Maximal Common Divisors (MCDs) in Monoids and Rings

Grant Blitz, Darren Han, and Hengrui Liang

(Research Mentor: Dr. Felix Gotti)

PRIMES-USA 2025

Fall-Term PRIMES Conference

October 18

Table of Contents

Preliminaries and Background

Maximal Common Divisors in Power Monoids

MCDs in Monoid Algebras

General Notation

- $\mathbb{N} := \{1, 2, 3, \ldots\}.$
- $\mathbb{N}_0 := \{0, 1, 2, \ldots\} = \{0\} \cup \mathbb{N}.$
- ullet Q, \mathbb{R} , and \mathbb{C} denote the set of rational numbers, real numbers, and complex numbers, respectively.
- P denotes the set of prime numbers.

What is a Monoid?

Definition. A monoid M = (M, *) is defined as a nonempty set with a binary operation $*: M \times M \to M$ satisfying the following.

- It Is Associative: For any $b, c, d \in M$, we have (b*c)*d = b*(c*d).
- It Has an Identity: There exists an element e of M (often denoted by 0 or 1) such that e*b=b*e=b for all $b\in M$.

- \bullet (\mathbb{N}, \cdot) is a monoid with identity element 1.
- $(\mathbb{N}_0,+)$ is a monoid with identity element 0.

Commutativity and Cancellativity

Let (M, *) be a monoid.

Definitions.

- (M,*) is said to be commutative if b*c = c*b for all $b,c \in M$.
- (M,*) is said to be cancellative if a*c = b*c implies a = b for all $a,b,c \in M$.

Remark. From now on, we tacitly assume that all monoids we deal with here are *commutative* and, unless we say otherwise, *cancellative*.

Examples of Monoids

- \bullet (\mathbb{N}_0 , +) is a monoid under the standard addition.
 - We use \mathbb{N}_0 to denote this monoid when it is clear from context.
- (\mathbb{N}_0,\cdot) is a monoid under the standard multiplication.
 - It is **not** cancellative because $0 \cdot 1 = 0 \cdot 2 = 0$, but $1 \neq 2$.
- - We will use N to denote this monoid.
- **①** $(4\mathbb{N}_0 + 1, \cdot)$ consists of the positive integers that are 1 (mod 4).

Units and Abelian Groups

Let (M, *) be a monoid.

Definitions.

- An element $u \in M$ is called a <u>unit</u> if there exists $u^{-1} \in M$ such that $u * u^{-1}$ is the identity element. The set of units is denoted by $\mathcal{U}(M)$.
- An abelian group G = (G, *) is a commutative monoid with the additional property that every element $b \in G$ is a unit.

- lacksquare 0 is the only unit of \mathbb{N}_0 .
- ② 1 is the only unit of \mathbb{N} .
- **3** ± 1 are the units of $(\mathbb{Z}\setminus\{0\},\cdot)$.
- **①** $(\mathbb{Z}/p\mathbb{Z}\setminus\{0\},\cdot)$ (nonzero integers modulo p under multiplication) is a group.

Divisibility and Associates

Let (M, *) be a monoid.

Definitions.

- An element a is said to divide an element b if there exists an element $c \in M$ such that a * c = b. This is denoted by $a \mid_M b$.
- Two elements $b, c \in M$ are associates if and only if there exists a $u \in \mathcal{U}(M)$ such that b = c * u. This is equivalent to $b \mid_M c$ and $c \mid_M b$.

- **①** For any $a, b \in \mathbb{N}_0$ we have $a \mid_{\mathbb{N}_0} b$ if and only if $a \leq b$.
- ② In $M := (\{0\} \cup \mathbb{N}_{\geq 2}, +)$, we have 2 divides 5 (as $3 \in M$), but 4 does not divide 5 (as $1 \notin M$).
- **③** In $(\mathbb{Z}\setminus\{0\},\cdot)$, the numbers -n and n are associates for any $n \in \mathbb{N}$ since -1 is a unit.

Integral Domain

Definition. An integral domain is a triple $(R, +, \cdot)$ consisting of a nonempty set and two binary operations satisfying the following:

- (R, +) forms an abelian group with identity 0_R .
- R is closed under multiplication, the operation \cdot is associative, and (R, \cdot) has 1_R as an identity element.
- The identity $a \cdot (b+c) = a \cdot b + a \cdot c$ holds for all $a, b, c \in R$ (the distributive law holds!).
- There are no nonzero zero-divisors or, equivalently, if $a \cdot b = 0$ for some $a, b \in R$, then either a = 0 or b = 0.

Remark. We assume that $0_R \neq 1_R$ in any integral domain R as otherwise R is trivial (i.e., R contains exactly one element).

