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Motivation

Motivation

Interpreting neuronal signal data is critical to understanding physiological responses
to stimuli of interest.

Normalized signal data displays low signal-to-noise ratio and signal mean drift,
hindering predictive ability.

Spike sparsity further complicates model trainability.

Spike detection is di�cult but very important.
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Introduction

Existing Methods

Thresholding:
Denoises normalized signal data via Gaussian
smoothing;
Uses an empirically determined threshold to
identify spikes.

CaImAn (Giovannucci et al., 2019):
Applies CNMF and OASIS deconvolution to
isolate spike events real-time;
Uses calcium fluorescence data instead of direct
voltage measurements.

VolPy (Cai et al., 2021):
Extends CaImAn’s methods to voltage signal
measurements;
Develops a standard pipeline for spike detection
from voltage signaling movies.

S2S (Sebastian et al., 2021):
Applies source separation methodologies to
directly map raw fluorescence or voltage signals
to spike trains.
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Machine Learning Background

Feed-forward Neural Networks

A feed-forward neural network is a function N on an input vector x with a set of
parameters ✓ called weights and biases.

Formally,

Definition

Consider L a�ne transformations of the form T `(x) = W`x + b` for 1  `  L and some
nonlinear activation function �. A feed-forward neural network is defined as the
function

N (x ; ✓) = T L � (� � T L�1) � (� � T L�2) � · · · � (� � T 1)(x),

where ✓ = {W`, b`}L`=1 are the network parameters. We call W` and b` the weight
matrix and bias vector of the `-th layer, respectively.
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Machine Learning Background

Feed-forward Neural Networks

The network parameters ✓ are learnable through backpropagation.
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Machine Learning Background

Convolutional Neural Networks

CNNs are similar to FFNNs, except that they allow for immediate contextual
information to also be considered.

Formally,

Definition

Consider L convolutional transformations of the form C `(x) = W` ⇤ x + b` for 1  `  L
where ⇤ denotes discrete convolution, W` is a learnable kernel tensor, and b` is a
learnable bias vector. Given a nonlinear activation function �, a convolutional neural
network (CNN) is defined as

C(x ; ✓) = C L � � � C L�1 � � � · · · � � � C 1(x),

where ✓ = {W`, b`}L`=1 are the parameters.
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Machine Learning Background

Convolutional Neural Networks

We typically connect the output of the convolutional layers to a feed forward neural
network to generate a result.
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Machine Learning Background

Fully Convolutional Networks

We exclude the final feed-forward layer of our CNN, creating a Fully Convolutional
Network (FCN).

Preserves temporal resolution in constructing a 1-1 mapping;
Less dense layers ! faster, less memory-intensive training/validation.
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Machine Learning Background

U-Nets

To further enhance contextualization and localization of spikes, we include
sequential downsampling and upsampling operations in the form of a U-Net.
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Methods Setup

Our Data

Data
Data Loading

Data Windowing
Preprocessing
Data Channels

Model
Postprocessing
Model Results

461 three-channel files containing:

raw normalized voltages (0–29990 ms, 1 ms resolution);

semi-manually identified spike locations (0/1).

total number of semi-manually identified spikes
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Methods Model Details

Data Windowing

Data
Data Loading

Data Windowing
Preprocessing
Data Channels

Model
Postprocessing
Model Results

A naive bijection mapping each
data file to a respective array of
predicted spike times is not ideal.

Voltage signal measurements
are prone to noise and signal
drift;

Spikes are local events;

Large mappings are
resource-intensive, features
become hard to learn.

We instead focus on 100 ms
windows of the entire 29990 ms
measurement period.
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Methods Model Details

Preprocessing Data Channels

Data
Data Loading

Data Windowing
Preprocessing
Data Channels

Model
Postprocessing
Model Results

We calculate several other parallel feature channels to provide more information to the
model.

Smoothed Signal

High Pass Filter
Derivatives
Median Filter
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Methods Model Details

Model

Data
Data Loading

Data Windowing
Preprocessing
Data Channels

Model
Postprocessing
Model Results

Input: 100 ms windows ⇥ 5 data channels.

Output: 100 ms window of predicted probabilities.
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Methods Model Details

Postprocessing

Data
Data Loading

Data Windowing
Preprocessing
Data Channels

Model
Postprocessing
Model Results

The predicted probabilities of all windows are averaged over and then rounded to 0
(for a non-spike) or 1 (for a spike) to gather entire-file predictions.
Further post-processing steps:

Confidence-based spike shadowing;
Pruning the ends of windows.
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Results Metrics

Metrics

Accuracy: 0.9996;

Precision: 0.9316;

Recall: 0.9476;

F1 Score: 0.9395.
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Results Spike Predictions

Prediction Results
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Results Spike Predictions

Prediction Results
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Conclusion

Future Work

Further improving the model;

Detecting harder “complex spikes”;

Sorting spikes after identification;

Public spike prediction package release.
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Conclusion
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Conclusion
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Conclusion

End of Presentation

THANK YOU!
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