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General Notation

N:={1,2,3,...}.

No:={0,1,2,...} = {0} UN.

@, R, and C denote the set of rational numbers, real numbers, and
complex numbers, respectively.

o P denotes the set of prime numbers.
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What is a Monoid?

Definition. A monoid M = (M, x) is defined as a nonempty set with a
binary operation * : M x M — M satisfying the following.

o It Is Associative: For any b, c,d € M, we have
(bxc)xd=bx(cxd).

o It Has an ldentity: There exists an element e of M (often denoted
by 0 or 1) such that ex b=bxe = b forall be M.
Examples.
@ (N,-) is a monoid with identity element 1.
@ (Np, +) is a monoid with identity element 0.

© ({0} UN>p,+) is a monoid with identity 0.
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Commutativity and Cancellativity

Let (M, %) be a monoid.

Definitions.
@ (M, x) is said to be commutative if bx c = ¢ b for all b,c € M.
@ (M, ) is said to be cancellative if a* ¢ = b* ¢ implies a = b for all

a,b,ce M.

Remark. From now on, we tacitly assume that all monoids we deal with
here are commutative and, unless we say otherwise, cancellative.
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Examples of Monoids

Examples.
Q@ (Np, +) is a monoid under the standard addition.

o We use Nj to denote this monoid when it is clear from context.
@ (Np,-) is a monoid under the standard multiplication.

o It is not cancellative because 0-1=0-2=0, but 1 # 2.
@ (N,) is a monoid.

o We will use N to denote this monoid.

© (4Np + 1,-) consists of the positive integers that are 1 (mod 4).
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Units and Abelian Groups

Let (M, %) be a monoid.

Definitions.

@ An element u € M is called a unit if there exists u=! € M such that
uxu~l is the identity element. The set of units is denoted by U/(M).

@ An abelian group G = (G, ) is a commutative monoid with the
additional property that every element b € G is a unit.

Examples.
@ 0 is the only unit of Ny.
@ 1 is the only unit of N.
@ =1 are the units of (Z\{0},).

Q (Z/pZ\{0},-) (nonzero integers modulo p under multiplication) is a
group.
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Divisibility and Associates

Let (M, %) be a monoid.

Definitions.

@ An element a is said to divide an element b if there exists an
element ¢ € M such that a* ¢ = b. This is denoted by a |y b.

@ Two elements b, c € M are associates if and only if there exists a
u € U(M) such that b = c* u. This is equivalent to b |y ¢ and
C |M b.
Examples.

@ For any a,b € Ny we have a |y, b if and only if a < b.

@ In M := ({0} UN>,,+), we have 2 divides 5 (as 3 € M), but 4
does not divide 5 (as 1 ¢ M).

@ In (Z\{0},-), the numbers —n and n are associates for any n € N
since —1 is a unit.
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Integral Domain

Definition. An integral domain is a triple (R, +,-) consisting of a
nonempty set and two binary operations satisfying the following:

@ (R,+) forms an abelian group with identity Og.

@ R is closed under multiplication, the operation - is associative, and
(R,-) has 1g as an identity element.

@ The identity a- (b+c)=a-b+a-c holds for all a,b,c € R
(the distributive law holds!).

@ There are no nonzero zero-divisors or, equivalently, if a- b =0 for

some a,b € R, then either a=0or b =0.

Remark. We assume that Og # 1g in any integral domain R as
otherwise R is trivial (i.e., R contains exactly one element).
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Examples of Integral Domains

Examples.
Q (Z,+,") is the prototypical integral domain.
@ (Z/nZ,+,-) for n € N>, is an integral domain if and only if n € P.

o For n € P and any a, b € Z/nZ, we have that ab=0 (mod n)
implies a=0 (mod n) or b =0 (mod n).

o For n composite, there exist positive integers a, b € (1, n) such that
ab=nsoab=0 (mod n), but a,b# 0 (mod n).

@ Z[i):={a+ bi:a,beZ}, called the ring of Gaussian integers, is
also an integral domain under the standard complex addition and
multiplication.
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Irreducibles

Let (M, %) be a monoid.

Definition.

@ A nonunit element b of M is called an irreducible if there do not
exist nonunits ¢, d € M such that b= c*d.

Examples.
@ The only irreducible of Ny is 1.
@ The irreducibles of N are P.
@ The irreducibles of ({0} UN>,, +) are {2,3}.

o 0 is a unit so it is not an irreducible.

o Forn>4,wehave n=2+(n—2),and n—2>2son—2¢& N>,.
This means n is not an irreducible.

e Since 1 is not in the monoid, the only decomposition of 2 is 2 4 0,
but 0 is a unit, so 2 is an irreducible.

o Similarly, the only decomposition of 3 is 3+ 0, so 3 is also an
irreducible.

Grant Blitz, Darren Han, and Hengrui Liang

Maximal Common Divisors (MCDs) in Monoids and Rings



Let (M, %) be a monoid.

Definition.

@ An element b € M\U(M) is called atomic if it can be written as a
finite product of irreducibles.

o If every b € M\U(M) is atomic, the monoid M is called an atomic
monoid.

