Robust Machine Learning-Enabled Spike Inference in Neuronal Voltage Imaging Data

Vishnu Mangipudi, Ethan Song, Charles Zhang

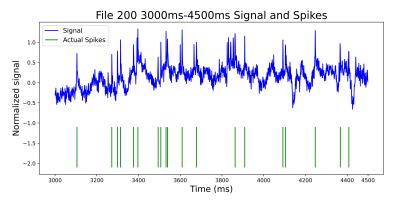
MIT PRIMES-USA

(Mentored by Dr. Lu Lu)

MIT PRIMES October Conference 18 October 2025

Motivation

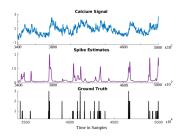
- Interpreting neuronal signal data is critical to understanding physiological responses to stimuli of interest.
- Normalized signal data displays low signal-to-noise ratio and signal mean drift, hindering predictive ability.
- Spike sparsity further complicates model trainability.
- Spike detection is difficult but very important.



Existing Methods

Thresholding:

- Denoises normalized signal data via Gaussian smoothing;
- Uses an empirically determined threshold to identify spikes.
- CalmAn (Giovannucci et al., 2019):
 - Applies CNMF and OASIS deconvolution to isolate spike events real-time;
 - Uses calcium fluorescence data instead of direct voltage measurements.
- VolPy (Cai et al., 2021):
 - Extends CalmAn's methods to voltage signal measurements;
 - Develops a standard pipeline for spike detection from voltage signaling movies.
- S2S (Sebastian et al., 2021):
 - Applies source separation methodologies to directly map raw fluorescence or voltage signals to spike trains.



Feed-forward Neural Networks

- A feed-forward neural network is a function $\mathcal N$ on an input vector x with a set of parameters θ called weights and biases.
- Formally,

Definition

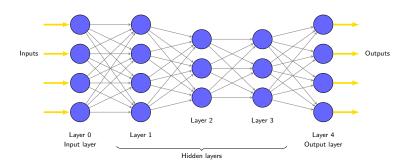
Consider L affine transformations of the form $T^\ell(x) = \mathbf{W}^\ell x + \mathbf{b}^\ell$ for $1 \le \ell \le L$ and some nonlinear activation function σ . A **feed-forward neural network** is defined as the function

$$\mathcal{N}(x;\theta) = T^{L} \circ (\sigma \circ T^{L-1}) \circ (\sigma \circ T^{L-2}) \circ \cdots \circ (\sigma \circ T^{1})(x),$$

where $\theta = \{\mathbf{W}^\ell, \mathbf{b}^\ell\}_{\ell=1}^L$ are the network parameters. We call \mathbf{W}^ℓ and \mathbf{b}^ℓ the *weight matrix* and *bias vector* of the ℓ -th layer, respectively.

Feed-forward Neural Networks

ullet The network parameters heta are learnable through backpropagation.



Convolutional Neural Networks

- CNNs are similar to FFNNs, except that they allow for immediate contextual information to also be considered.
- Formally,

Definition

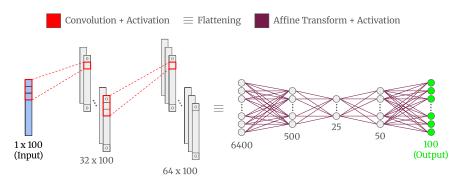
Consider L convolutional transformations of the form $C^\ell(x) = \mathbf{W}^\ell * x + \mathbf{b}^\ell$ for $1 \le \ell \le L$ where * denotes discrete convolution, \mathbf{W}^ℓ is a learnable *kernel tensor*, and \mathbf{b}^ℓ is a learnable *bias vector*. Given a nonlinear activation function σ , a **convolutional neural network (CNN)** is defined as

$$C(x;\theta) = C^{L} \circ \sigma \circ C^{L-1} \circ \sigma \circ \cdots \circ \sigma \circ C^{1}(x),$$

where $\theta = \{\mathbf{W}^{\ell}, \mathbf{b}^{\ell}\}_{\ell=1}^{L}$ are the parameters.

