Comparative Study of

Transformer-Based
Embeddings for Topic Coherence

Shengtao (Alex) Ding Tarun Rapaka Jason Yang
Research Mentor: Dr. Willy Rodriguez

Fall-Term PRIMES Conference

October 18, 2025

A. Ding, T. Rapaka, J. Yang Comparative Study of Transformers Fall-Term PRIMES Conference 1/28



@ WMotivation & Introduction

e Turning Text to Mathematical Objects
e Topic Modeling and LDA

@ Advanced Mathematical Tools

e Results & Discussion
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Background

@ Natural Language Processing (NLP) — A field of artificial
intelligence that lets machines interpret human text.

@ Topic Modeling — grouping related content within a corpus to
make large collections navigable.

@ Motivation — new Large Language Models (like the one
behind ChatGPT) have an even better performance for
extracting topics.

Research question:
Can smaller models give topics as clear as big ones?
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Bigger words appear more often in the text corpus.
Here: Lord of the Rings movie dialogues (Kaggle dataset).

Counts are computed after basic cleaning (lowercasing, removing stop words).
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Example of Preprocessing

First, we apply Preprocessing, which cleans the text for use,
helping to reduce noise and keep models robust.

Example sentence:
"The quick brown fox jumps over the dog!"

@ Tokenize — split into words
[The, quick, brown, fox, jumps, over,
© Normalize — lowercase, remove punctuation
[the, gquick, brown, fox, jumps, over, the, dog]
© Remove stop words — uninformative words (e.g., “the”,
“over”) that add little meaning
[quick, brown, fox, jumps, dog]

Next, we can move on to vectorization.

the, dog]
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Bag of Words (BoW)

@ Build a vocabulary of all unique
words in the dataset

@ Count the number of times each
word appears in each document

@ Represent each document as a
vector of word counts

apples

like |
oranges

Example:
Sentence 1: "I like apples”
Sentence 2: “I like oranges”

| like apples oranges "Bag” of words — orderless but countable.
Si|1 1 1 0
S |1 1 0 1
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TF-IDF

What it does: weights words by importance in a document and
rarity in the corpus.

Advantage: highlights distinctive terms; down-weights very
common words.

tidf(w, d) — ti(w, d) - |og<dfl(vw) + 1>

Variable glossary:

w word/term
d a single document
N total number of documents in corpus

tf(w,d) frequency (raw or normalized) of win d
df(w) number of documents containing w
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TF-IDF: Worked Example

Mini-corpus (N = 3):

Q o large language models

Q o language models are powerful
© d;:models revolutionize nlp

For the term “language” in d,:

tf(language, db) = %,df(language) =2,idf = Iog<2 + 1) ~ 0.916

| tfidf = 0.25 x 0.916 ~ 0.229 |
Partial TF-IDF matrix:
| language models revolutionize

di 0.305 0.231 0
d> | 0.229 0.173 0
ds 0 0.231 0.462

Values rounded; TF normalized by document length.
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Tradeoffs of Bag of Words and TF-IDF

@ Pros:

e Simple to understand and implement.
e Fast computation.
@ Cons:
e Cannot capture context.
e Ignores word order:
@ Sentence 1: "l like NLP but | don't like Al”
@ Sentence 2: "I like Al but | don't like NLP”
| | like NLP Al don't
S112 2 1 1 1
212 2 1 1 1

Same word frequencies = same vector representation
e Vectors can be large and sparse with big vocabularies.
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Discrete Probability Distribution: Intuitive example

Imagine you have a fair six-sided die. Each side (1 to 6) has the same
chance of appearing:

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = .
If we draw a bar chart showing those probabilities, all the bars would be

equal. A probability distribution tells us how likely each possible
outcome is.