Example. ({0} UN>5,+) is atomic since every positive even integer can
be expressed as

2n =242+ ---+2,
—_——
n2's
and every positive odd integer at least 3 can be expressed as
2n+3=3+4+2+2+4---+2.
—_———

n2's

Example. N is atomic by the Fundamental Theorem of Arithmetic.
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Maximal Common Divisors

Let (M, %) be a monoid.

Definition. An element d € M is called a maximal common divisor
(MCD) of subset S C M if theset S—d:={s—d:s & S} hasno
nonunit common divisors. We let mcd(S) denote the set of MCDs of S.

Example. In the monoid M := ({0} UN>,, +), the set {5,6} has
nonzero common divisors 2, 3, both of which are MCDs.

@ 5 has divisors 0,2, 3,5.
@ 6 has divisors 0,2, 3,4,6.

The common divisors are 0,2, 3.

Since 5 =2+ 3 and 6 =2+ 4, and the elements 3 and 4 have no
nonzero common divisor, then 2 is an MCD of {5,6}.

Similarly 5 =342 and 6 = 3 + 3, and the elements 2 and 3 have
no nonzero common divisor (both are irreducibles), so 3 is also an
MCD.
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The MCD and MCD-finite Properties

Let (M, %) be a monoid.
Recall. An element d € M is an MCD of a nonempty subset S of M if
S—d:={s—d:s €S} has no nonunit common divisors.

Definitions.

@ M is called an MCD monoid if every finite nonempty subset S C M
has at least one MCD.

@ M is called an MCD-finite monoid if every finite nonempty subset
S C M has finitely many MCDs (possibly zero) up to associates.
Examples.

@ Nj is both an MCD and MCD-finite monoid as a |y b if a < b, so
mcd(S) = min(S), so every set has exactly one MCD.

@ Nis both an MCD and an MCD-finite monoid as mcd(S) = gcd(S),
so every set has exactly one MCD.
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Finitary Power Monoids

Let (M, +) be a monoid.

Definition. The sumset of two subsets A, B of M is defined as

A+B:={a+b:(ab) e Ax B}

Example. Let M = Np.
0 {2} +{1,3} ={3,5}.
Q {1,2} +{1,3} ={2,3,4,5}.
Definition. Pg, (M) denotes the finitary power monoid of M, which is

the monoid containing all the finite nonempty subsets of M with the
sumset operation.
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Restricted Power Monoids

Definition. Pg,, /(M) denotes the restricted power monoid of M, which
is the monoid containing all the finite nonempty subsets of M such that
every subset contains an element of /(M) under the sumset operation.

Example. Let M = Np.
Q {0,1,2} +{0,1} ={0,1,2,3}.
@ {0,2} +{0,1} ={0,1,2,3}.

Remark. Power monoids are not necessarily cancellative. In the example
above, {0,1} cannot be canceled.
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MCD and MCD-finite Property in Power Monoids

Question. If M is an MCD monoid, must P, (M) be an MCD monoid?

Theorem (Dani-Gotti-Hong-Li-Schlessinger, 2025)

If M is an MCD monoid, so is Pgn(M).

Question. If M is an MCD-finite monoid, must Pg,(M) be an
MCD-finite monoid?

Theorem (Blitz-Han-Gotti-Liang, 2025)

If M is an MCD-finite monoid, so is Pgn(M).

Question. If M is an MCD-finite monoid, must Pgy, /(M) be an
MCD-finite monoid?

Theorem (Blitz-Han-Gotti-Liang, 2025)

If M is an MCD-finite monoid, so is Pan 11(M).
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What Is a Monoid Algebras

Definition. Let R be an integral domain and M be a monoid. The
monoid algebra of M over R is the set of polynomial expressions with
coefficients in R and exponents in M:

R[M] := {Zr,-x'"":r,-e R, m; € M for all 1§i§n}.
i=1

Remark. R[M] is a integral domain under the standard polynomial-like
addition and multiplication.
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Operations in Monoid Algebras

Example. Consider the monoid algebra Z[Q>¢] and elements
f=x2+2x? and g = x2 — 1.
f+g:x2—|—2x% +x2—1
=x*+3x7 — 1.

fog=("+2x2)(x? — 1)
=x2.x7 —x2.1+2x7 - x3 —2x

[N
[y

5 1
= x2 — x? + 2x — 2x2.
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Atomicity in Polynomial Domains

Definition. R[x] denotes the integral domain of polynomials with
coefficients in R: it is indeed the monoid algebra R[Ny] of Ny over R.

Question. If R is an atomic integral domain, must the polynomial
extension R[x] also be an atomic integral domain?

Theorem (Roitman, 1993)

There exists an atomic integral domain R such that its polynomial
extension R[x] is not atomic.

Theorem (Roitman, 1993)

If R is an atomic and MCD integral domain, then the polynomial
extension R[x| also an atomic integral domain.
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Atomicity in Monoid Algebras

Question. If a monoid M is atomic, must the monoid algebra R[M] be
atomic for every integral domain R?

Theorem (Gotti-Rabinovitz, 2025)

There exists an atomic monoid M such that the monoid algebra R[M] is
not atomic for any integral domain R.

Question. What if we restrict our attention to MCD monoids M?

Theorem (Blitz-Han-Gotti-Liang, 2025)

There exists an atomic and MCD monoid M such that F,[M)] is not
atomic for any prime p (F, is the field of p elements).
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End of Presentation

Thank you for your time!
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