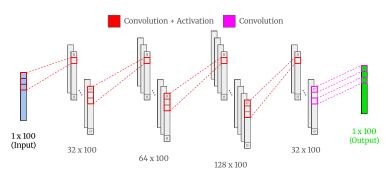
Convolutional Neural Networks

 We typically connect the output of the convolutional layers to a feed forward neural network to generate a result.



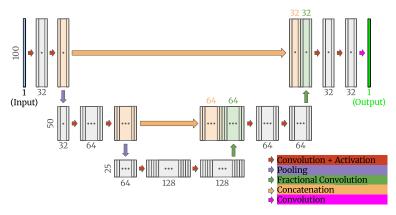
Fully Convolutional Networks

- We exclude the final feed-forward layer of our CNN, creating a Fully Convolutional Network (FCN).
 - Preserves temporal resolution in constructing a 1-1 mapping;
 - Less dense layers \rightarrow faster, less memory-intensive training/validation.



U-Nets

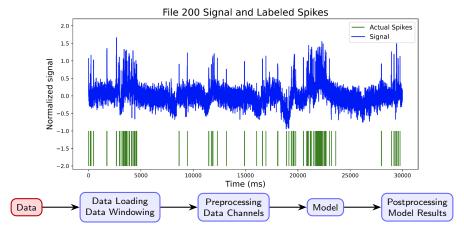
 To further enhance contextualization and localization of spikes, we include sequential downsampling and upsampling operations in the form of a U-Net.



Our Data

461 three-channel files containing:

- raw normalized voltages (0-29990 ms, 1 ms resolution);
- semi-manually identified spike locations (0/1).
- total number of semi-manually identified spikes



Data Windowing

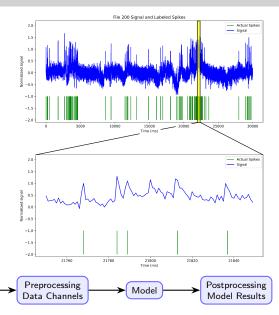
A naive bijection mapping each data file to a respective array of predicted spike times is not ideal.

- Voltage signal measurements are prone to noise and signal drift;
- Spikes are local events;
- Large mappings are resource-intensive, features become hard to learn.

We instead focus on 100 ms windows of the entire 29990 ms measurement period.

Data Loading

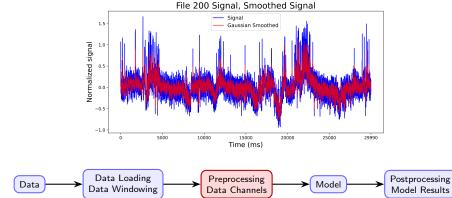
Data Windowing



Data

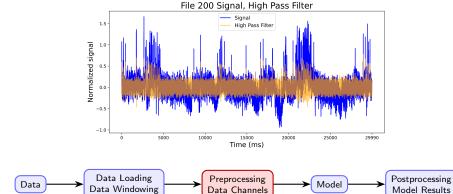
We calculate several other parallel feature channels to provide more information to the model.

Smoothed Signal



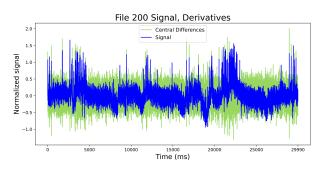
We calculate several other parallel feature channels to provide more information to the model.

- Smoothed Signal
- High Pass Filter



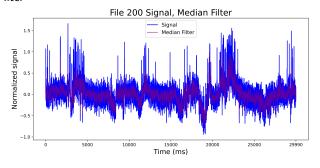
We calculate several other parallel feature channels to provide more information to the model.

