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A domain is a ring where the only zero divisor is 0.
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A noninvertible element p of a ring R is prime if p | ab implies p | a or p | b.
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Background

@ We will consider only commutative rings with identity.

Definition

A zero divisor in a ring is an element r such that rt = 0 for some nonzero t.

Definition

A domain is a ring where the only zero divisor is 0.

e Ex. Z,Q,R,C,Zx,y]

Definition

A noninvertible element p of a ring R is prime if p | ab implies p | a or p | b.

e Ex. 2,3,5,7,--- € Z,x € Z[x]

Definition

We call a ring T a ring extension of R if R is a subring of T.

o Ex. Z C Z[i]
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Introducing the Problem

Given a ring extension R C T with p prime in R, when does p remain stable, or
when is p prime, in intermediate rings RC S C T?
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Introducing the Problem

Given a ring extension R C T with p prime in R, when does p remain stable, or
when is p prime, in intermediate rings RC S C T?

Consider R = Z and T = Z][i] for p = 3. Note that p is not prime in the
intermediate ring S = Z[3/], as (3/)*> = —3- 3 but 3 {737 3/, so prime stability does
not hold in this case. )
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Introducing the Problem

Given a ring extension R C T with p prime in R, when does p remain stable, or
when is p prime, in intermediate rings RC S C T?

A\

Consider R = Z and T = Z][i] for p = 3. Note that p is not prime in the
intermediate ring S = Z[3/], as (3/)*> = —3- 3 but 3 {737 3/, so prime stability does
not hold in this case.

A

Theorem (de Castro, 2020)

Let Z|w] be a quadratic integer ring, and consider Z C Z[nw] C Z[w]. Let p € Z be
prime in both Z and Z[w]. Then p is prime in Z[nw] if and only if gcd(n, p) = 1.
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Prime Stability in 1-Dimensional Integral Overrings

Definition

A domain R is 1-dimensional if every nonzero prime ideal in R is maximal.
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Definition

A domain R is 1-dimensional if every nonzero prime ideal in R is maximal.

o Z,Q[x] are both 1-dimensional.

o Every nonzero prime ideal in Z is (p) for some prime number p. If x ¢ (p),
then (p, x) = Z according to Bezout's theorem, so (p) is maximal in Z.
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Prime Stability in 1-Dimensional Integral Overrings

Definition

A domain R is 1-dimensional if every nonzero prime ideal in R is maximal.

o Z,Q[x] are both 1-dimensional.

o Every nonzero prime ideal in Z is (p) for some prime number p. If x ¢ (p),
then (p, x) = Z according to Bezout's theorem, so (p) is maximal in Z.

Definition

Let R C T be domains. We say that T is an overring of R if T is a subring of the
quotient field of R.

@ Z[i] is not an overring of Z because Z[i] is not inside Frac(Z) = Q.

o ZJi] is an overring of Z[2i] because they have the same quotient field Q(/).
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Prime Stability in 1-Dimensional Integral Overrings

Definition
Let R C T be domains. We say that this extension is integral if every element of
T is a root of a monic polynomial from R[x].

-
In Z[i], the element i is a root of x*> 4+ 1 = 0. More generally, the element

a+ bi € Z[i] is a root of x> —2ax + (a® + b?) = 0. Thus, the extension Z C Z[i] is
integral.
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Prime Stability in 1-Dimensional Integral Overrings

Definition

Let R C T be domains. We say that this extension is integral if every element of
T is a root of a monic polynomial from R[x].

| \

In Z[i], the element i is a root of x*> 4+ 1 = 0. More generally, the element
a+ bi € Z[i] is a root of x> —2ax + (a® + b?) = 0. Thus, the extension Z C Z[i] is
integral.

Proposition

If R C T is an integral extension, then dim(R) = dim(T). Specifically, if R is
I-dimensional, then T is also 1-dimensional.

.
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Prime Stability in 1-Dimensional Integral Overrings

Theorem (C-K-L-M-Z, 2025)

Let R be 1-dimensional and T be an integral overring of R. If p is prime in R and
T, then p is prime in every intermediate ring S.
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Prime Stability in 1-Dimensional Integral Overrings

Theorem (C-K-L-M-Z, 2025)

Let R be 1-dimensional and T be an integral overring of R. If p is prime in R and
T, then p is prime in every intermediate ring S.

.

