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Motivation

@ Interpreting neuronal signal data is critical to understanding physiological responses
to stimuli of interest.

@ Normalized signal data displays low signal-to-noise ratio and signal mean drift,
hindering predictive ability.

@ Spike sparsity further complicates model trainability.

@ Spike detection is difficult but very important.
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Existing Methods

@ Thresholding:
o Denoises normalized signal data via Gaussian
smoothing;
o Uses an empirically determined threshold to
identify spikes.
CalmAn (Giovannucci et al., 2019):

o Applies CNMF and OASIS deconvolution to .
isolate spike events real-time; i O ke Estimates o0 x10°

o Uses calcium fluorescence data instead of direct
voltage measurements.

VolPy (Cai et al., 2021): Yo S o e’

o Extends CalmAn's methods to voltage signal :
measurements; .\
o Develops a standard pipeline for spike detection = st sampes -
from voltage signaling movies.
S2S (Sebastian et al., 2021):
o Applies source separation methodologies to
directly map raw fluorescence or voltage signals
to spike trains.

Calcium Signal
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Machine Learning Background

Feed-forward Neural Networks

o A feed-forward neural network is a function A/ on an input vector x with a set of
parameters 6 called weights and biases.

o Formally,

Definition
Consider L affine transformations of the form T*(x) = W¥x + b* for 1 < ¢ < L and some
nonlinear activation function o. A feed-forward neural network is defined as the
function

N(x;0) = Tto (oo TL_I) o(oo TL_2) o---o(oco Tl)(x),
where 8 = {W¥* b‘}5_; are the network parameters. We call W* and b’ the weight
matrix and bias vector of the {-th layer, respectively.
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Machine Learning Background

Feed-forward Neural Networks

@ The network parameters 0 are learnable through backpropagation.

Inputs Outputs

Layer 2 Layer 3

Layer O Layer 1 Layer 4
Input layer Output layer

Hidden layers

Vishnu Mangipudi, Ethan Song, Charles Zhang ML for Neuronal Voltage Spike Inference PRIMES Conference 2025



Machine Learning Background

Convolutional Neural Networks

@ CNNs are similar to FFNNs, except that they allow for immediate contextual
information to also be considered.

o Formally,

Definition

Consider L convolutional transformations of the form C*(x) = W®x x4+ b for 1 << L
where * denotes discrete convolution, W is a learnable kernel tensor, and b¢ is a
learnable bias vector. Given a nonlinear activation function o, a convolutional neural
network (CNN) is defined as

C(x;0)=CloooC" ogo-- 000 CH{x),

where 8 = {W¥* b‘}5_; are the parameters.
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Machine Learning Background

Convolutional Neural Networks

o We typically connect the output of the convolutional layers to a feed forward neural
network to generate a result.

. Convolution + Activation = Flattening . Affine Transform + Activation
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Machine Learning Background

Fully Convolutional Networks

@ We exclude the final feed-forward layer of our CNN, creating a Fully Convolutional
Network (FCN).
o Preserves temporal resolution in constructing a 1-1 mapping;
o Less dense layers — faster, less memory-intensive training/validation.

- Convolution + Activation - Convolution
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Machine Learning Background

U-Nets

@ To further enhance contextualization and localization of spikes, we include
sequential downsampling and upsampling operations in the form of a U-Net.
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Our Data
461 three-channel files containing:
@ raw normalized voltages (0-29990 ms, 1 ms resolution);

@ semi-manually identified spike locations (0/1).

@ total number of semi-manually identified spikes
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Data Windowing

A naive bijection mapping each
data file to a respective array of
predicted spike times is not ideal.

@ Voltage signal measurements
are prone to noise and signal
drift;

@ Spikes are local events;

@ Large mappings are
resource-intensive, features
become hard to learn.

We instead focus on 100 ms
windows of the entire 29990 ms
measurement period.

Methods = Model Details

File 200 Signal and Labeled Spikes

— Actual Spikes
— signa

° 5000 10000 15000

Time (ms)

__— 20000 25000 30000

— Actual Spikes
— signa

21760 21780

21820 21840

Postprocessing
Model Results

for Neuronal Voltage Spike Inference

PRIMES Conference 2025



Preprocessing Data Channels
We calculate several other parallel feature channels to provide more information to the

model.
@ Smoothed Signal
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Methods = Model Details

Preprocessing Data Channels
We calculate several other parallel feature channels to provide more information to the
model.

@ Smoothed Signal
o High Pass Filter
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Methods = Model Details

Preprocessing Data Channels

We calculate several other parallel feature channels to provide more information to the
model.

@ Smoothed Signal

@ High Pass Filter

o Derivatives
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Methods = Model Details

Preprocessing Data Channels

We calculate several other parallel feature channels to provide more information to the
model.

@ Smoothed Signal
@ High Pass Filter
@ Derivatives
@ Median Filter
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Methods = Model Details

Model

o Input: 100 ms windows x 5 data channels.

@ Output: 100 ms window of predicted probabilities.
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Methods = Model Details

Postprocessing

@ The predicted probabilities of all windows are averaged over and then rounded to 0
(for a non-spike) or 1 (for a spike) to gather entire-file predictions.
@ Further post-processing steps:

o Confidence-based spike shadowing;
e Pruning the ends of windows.
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Results ~ Metrics

Metrics

Predicted Label

Spike No Spike

Spike 6100 337

True Label

No Spike 448 1820065

@ Accuracy: 0.9996;
@ Precision: 0.9316;
@ Recall: 0.9476;

o F1 Score: 0.9395.
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Results ~ Spike Predictions

Prediction Results
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Results ~ Spike Predictions

Prediction Results
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Future Work

o Further improving the model;

Detecting harder “complex spikes”;

Sorting spikes after identification;

Public spike prediction package release.
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Conclusion
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End of Presentation
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