- Smoothed Signal
- High Pass Filter
- Derivatives



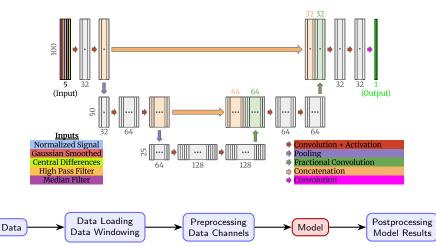
We calculate several other parallel feature channels to provide more information to the model.

- Smoothed Signal
- High Pass Filter
- Derivatives
- Median Filter



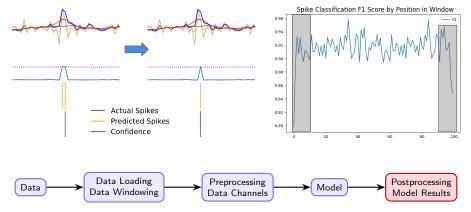
Model

- Input: 100 ms windows \times 5 data channels.
- Output: 100 ms window of predicted probabilities.



Postprocessing

- The predicted probabilities of all windows are averaged over and then rounded to 0 (for a non-spike) or 1 (for a spike) to gather entire-file predictions.
- Further post-processing steps:
 - Confidence-based spike shadowing;
 - Pruning the ends of windows.



Metrics

Predicted Label

		Spike	No Spike
True Label	Spike	6100	337
	No Spike	448	1820065

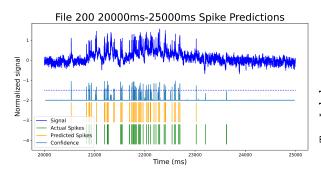
Accuracy: 0.9996;

• Precision: 0.9316;

• Recall: 0.9476;

• F1 Score: 0.9395.

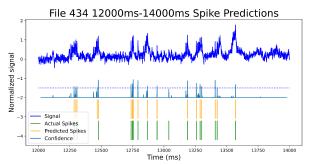
Prediction Results



		Predicted Label	
		Spike	No Spike
True Label	Spike	104	4
	No Spike	23	29819

.. 1: .. 1 7 .1. .1

Prediction Results



		Predicted Label	
		Spike	No Spike
True Label	Spike	48	19
	No Spike	14	29869

Future Work

- Further improving the model;
- Detecting harder "complex spikes";
- Sorting spikes after identification;
- Public spike prediction package release.

Acknowledgments

We'd like to express gratitude towards:

- our mentor Dr. Lu Lu for providing guidance and feedback throughout the past months;
- Mitchell Daneker for helping keep us on track and answering our questions;
- Dr. Linlin Fan for providing the data and helping us explain the biology behind our project;
- the MIT PRIMES-USA program for allowing this research opportunity in the first place;
- and our families for letting us be here today.

References

Changjia Cai, Johannes Friedrich, Amrita Singh, M. Hossein Eybposh, Eftychios A. Pnevmatikakis, Kaspar Podgorski, and Andrea Giovannucci, *Volpy: Automated and scalable analysis pipelines for voltage imaging datasets*, PLOS Computational Biology **17** (2021), no. 4, 1–27.

Andrea Giovannucci, Johannes Friedrich, Pat Gunn, Jérémie Kalfon, Brandon L Brown, Sue Ann Koay, Jiannis Taxidis, Farzaneh Najafi, Jeffrey L Gauthier, Pengcheng Zhou, Baljit S Khakh, David W Tank, Dmitri B Chklovskii, and Eftychios A Pnevmatikakis, *Caiman an open source tool for scalable calcium imaging data analysis*, eLife **8** (2019), e38173.

Jonathan Long, Evan Shelhamer, and Trevor Darrell, Fully convolutional networks for semantic segmentation, (2015).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox, *U-net: Convolutional networks for biomedical image segmentation*, (2015).

Jilt Sebastian, Mriganka Sur, Hema A Murthy, and Mathew Magimai-Doss, Signal-to-signal neural networks for improved spike estimation from calcium imaging data., PLoS Comput Biol 17 (2021), no. 3, e1007921.

End of Presentation

THANK YOU!