Fair Die (Uniform Distribution) Loaded Die (Biased Distribution)

1 1
0.75 0.75
3 ~
T 0.5 T 0.5
0.25 0.25
0 0
1 2 3 4 5 6 1 2 3 4 5 6

Every side has the same probability. The die is loaded — rolling a 6 is more likely.
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Example: One Document as a Mixture of Two Topics

@ Mixture for document d: 65 = (0.20, 0.80) over topics Math,
Bio.
@ Document word model: p(w | d) = 0.2 ¢path w + 0.8 Pio,w-

Topic 2: Biology (distribution over words)

Topic 1: Math (distribution over words)
0. 0.30
0.25 0.25
5020 5020
g g
So1s $015
g H
“o.10 “o.10
0.05
0.00+ N N «
o e & o D e e > <& S
& SN ¢ & N © ©
& » é\@ & < & é\v\ i \(\@ 6‘°° g
F;
Topic — word: Math (¢paen) Topic — word: Bio (¢gj)

Notation: 64 = document d's topic mixture; ¢ ,, = prob. of word w under topic k; p(w | d) mixes them with weights

(0.2,0.8).
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How LDA Models a Document

@ Token sampling: first choose a topic using 64, then choose a
word using that topic’s ¢.

Priors: 6y € AK=1 ¢, e AV

Per token n: zy , + 0q, Wa,n < $z4,
Doc — Topic mixture 64 Topic — Word distribution ¢,
Doc - Topic mixture 6_d Topic —» Word distribution ¢_k (example topic)

proportion
>
probability

< ) X e
T T ig i S P W e et (ot o
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Topic Modeling & Latent Dirichlet Allocation (LDA)

@ LDA: discovers hidden topics in an unlabeled corpus.
@ Topic: probability distribution over the vocabulary (¢).
@ Outputs: document—topic ©, topic—word .

v
Topick : ¢, € AV, Z¢k,i =1, ¢x;>0

i=1

K
Docd: g€ A, > Ok =1, 0gx>0
pa

Simplex: A™ " = {x e RZ,: > ", x; = 1}. Symbols: D=#docs,
V=vocab size, K=#topics, d € {1..D}, k€ {1.K}, ic {1..V}, & c RKxV
(row k is ¢x), © € RP*K (row d is 6y).
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Quality of a Topic Decomposition

@ Goal: interpretable topics and non-redundant coverage.
@ Key question: do a topic's top words co-occur in documents?

@ Also: avoid overlapping topics; prefer stable results across
runs.

Quality ~ Coherence + Separation
—_—————

interpretability non-redundancy

Symbols reminder: K = #topics, V = vocab size; ¢, € AV~ are topic—word distributions, 8, € AKX~ are doc—topic
y p k d

mixtures.
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Metrics for Topic Quality

Coherence (interpretability): do top words co-occur above chance?

IOg( P(W’7VV/)

_ 1 P(w;) P(w))

COhNPMI(W)_ ‘W|(|W|71)”6W 7|0gP(W,',Wj)
i

Defs: P(w) = marginal probability of word w (fraction of docs or windows containing w);
P(w;, w;j) = co-occurrence probability (same doc or within a window). Bounded in [—-1,1].

2 M -1 D(w;, w;) + 1
Cumass(T) = m Z — log(]D(Wi)>

Where: T = (wy,...,wy) ordered top words; D(-) = doc counts; +1 = smoothing; higher
(less negative) is better.

Also track: separation (pairwise JS/Hellinger on {¢«}) and stability across
seeds.
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One-Hot Encoding

@ Simplest bag-of-words representation: every token is mapped
to a binary vector of length |V|.

@ Exactly one entry is 1 (the token’s index); all others are 0.

Example vocabulary:
V ={large, language, model, revolutionize}

one_hot(V) =

o O O =
o O =+ O
o = O O
- O O O
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Neural Networks

Hidden

Input

Figure: A pictorial representation of a neural network. (Source: Wikipedia)
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Dense Layer Operations lllustrated in the Graph

. W, by, ReLU Wa,
Architecture; R _V1L1ReLU pa Woibe

Matrix forms

W, €R4X3, b, cR*
e e a=W;x+b; , h =ReLU(a)
\,3/ ~—~

er

cR4

y = W, h+ by
~~ ~~ ~~
€R2  gR2x4 €R2

Notes.