Examples of Integral Domains

- \bullet $(\mathbb{Z},+,\cdot)$ is the prototypical integral domain.
- ② $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ for $n\in\mathbb{N}_{\geq 2}$ is an integral domain if and only if $n\in\mathbb{P}$.
 - For $n \in \mathbb{P}$ and any $a, b \in \mathbb{Z}/n\mathbb{Z}$, we have that $ab \equiv 0 \pmod{n}$ implies $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$.
 - For *n* composite, there exist positive integers $a, b \in (1, n)$ such that ab = n so $ab \equiv 0 \pmod{n}$, but $a, b \not\equiv 0 \pmod{n}$.
- **3** $\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\}$, called the ring of Gaussian integers, is also an integral domain under the standard complex addition and multiplication.

Irreducibles

Let (M, *) be a monoid.

Definition.

• A nonunit element b of M is called an irreducible if there do not exist nonunits $c, d \in M$ such that b = c * d.

- **①** The only irreducible of \mathbb{N}_0 is 1.
- **2** The irreducibles of \mathbb{N} are \mathbb{P} .
- $\bullet \ \ \, \text{The irreducibles of } (\{0\} \cup \mathbb{N}_{\geq 2}, +) \text{ are } \{2,3\}.$
 - 0 is a unit so it is not an irreducible.
 - For $n \ge 4$, we have n = 2 + (n 2), and $n 2 \ge 2$ so $n 2 \in \mathbb{N}_{\ge 2}$. This means n is not an irreducible.
 - Since 1 is not in the monoid, the only decomposition of 2 is 2 + 0, but 0 is a unit, so 2 is an irreducible.
 - Similarly, the only decomposition of 3 is 3 + 0, so 3 is also an irreducible.

Atomicity

Let (M, *) be a monoid.

Definition.

- An element $b \in M \setminus \mathcal{U}(M)$ is called atomic if it can be written as a finite product of irreducibles.
- If every $b \in M \setminus \mathcal{U}(M)$ is atomic, the monoid M is called an atomic monoid.

Example. ($\{0\} \cup \mathbb{N}_{\geq 2}, +$) is atomic since every positive even integer can be expressed as

$$2n = \underbrace{2+2+\cdots+2}_{n \text{ 2's}},$$

and every positive odd integer at least 3 can be expressed as

$$2n + 3 = 3 + \underbrace{2 + 2 + \dots + 2}_{n \ 2's}.$$

Example. \mathbb{N} is atomic by the Fundamental Theorem of Arithmetic.

Maximal Common Divisors

Let (M, *) be a monoid.

Definition. An element $d \in M$ is called a maximal common divisor (MCD) of subset $S \subseteq M$ if the set $S - d := \{s - d : s \in S\}$ has no nonunit common divisors. We let mcd(S) denote the set of MCDs of S.

Example. In the monoid $M := (\{0\} \cup \mathbb{N}_{\geq 2}, +)$, the set $\{5, 6\}$ has nonzero common divisors 2, 3, both of which are MCDs.

- 5 has divisors 0, 2, 3, 5.
- 6 has divisors 0, 2, 3, 4, 6.
- The common divisors are 0, 2, 3.
- Since 5 = 2 + 3 and 6 = 2 + 4, and the elements 3 and 4 have no nonzero common divisor, then 2 is an MCD of $\{5,6\}$.
- Similarly 5 = 3 + 2 and 6 = 3 + 3, and the elements 2 and 3 have no nonzero common divisor (both are irreducibles), so 3 is also an MCD.

The MCD and MCD-finite Properties

Let (M, *) be a monoid.

Recall. An element $d \in M$ is an MCD of a nonempty subset S of M if $S - d := \{s - d : s \in S\}$ has no nonunit common divisors.

Definitions.

- M is called an MCD monoid if every finite nonempty subset $S \subseteq M$ has at least one MCD.
- M is called an MCD-finite monoid if every finite nonempty subset $S \subseteq M$ has finitely many MCDs (possibly zero) up to associates.

- **①** \mathbb{N}_0 is both an MCD and MCD-finite monoid as $a \mid_M b$ if $a \leq b$, so mcd(S) = min(S), so every set has exactly one MCD.
- ② \mathbb{N} is both an MCD and an MCD-finite monoid as mcd(S) = gcd(S), so every set has exactly one MCD.

Finitary Power Monoids

Let (M, +) be a monoid.

Definition. The sumset of two subsets A, B of M is defined as

$$A + B := \{a + b : (a, b) \in A \times B\}.$$

Example. Let $M = \mathbb{N}_0$.

Definition. $\mathcal{P}_{\text{fin}}(M)$ denotes the finitary power monoid of M, which is the monoid containing all the finite nonempty subsets of M with the sumset operation.

Restricted Power Monoids

Definition. $\mathcal{P}_{\text{fin},\mathcal{U}}(M)$ denotes the restricted power monoid of M, which is the monoid containing all the finite nonempty subsets of M such that every subset contains an element of $\mathcal{U}(M)$ under the sumset operation.

Example. Let $M = \mathbb{N}_0$.

Remark. Power monoids are not necessarily cancellative. In the example above, $\{0,1\}$ cannot be canceled.