Note that 3 is prime in Z and Z[i]. According to de Castro's theorem, since
ged(3,10) = 1, we see that 3 is also prime in Z[10i]. Our theorem tells us that 3 is
prime in all intermediate rings between Z[10/] and Z[i], such as Z[5i].

v
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Prime Stability in 1-Dimensional Integral Overrings

Theorem (C-K-L-M-Z, 2025)

Let R be 1-dimensional and T be an integral overring of R. If p is prime in R and
T, then p is prime in every intermediate ring S.

.

Note that 3 is prime in Z and Z[i]. According to de Castro's theorem, since
ged(3,10) = 1, we see that 3 is also prime in Z[10i]. Our theorem tells us that 3 is
prime in all intermediate rings between Z[10/] and Z[i], such as Z[5i].

A

Let O be an order in a number field K. If p € O is a prime element then p remains
prime in Ok and in every intermediate order O C S C Ok.

.
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Definition
Let R C T be an extension. The conductor ideal (R: T) ={r€ R | rT C R}.
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Prime Stability via Conductor Coprimality

Definition
Let R C T be an extension. The conductor ideal (R: T) ={r€ R | rT C R}.

@ Intuitively, the conductor ideal can be thought of the set of elements that
pulls down the extension ring to the subring.

@ The conductor ideal of R C T is the largest ideal shared by R and T.
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Prime Stability via Conductor Coprimality

Definition

Let R C T be an extension. The conductor ideal (R: T) ={r€ R | rT C R}.

@ Intuitively, the conductor ideal can be thought of the set of elements that
pulls down the extension ring to the subring.

@ The conductor ideal of R C T is the largest ideal shared by R and T.

Consider the extension Z[x?, x*] C Z[x]. The conductor is x*Z[x] since
a-Z[x] € Z[x?,X%] for all a € x*Z[x]. Additionally, we can show it covers all
elements having that property.
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Prime Stability via Conductor Coprimality

Theorem (C-K-L-M-Z, 2025)

Let R C T be domains, let p € R be prime, and | := (R : T) # 0 such that
pR+ 1 = R. Then p remains prime in T and in every intermediate ring S.
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Prime Stability via Conductor Coprimality

Theorem (C-K-L-M-Z, 2025)

Let R C T be domains, let p € R be prime, and | := (R : T) # 0 such that
pR+ 1 = R. Then p remains prime in T and in every intermediate ring S.

v

Let K = Q(/5) and Ok = Z [Hf’]. Set

R=7Z+ 60k, /:(RZOK)=6OK,
and for each divisor d | 6, define
Sq =Z+ dOk.

Then the only intermediate rings are S> and S3. Let p = 7. Since gcd(7,6) = 1,
we have 7R + | = R. Since 7 is prime in R, it is also prime in Sz, S3, and Ok.
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Prime Stability via Conductor Coprimality

Example (Vanishing Conducto

Consider the extension
R=17Z[2x] C T = Z[x],

where T is an integral overring of R. Here the conductor is

I=(R:T)={teT|tT CR}=0,

so the conductor vanishes.
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Prime Stability via Conductor Coprimality

Example (Vanishing Conductor)

Consider the extension
R=17Z[2x] C T = Z[x],

where T is an integral overring of R. Here the conductor is

I=(R:T)={teT|tT CR}=0,
so the conductor vanishes. Let

p=2x € Z[2x] = R.
In R, element p is prime because
Z[2x]/(2x) 2 Z,

which is a domain. However, in T = Z[x], we can factor
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Let F be a field and set
R:=F[x,y*,y’| C T := F[x, xy, y*, ¥’] C Fx,y],

Note that T is an integral overring of R.
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Prime Stability via Conductor Coprimality

Let F be a field and set
R:=F[x,y*,y’| C T := F[x, xy, y*, ¥’] C Fx,y],

Note that T is an integral overring of R.
Take p := x. The conductor / := (R : T) is nonzero. In fact one can check
precisely that

I=(R:T)=("»%).

Notice that

1%

R/(x,1) = R/(x,y% y?)
so (x, 1) is a proper ideal of R. Hence xR + | # R, i.e. x and the conductor / are
not coprime.

F,
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Prime Stability via Conductor Coprimality

Let F be a field and set
R:=F[x,y*,y’| C T := F[x, xy, y*, ¥’] C Fx,y],

Note that T is an integral overring of R.
Take p := x. The conductor / := (R : T) is nonzero. In fact one can check
precisely that

I=(R:T)=("»%).

