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Background and Introduction

Background

We will consider only commutative rings with identity.

Definition

A zero divisor in a ring is an element r such that rt = 0 for some nonzero t.

Definition

A domain is a ring where the only zero divisor is 0.

Ex. Z,Q,R,C,Z[x , y ]

Definition

A noninvertible element p of a ring R is prime if p | ab implies p | a or p | b.

Ex. 2, 3, 5, 7, · · · 2 Z, x 2 Z[x ]

Definition

We call a ring T a ring extension of R if R is a subring of T .

Ex. Z ✓ Z[i ]
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Background and Introduction

Introducing the Problem

Question

Given a ring extension R ✓ T with p prime in R, when does p remain stable, or
when is p prime, in intermediate rings R ✓ S ✓ T?

Example

Consider R = Z and T = Z[i ] for p = 3. Note that p is not prime in the
intermediate ring S = Z[3i ], as (3i)2 = �3 · 3 but 3 -Z[3i ] 3i , so prime stability does
not hold in this case.

Theorem (de Castro, 2020)

Let Z[!] be a quadratic integer ring, and consider Z ⇢ Z[n!] ⇢ Z[!]. Let p 2 Z be
prime in both Z and Z[!]. Then p is prime in Z[n!] if and only if gcd(n, p) = 1.
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1-Dimensional Integral Overrings

Prime Stability in 1-Dimensional Integral Overrings

Definition

A domain R is 1-dimensional if every nonzero prime ideal in R is maximal.

Z,Q[x ] are both 1-dimensional.
Every nonzero prime ideal in Z is (p) for some prime number p. If x /2 (p),
then (p, x) = Z according to Bezout’s theorem, so (p) is maximal in Z.

Definition

Let R ✓ T be domains. We say that T is an overring of R if T is a subring of the
quotient field of R.

Z[i ] is not an overring of Z because Z[i ] is not inside Frac(Z) = Q.
Z[i ] is an overring of Z[2i ] because they have the same quotient field Q(i).
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1-Dimensional Integral Overrings

Prime Stability in 1-Dimensional Integral Overrings

Definition

Let R ✓ T be domains. We say that this extension is integral if every element of
T is a root of a monic polynomial from R[x ].

Example

In Z[i ], the element i is a root of x2 + 1 = 0. More generally, the element
a+ bi 2 Z[i ] is a root of x2

� 2ax + (a2 + b2) = 0. Thus, the extension Z ⇢ Z[i ] is
integral.

Proposition

If R ✓ T is an integral extension, then dim(R) = dim(T ). Specifically, if R is
1-dimensional, then T is also 1-dimensional.
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1-Dimensional Integral Overrings

Prime Stability in 1-Dimensional Integral Overrings

Theorem (C-K-L-M-Z, 2025)

Let R be 1-dimensional and T be an integral overring of R. If p is prime in R and
T , then p is prime in every intermediate ring S .

Example

Note that 3 is prime in Z and Z[i ]. According to de Castro’s theorem, since
gcd(3, 10) = 1, we see that 3 is also prime in Z[10i ]. Our theorem tells us that 3 is
prime in all intermediate rings between Z[10i ] and Z[i ], such as Z[5i ].

Example

Let O be an order in a number field K . If p 2 O is a prime element then p remains
prime in OK and in every intermediate order O ✓ S ✓ OK .
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Stability via Conductor Coprimality

Prime Stability via Conductor Coprimality

Definition

Let R ✓ T be an extension. The conductor ideal (R : T ) := {r 2 R | rT ✓ R}.

Intuitively, the conductor ideal can be thought of the set of elements that
pulls down the extension ring to the subring.
The conductor ideal of R ✓ T is the largest ideal shared by R and T .

Example

Consider the extension Z[x2, x3] ⇢ Z[x ]. The conductor is x2Z[x ] since
a · Z[x ] 2 Z[x2, x3] for all a 2 x2Z[x ]. Additionally, we can show it covers all
elements having that property.
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Stability via Conductor Coprimality

Prime Stability via Conductor Coprimality

Theorem (C-K-L-M-Z, 2025)

Let R ✓ T be domains, let p 2 R be prime, and I := (R : T ) 6= 0 such that
pR + I = R. Then p remains prime in T and in every intermediate ring S .

Example

Let K = Q(
p

5) and OK = Z
h

1+
p

5
2

i
. Set

R = Z+ 6OK , I = (R : OK ) = 6OK ,

and for each divisor d | 6, define

Sd = Z+ dOK .

Then the only intermediate rings are S2 and S3. Let p = 7. Since gcd(7, 6) = 1,
we have 7R + I = R. Since 7 is prime in R, it is also prime in S2, S3, and OK .
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Stability via Conductor Coprimality

Prime Stability via Conductor Coprimality

Example (Vanishing Conductor)

Consider the extension
R = Z[2x ] ⇢ T = Z[x ],

where T is an integral overring of R. Here the conductor is

I = (R : T ) = {t 2 T | tT ✓ R} = 0,

so the conductor vanishes.

Let

p = 2x 2 Z[2x ] = R.

In R, element p is prime because

Z[2x ]/(2x) ⇠= Z,

which is a domain. However, in T = Z[x ], we can factor

2x = 2 · x ,

so p is no longer prime in T .
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Stability via Conductor Coprimality

Prime Stability via Conductor Coprimality

Example

Let F be a field and set

R := F [x , y2, y3] ⇢ T := F [x , xy , y2, y3] ⇢ F [x , y ],

Note that T is an integral overring of R.

Take p := x . The conductor I := (R : T ) is nonzero. In fact one can check
precisely that

I = (R : T ) = (y2, y3).

Notice that
R/(x , I ) ⇠= R/(x , y2, y3) ⇠= F ,

so (x , I ) is a proper ideal of R. Hence xR + I 6= R, i.e. x and the conductor I are
not coprime. In R, the element x is prime because

R/(x) ⇠= F [y2, y3]

is a domain. However in T we have the factorization xy3 = (xy) · y2, and x divides
neither factor. Hence, x is not prime in T .
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FCP Extensions

Prime Stability in FCP Extensions

Definition

A chain of rings is a set C of rings such that for all R,T 2 C , we have that R ✓ T
or T ✓ R.

Definition

A ring extension T of R satisfies the Finite Chain Property (FCP) if every chain of
intermediate rings is finite.

An example of this is Z[30i ] ✓ Z[i ].
A ring extension R ( T is minimal if there are no intermediate rings
R ( S ( T .
Equivalently, we say that R and T are adjacent.
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FCP Extensions

Prime Stability in FCP Extensions

Theorem (C-K-L-M-Z, 2025)

Let R ⇢ T be adjacent rings, and let p be a prime in R. Then p is either prime or
a unit in T .

Theorem (C-K-L-M-Z, 2025)

If T is a ring extension of R satisfying FCP where p 2 R is prime in R and p is a
non-unit of T , then p is prime in all intermediate rings.

Example

Consider the ring extension Z[ni ] ✓ Z[i ] for any positive integer n. This satisfies
FCP, as all intermediate rings are of the form Z[di ] for d | n, and so every chain
has finite length. Therefore, if p is prime in Z[ni ], then it is prime in every
intermediate ring.
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intermediate rings are of the form Z
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for d | n, and so every chain has finite

length. Furthermore, a prime p in Z and non-unit in Z
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must satisfy
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