MCD and MCD-finite Property in Power Monoids

Question. If M is an MCD monoid, must $\mathcal{P}_{fin}(M)$ be an MCD monoid?

Theorem (Dani-Gotti-Hong-Li-Schlessinger, 2025)

If M is an MCD monoid, so is $\mathcal{P}_{fin}(M)$.

Question. If M is an MCD-finite monoid, must $\mathcal{P}_{\mathrm{fin}}(M)$ be an MCD-finite monoid?

Theorem (Blitz-Han-Gotti-Liang, 2025)

If M is an MCD-finite monoid, so is $\mathcal{P}_{fin}(M)$.

Question. If M is an MCD-finite monoid, must $\mathcal{P}_{\mathrm{fin},\mathcal{U}}(M)$ be an MCD-finite monoid?

Theorem (Blitz-Han-Gotti-Liang, 2025)

If M is an MCD-finite monoid, so is $\mathcal{P}_{\mathrm{fin},\mathcal{U}}(M)$.

What Is a Monoid Algebras

Definition. Let R be an integral domain and M be a monoid. The monoid algebra of M over R is the set of polynomial expressions with coefficients in R and exponents in M:

$$R[M] := \left\{ \sum_{i=1}^n r_i x^{m_i} : r_i \in R, m_i \in M \text{ for all } 1 \leq i \leq n \right\}.$$

Remark. R[M] is a integral domain under the standard polynomial-like addition and multiplication.

Operations in Monoid Algebras

Example. Consider the monoid algebra $\mathbb{Z}[\mathbb{Q}_{\geq 0}]$ and elements $f = x^2 + 2x^{\frac{1}{2}}$ and $g = x^{\frac{1}{2}} - 1$.

$$f + g = x^{2} + 2x^{\frac{1}{2}} + x^{\frac{1}{2}} - 1$$
$$= x^{2} + 3x^{\frac{1}{2}} - 1.$$

$$f \cdot g = (x^2 + 2x^{\frac{1}{2}})(x^{\frac{1}{2}} - 1)$$

$$= x^2 \cdot x^{\frac{1}{2}} - x^2 \cdot 1 + 2x^{\frac{1}{2}} \cdot x^{\frac{1}{2}} - 2x^{\frac{1}{2}} \cdot 1$$

$$= x^{\frac{5}{2}} - x^2 + 2x - 2x^{\frac{1}{2}}.$$

Atomicity in Polynomial Domains

Definition. R[x] denotes the integral domain of polynomials with coefficients in R: it is indeed the monoid algebra $R[\mathbb{N}_0]$ of \mathbb{N}_0 over R.

Question. If R is an atomic integral domain, must the polynomial extension R[x] also be an atomic integral domain?

Theorem (Roitman, 1993)

There exists an atomic integral domain R such that its polynomial extension R[x] is not atomic.

Theorem (Roitman, 1993)

If R is an atomic and MCD integral domain, then the polynomial extension R[x] also an atomic integral domain.

Atomicity in Monoid Algebras

Question. If a monoid M is atomic, must the monoid algebra R[M] be atomic for every integral domain R?

Theorem (Gotti-Rabinovitz, 2025)

There exists an atomic monoid M such that the monoid algebra R[M] is not atomic for any integral domain R.

Question. What if we restrict our attention to MCD monoids M?

Theorem (Blitz-Han-Gotti-Liang, 2025)

There exists an atomic and MCD monoid M such that $\mathbb{F}_p[M]$ is not atomic for any prime p (\mathbb{F}_p is the field of p elements).

References

J. Dani, F. Gotti, L. Hong, B. Li, and S. Schlessinger, *On finitary power monoids of linearly orderable monoids*, ArXiv, arxiv.org/abs/2501.03407.

S. Eftekhari and M. R. Khorsandi, *MCD-finite domains and ascent of IDF-property in polynomial extensions*, Comm. Algebra **46** (2018) 3865–3872.

R. Gilmer and T. Parker, *Divisibility properties in semigroup rings*, Michigan Math. J. **21** (1974) 65–86.

V. Gonzalez, E. Li, H. Rabinovitz, P. Rodriguez, and M. Tirador, *On the atomicity of power monoids of Puiseux monoids*, Internat. J. Algebra Comput. **35** (2025) 167–181.

F. Gotti and H. Rabinovitz, *On the ascent of atomicity to monoid algebras*, J. Algebra **663** (2025) 857–881.

F. W. Levi, *Arithmetische Gesetze im Gebiete diskreter Gruppen*, Rend. Circ. Mat. Palermo **35** (1913) 225–236.

M. Roitman, *Polynomial extensions of atomic domains*, J. Pure Appl. Algebra **87** (1993) 187–199.

Acknowledgments

The authors would like to thank

- Dr. Felix Gotti for mentoring this project,
- PRIMES-USA for allowing us to conduct rewarding mathematical research.

End of Presentation

Thank you for your time!