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Background

@ An integral domain is a commutative ring R which has no zero divisors.
o Multiplicative cancellativity: ab = ac implies b = ¢ for all a,b,c € R
with a # 0.
@ A semidomain is a subset of an integral domain inheriting the same
operations (+,-) and identities (resp. 0, 1), and all axioms with the
exception of the additive inverse.

© The integers (Z,+, -) form an integral domain.

@ The nonnegative integers Ny form a semidomain, since they are a
subset of Z.
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Extensions

@ The polynomial extension of Ny (also called a polynomial semidomain):

d
No[X] = chxk de No, cx € Ng
k=0

@ The formal power series extension of Ny:

Noﬂxﬂ = Z Cka ck € Np
keNg
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Background

For an element f =}, _, cxx* of No[x],
(Definitions extend to Ng[x].)

@ All standard terminology for polynomials (e.g. degree) applies. In
particular, the height of a polynomial with integer coefficients is the
maximum absolute value of its coefficients.

@ The support of f is defined as supp(f) = {k € Z | cx # 0}.

@ The polynomial f is monolithic if f = gh (g, h € Ng[x]) implies one of g
or h is a monomial.

Ex. 2x2 4 10x + 2: monolithic, but not irreducible
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Irreducibles in Ng[x] C Z[x]

We primarily study the distribution of irreducible polynomials in Ng[x], a
subset of Z[x].

@ The irreducibles in Z[x] are well-studied.

@ Every irreducible in Z[x] continues to be irreducible in Ng[x], but the
behavior of irreducibles in Ny[x] is also rather different.
Ex. x>+ 1= (x+1)(x® — x + 1) is irreducible in No[x]

Proposition (well-known)

If f € No[x] satisfies f(n) € P for some n € N, then f is monolithic.

Proof: This is immediate by the fact that f(n) = 1 for some n € N if and
only if f = x* for some k > 0.

KOLEKAR, QIU, WANG ON THE DISTRIBUTION OF IRREDUCIBLE POLYNOMIALS WITH POSITIVE INTEGEF



Irreducibles in Ng[x]

oe

Irreducibles in Ng[x] C Z[x]

The converse of the previous proposition is false.

@ There exist irreducible polynomials f € Ng[x] such that f(n) ¢ P for
any n € N.

@ The irreducible structure of Ng[x] is nontrivial and interesting to study.

Let f = x® +x® + x3 4+ 1 € Ny[x]. Observe that

f=Kx+1)(x*+1)(x>—x+1),

where f is irreducible in No[x]. Moreover, since n+ 1, n?> + 1 > 2 for all
n € N, it follows that f(n) is composite for every n € N.

Furthermore, if f € Ng[x] is irreducible but admits a factorization f = gh in
Z[x] with g(n), h(n) > 2 for all n € N, then f(n) can never be prime.
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Motivation

When studying the distribution of irreducibles one often computes the
“density” of irreducibles.

@ Intuition: measure the overall proportion of nonnegative integer
polynomials which are irreducible.

@ In our work, we use techniques for proving irreducibility to analyze this
density in the context of No[x].

@ Main result: we prove that almost all polynomials in Ng[x] are
irreducible.
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Past Work

Much work has been done on the density of irreducible polynomials in
related domains.

Theorem [Hilbert, 1890s]

“Most” monic polynomials in Z[x] are irreducible, with their Galois group
isomorphic to the symmetric group Sy.

Theorem [Kuba, 2009]

The number of polynomials in Z[x] of fixed degree d and height at most N
reducible over Q[x] is O(N¢).
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Past Results

Theorem [Borst et al., 2018]

The density of reducible polynomials f with “well-behaved” coefficients
divisible by a factor of the form a + bx*, where k = min(supp(f) \ {0}), is
equal to 1.

Theorem [Antoniou et al., 2022]

The density of irreducibles of Fy[S], where S is a numerical semigroup and g
a prime power, is zero.
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This Work: Focusing on Ny[x]

Little research has been done regarding the density of irreducibles in Ng[x].

We aim to characterize the irreducible structure of the less-studied Np[x],
largely by extending existing results about Z[x].

@ Known: the atomic density of Z[x] is 1.
@ We show that the same holds for Ng[x].

KOLEKAR, QIU, WANG ON THE DISTRIBUTION OF IRREDUCIBLE POLYNOMIALS WITH POSITIVE INTEGER CO!I



Atomic Density
@0000

How to Measure Atomic Density?

We want to extend the idea of a simple proportion to work with infinity:

@ How do we measure the asymptotic density of irreducibles in
semidomains such as Ng[x]?

@ To get an idea of how to measure atomic density, we may first consider
the semidomain Ny as a motivating example.

Example: Atomic density in Np.

Note that in Ny, irreducibles equate primes. Then, one way to define the
asymptotic density of irreducibles is

. m(N)
lim ——=,
N—ooo N +1
where 7 is the prime-counting function. w(N) ~

m(N)
N+1 loghN

N
log N’ S0

—0 as N — oo.

Note that other notions of density may lead to different values for density.
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New Notations for Ny[x]

Let us define some new notations for Ng[x]. Take nonnegative integers
d, N € Np.

e 7(d, N) denotes the number of polynomials in Ng[x] of degree at most
d with coefficients bounded above by N.

@ Z(d, N) is defined analogously but for irreducible polynomials.
e R(d, N) for reducible polynomials.

Observation

Z(d,N)+R(d,N) =T(d,N)=(N+ 1)d+1
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Atomic Density of Ny[x]

Definition

The atomic density of Ng[x] is defined as the common value of

I(d, N) Z(d, V)

provided that both iterated limits exist and agree.

Remarks

@ A similar notion applies to Z[x], hence our adoption of this definition.
R(d, N)
T(d,N)’

@ In practice, we will be computing the limit of 1 —
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Main Result

Theorem (Kolekar-Qiu-Wang, 2027)

The atomic density of No[x] is 1. Specifically, R(d, N) = O(N9 log? N).

Sketch of proof:
© Clearly, 755 of polynomials in No[x] are divisible by x, and this fraction
goes to 0 as N — .

@ For the remaining polynomials, we use coefficient bounding on the
reducibles among them to show that these also have density 0.

© The factor of log? N comes from the fact that
(24 4+ 112 = O(log? N).

Conjecture (Kolekar-Qiu-Wang, 2027)

As N,d — oo, R(d, N) = O(N9) as N, d — oo holds in Ng[x]. 2

@Based on the work of Kuba, who proved an analogous result for Z[x].
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Numerical Data of Atomic Density in No[x]
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Figure 1: Graph of atomic density in No[x] for low degree and coefficient bounds
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Conclusions

Main Result
@ We showed that the atomic density of Ng[x] is 1.

Extensions

@ We extended our atomic density results in Np[x] to the power series
semidomain Ng[x].

@ Going beyond considering the overall proportion, we found refined
asymptotics for the number of reducibles with bounded coefficient and
degree.

@ We also considered the atomic density in certain subsets of Ng[x] as
well as related semidomains, producing results analogous to findings in
Z|x] [Konyagin, 1999].
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Future Work

o Currently, we are considering an unsolved problem concerning Z[x] on
the distance between irreducibles by Turan and extending it to No[x].

@ Atomic density measures the global proportion of irreducibles, while
Turan's problem focuses on their local distribution.

@ We hope to ultimately find a direct connection between this problem on
irreducibles’ distance and overall atomic density.
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