@ ReLU(t) = max(0, t) applied elementwise. Here, the hidden layer uses ReLU and the
output layer is linear (no activation).
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Dense Layer Example with Numerical Values

Given: Dense Layer Example with Values and Weights
0.0 Hidden
! 0% o1 o3 B DN
=121 "= o9 08 o3 4 e N

W, — |03 05 09 01
2= |06 02 0.8 05

Hidden layer: \ /

04 07 05 é \X
i ~

h = ReLUWx) = |1
0.3

Output layer:

1,52
y =Weh= [1 .45]
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Word Embeddings

@ Aword embedding is a function C from the vocabulary V to
R for some d.

@ Think of it as a way to assign each word in our vocabulary a
real-valued vector which accurately captures the meaning of
the word.

@ We would expect, for instance, that
C("king") — C("man”) ~ C("queen”) — C("woman”).

@ The most popular embedding algorithm is word2vec, which
makes use of neural networks and one-hot encoding.
e One problem with this approach: “The bank vault lies on the
bank of the river."” In this sentence, “bank” has two meanings but
only one embedding.
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Transformer Structure and Self Attention

The transformer architecture, specifically the self-attention
mechanism, solve the issue of dealing with contextual
information.

@ Self attention

Attention(Q, K, V) = softmax <QKT> -V
U Vdk

where Q, K, V are matrices and dk is a real number (usually a
dimension of Q or K).

e Letting x € R", the softmax function is defined as

X1 Xn
softmax(x) = < ° . ° > )

L I Ry A N Ry Y]
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@ With these advanced tools (specifically the transformer
architecture), it is hence possible to capture the semantic
relations inside a text.

@ If one can capture these semantic relations, topic
decomposition can become more accurate.

@ Our question: How good are small models (in terms of
#parameters) with respect to larger ones in regards to
topic decomposition?
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BERTopic Pipeline

@ BERTopic is a topic modeling technique that finds topics or
themes across documents in a corpus

@ The pipeline follows these steps where each step is
independent from the others, meaning any building block
could be replaced:

Embeddings Vector Dimensionality Dirl;'loewn:iron
(SBERT) Representations Reduction (UMAP) Vectors

Clustering
(HDBSCAN)

\F;:;:: fe:rt:t:é: Weighting Scheme Word Counts Tokenization Clusters of
Cluster (c-TF-IDF) for Each Cluster (CountVectorizer) Documents
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Results & Discussion

@ Bigger # always better: small/medium models gave similar
topic coherence/divergence.

@ Experiments applied on two datasets: the 20 newsgroups
and a subset of articles downloaded from PubMed.

@ Reproducible pipeline: models on Hugging Face - code/data

on GitHub.
Encoder Size 20Newsgroups PubMed
Coherence Diversity | Coherence Diversity

all-MiniLM-L6-v2 22M 0.7422 0.9947 0.7004 0.9954
microsoft/MiniLM-L12-H384-uncased | 33M 0.7374 0.9947 0.7069 0.9951
distilbert-base-uncased 66M 0.7450 0.9955 0.7137 0.9954
bert-base-uncased 110M 0.7253 0.9946 0.7012 0.9955
roberta-base 125M 0.7420 0.9950 0.7121 0.9949
meta-llama/Llama-2-7b-hf 7B 0.7310 0.9946 0.7047 0.9952
meta-llama/Llama-2-13b-hf 13B 0.7447 0.9948 0.6977 0.9954

Table: Coherence and diversity on 20 Newsgroups and PubMed dataset
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https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://github.com/epicbird08/topic_coherence_vs_size

@ Vectorization is the first step toward machine-readable text
@ LDA vs. BERTopic: LDA excels in interpretability; BERTopic
leverages contextual embeddings and scalability

@ Objective metrics (coherence & divergence) guide model and
parameter selection
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