Thismα(x) is called theminimal polynomial of α.
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Algebraic Conjugates

Each α is only associated with onemα(x)

• However, a particularmα(x)may have many roots

Definition. α andβ are (algebraic) conjugates ifmα(x) = mβ(x).

• Example. {6+ 7i, 6− 7i}, or {
√
67, −

√
67}, or even { 6

√
7, eiπ/3 6

√
7}
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Algebraic Conjugates (cont.)

Algebraic conjugates are roots to the same polynomials

Theorem (Correa-Morris andGotti, 2022)
If α andβ are algebraic conjugates, thenMα

∼= Mβ.

RecallMα refers to the additive structure of the semiringN0[α]

• Example.M√
67

∼= M−
√
67 since m√

67(x) = m−
√
67(x) = x2 − 67
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Positive Conjugates
Suppose α has a positive conjugate, sayβ
• Mβ only has nonnegative elements

◦ The only element with an additive inverse is the identity element 0

• Mα
∼= Mβ also has 0 as the only element with an additive inverse

Suppose α has no positive conjugates

• Mα is an abelian group (Gotti, Hong, and Li, 202?)

• Divisibility structure is uninteresting

Convention.We take α to be positive and algebraic.
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Atoms

• We can build upM√
67 with 1 and

√
67

• 1 and
√
67 cannot be built up from other elements themselves

Definition. An element a is an atom if a is nonzero, and whenever
b+ c = a, then either b or c is 0.

• Example. If α > 1, then 1 is an atom inMα

• Example. 7 is never an atom since 1+ 6 = 7

Atoms are building blocks, like primes in the natural numbers
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AMonoid with No Atoms

Definition. A monoid is atomic if every nonzero element can be
decomposed as a sum of atoms.

• Example.M1/7 is the set of all nonnegative fractions with the
denominator a power of seven

◦ a =
6a
7
+
a
7
for any a, so a is never an atom

• M1/7 has no atoms, so it is not atomic
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Antimatterness

Definition. Amonoid is antimatter if it contains no atoms.

• First studied by Coykendall, Dobbs, andMullins (1999)

Are atomicity and antimatterness related?

Theorem (Correa-Morris andGotti, 2022)
The following statements are equivalent for positive (algebraic) α.
(a) Mα is atomic.
(b) Mα is not antimatter.
(c) 1 is an atom ofMα.
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Rational AntimatterMonoids

Start with the case where α is rational — take q ∈ Q and q > 0

Proposition.Mq is antimatter⇐⇒ q−1 > 1 is an integer.

• If q ⩾ 1, then 1 is the least non-zero element (hence, atom)
◦ Wemodify this argument slightly for q < 1

• Example. Generators inM6/7 are 1, 6/7, (6/7)2 = 36/49, and so on
◦ 1 is the least non-zero element with odd numerator (hence, atom)

• More generally, 1 is an atom if q = 1 or q is not a unit fraction
◦ From before, 1 is not an atom if q < 1 and q is a unit fraction
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Algebraic Integers

Mα can be antimatter even when α is irrational

• If α = 1/ 6
√
7, then α6 = 1/7, soMα is still antimatter

Lemma. IfMα is antimatter, then α−1 is an algebraic integer.

• Algebraic integers generalize the definition of the rational integers
◦ 67 is an integer, andm67(x) = x − 67
◦ 6.7 is not an integer, andm6.7(x) = x − 6.7

• α is an algebraic integer ifmα(x) ∈ Z[x]
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An Irrational Example

Example. Forφ the golden ratio,Mφ−1 is antimatter.

• mφ(x) = x2 − x − 1 ∈ Z[x], which makesφ an algebraic integer

• Define α := φ−1, andmanipulate to get 1 = α+ α2

◦ Hence αn = αn+1 + αn+2 for every n ∈N0
◦ Indeed, for any p(α) ∈ Mα, then p(α) = p(α)α+ p(α)α2

• Every element is a sum of smaller positive elements, so no atoms

• Mφ−1 is antimatter
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Antimatter Decomposition

Definition. For a given α, an antimatter decomposition of 1 is a
polynomial h(x) ∈ Z[x]with a root at α such that each coefficient
is nonnegative except for the constant term of−1.

Crucial part ofMφ−1 was decomposing 1 as the sum of powers ofφ−1

• Recall 1 = (φ−1)2 +φ−1

• Equivalently,φ−1 is a root to h(x) = x2 + x − 1

Decomposition may not exist even when α−1 is an algebraic integer
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Algebraic Integer Counterexample (cont.)

Proposition. IfMα is antimatter, thenmα(x) has one positive root.

Suppose h(x) ∈ Z[x] is any antimatter decomposition
• Aside from the constant, each coefficient is nonnegative

◦ axn is increasing when a, n ⩾ 0, meaning h(x) as a whole is increasing

• h(x) has precisely one positive root by monotonicity

• Each root tomα(x) is also a root to h(x)
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Exact Characterization

The antimatter decomposition allows us to prove one more condition
about the relative magnitudes of roots.

Theorem (Chen, Gotti, Lu, and Yao, 2025)
If α ∈ (0, 1) is algebraic, thenMα is antimatter if and only if
• α has no positive conjugate aside from itself,
• α−1 is an algebraic integer, and
• |ρ| ⩽ α−1 for every conjugate ρ to α−1.
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Thank you!
Thepresenters
• deeply appreciate their wonderful mentor Dr. Felix Gotti for
his constant guidance, encouragement, and wisdom, and for
guiding us through this research project,

• are incredibly indebted to theMIT PRIMES-USA program and
its organizers for making this collaboration possible,

• and thank our families and friends for their support through-
out the research processs.
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