Notice that

1%

R/(x,1) = R/(x,y* y*) = F

so (x, 1) is a proper ideal of R. Hence xR + | # R, i.e. x and the conductor / are
not coprime. In R, the element x is prime because

R/(x) = Fly?,y°]

is a domain. However in T we have the factorization xy*® = (xy) - y?, and x divides
neither factor. Hence, x is not prime in T.

?
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Prime Stability in FCP Extensions

Definition

A chain of rings is a set C of rings such that for all R, T € C, we have that RC T
orT CR.
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Prime Stability in FCP Extensions

Definition
A chain of rings is a set C of rings such that for all R, T € C, we have that RC T
orT CR.

Definition

A ring extension T of R satisfies the Finite Chain Property (FCP) if every chain of
intermediate rings is finite.

v
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Prime Stability in FCP Extensions

Definition
A chain of rings is a set C of rings such that for all R, T € C, we have that RC T
orT CR.

o

Definition

A ring extension T of R satisfies the Finite Chain Property (FCP) if every chain of
intermediate rings is finite.

v

o An example of this is Z[30/] C Z[i].
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Prime Stability in FCP Extensions

Definition
A chain of rings is a set C of rings such that for all R, T € C, we have that RC T
orT CR.

o

Definition

A ring extension T of R satisfies the Finite Chain Property (FCP) if every chain of
intermediate rings is finite.

v

o An example of this is Z[30i] C Z[i].
o A ring extension R C T is minimal if there are no intermediate rings
RCSCT.
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FCP Extensions

Prime Stability in FCP Extensions

Definition

A chain of rings is a set C of rings such that for all R, T € C, we have that RC T
orT CR.

.

Definition

A ring extension T of R satisfies the Finite Chain Property (FCP) if every chain of
intermediate rings is finite.

o

o An example of this is Z[30/] C Z[i].

o A ring extension R C T is minimal if there are no intermediate rings
RCSCT.

o Equivalently, we say that R and T are adjacent.
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Prime Stability in FCP Extensions

Theorem (C-K-L-M-Z, 2025)

Let R C T be adjacent rings, and let p be a prime in R. Then p is either prime or
a unit in T.
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Prime Stability in FCP Extensions

Theorem (C-K-L-M-Z, 2025)

Let R C T be adjacent rings, and let p be a prime in R. Then p is either prime or
a unit in T.

Theorem (C-K-L-M-Z, 2025)

If T is a ring extension of R satisfying FCP where p € R is prime in R and p is a
non-unit of T, then p is prime in all intermediate rings.

| A

.
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Prime Stability in FCP Extensions

Theorem (C-K-L-M-Z, 2025)

Let R C T be adjacent rings, and let p be a prime in R. Then p is either prime or
a unit in T.

Theorem (C-K-L-M-Z, 2025)

| A

If T is a ring extension of R satisfying FCP where p € R is prime in R and p is a
non-unit of T, then p is prime in all intermediate rings.

.

Consider the ring extension Z[ni] C Z[i] for any positive integer n. This satisfies
FCP, as all intermediate rings are of the form Z[di] for d | n, and so every chain
has finite length. Therefore, if p is prime in Z[ni], then it is prime in every
intermediate ring.
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Prime Stability in FCP Extensions

Note that Z C Z [%] also satisfies FCP for any positive integer n, as all
intermediate rings are of the form Z [1] for d | n, and so every chain has finite
length. Furthermore, a prime p in Z and non-unit in Z [%] must satisfy

ged(p, n) = 1, and therefore ged(p, d) = 1, so p is prime in Z [1]. Therefore, this

example satisfies the theorem.
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Prime Stability in FCP Extensions

Note that Z C Z [%] also satisfies FCP for any positive integer n, as all
intermediate rings are of the form Z [1] for d | n, and so every chain has finite
length. Furthermore, a prime p in Z and non-unit in Z [%] must satisfy

ged(p, n) = 1, and therefore ged(p, d) = 1, so p is prime in Z [1]. Therefore, this
example satisfies the theorem.

For any positive integer n, define

R=Z+xQx,T =2 H + xQ[].

All intermediate rings are of the form Z [%] + xQ[x] for some d | n. We see that T
is an extension of R satisfying FCP, so every element prime in R and non-unit in T
must be prime in every intermediate ring as well.
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