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The Hadwiger-Nelson Problem

What is the minimum number of colors c required to color each point in
the plane such that no two points at a distance 1 have the same color?

Asked by Nelson in 1950.
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The Hadwiger–Nelson Problem: c ≥ 3
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The Hadwiger–Nelson Problem: c ≥ 4

Moser Spindle
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The Hadwiger–Nelson Problem: c ≥ 5

De Grey Graph (2018), 1581 vertices.
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An Equivalent Question

Let a unit-distance graph (UDG) be a graph with vertices being
points in the plane, and edges between points with distance 1.

Over all finite UDGs, what is the maximum chromatic number?
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Other Open Questions

How many edges can a UDG on n vertices have? What are the
densest UDGs?

How many edges can UDGs in Rd have, for d ≥ 2?

How many edges can UDGs in K d have, for a number field K?

Dense UDGs give us information about many types of extremal
UDGs.
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Dense UDGs

For d ≥ 4, the question is well-understood: almost all graphs are
UDGs.

For d = 2, 3, there is a large gap between upper and lower bounds.

For d = 2, the densest UDGs on up to 21 vertices are known. It is
suspected that we have discovered the densest possible UDGs on up
to ≈ 30 vertices.

For d = 3, little to no work has been done on computational
discovery. Complexity increases greatly.
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Searching For a UDG
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Searching For a UDG

Pnew
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Searching For a UDG
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The Two Approaches

Continuous: Use the whole circle.

Discrete: Only use a (carefully selected) finite subset of each circle.
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The Continuous Approach
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The Continuous Approach: The Issue

Infinite action space =⇒ probability 0 of anything “useful”
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The Continuous Approach: Potential Fix

Relax definition to ε-UDGs: include edges between points at distance 1
with a tolerance ε. In other words, edges are drawn between points with
distance in [1− ε, 1 + ε].
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The Continuous Approach: Another Issue

The following is an ε-UDG but not a UDG.
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The Continuous Approach: A Final Fix

Let a (ε, δ)-UDG be an ε-UDG such that no two vertices are within a
distance δ from each other.

Theorem (Aggarwal, 2025)

There exist functions ε(n, d), δ(n, d) > 0 such that any (ε(n, d), δ(n, d))
unit-distance graph in Rd on n vertices is a unit-distance graph.

The ε given by the proof of the above theorem for a fixed δ is doubly
exponentially small (of the form r−spoly(n)), but we conjecture that the
tightest possible bound is Oδ(n

−2).
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The Discrete Approach
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The Discrete Approach: Main Idea

Theorem (Aggarwal, 2025)

Let G be a finite unit-distance graph G in Rd . Then there exists a number
field K ⊂ R such that there exists a finite unit-distance graph G ′ in Kd

such that G is a subgraph of G ′.

Theorem (Aggarwal, 2025)

Let K ⊂ R be a number field which is finite over Q. Let m ∈ N and OK

be the ring of integers of K . Then there are finitely many vectors

v ∈
(
1
m · OK

)2
such that ||v|| = 1.

This means that we may select a number field K and a denominator m to
search in, and the action space is finite. Furthermore, we have an
algorithm to compute it. In other words, it suffices to look at lattices.
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The Discrete Approach: The Moser Lattice

Over C, the lattice generated by the Moser Spindle is Z
[
1+i

√
3

2 , 5+i
√
11

6

]
:

v1

v2

The densest known UDGs in R2 all lie in the Moser Lattice.
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The Discrete Approach: The Raiskii Spindle

Raiskii Spindle in R3

Theorem (Aggarwal, 2025)

The lattice generated by the Rd Raiskii Spindle is a subset of
Q[

√
7d2 + 8d ,

√
2,
√
d + 1]d and is generated by at most 2(d − 1) vectors.
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Computational Results

Simulated annealing with the discrete approach seems to produce
the best results in practice.

It replicates the best known lower bounds in R2 up to 30 vertices and
develops new lower bounds in R3.

Results produced without GPU use (6-core 2019 Macbook Pro),
significantly faster than previous results.

Developing upper bounds in R3 is tedious and computationally
intensive. It is a work in progress.
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Computational Results: Examples

Densest 18 vertex UDG in R2
Densest 12 vertex UDG in R3
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From Geometry to Quantum Logic

UDGs also arise in quantum mechanics through their special case:
orthogonality graphs.

Specifically, they model relationships between quantum
measurements that can or cannot be simultaneously assigned
definite outcomes.

|ψ1⟩

|ψ2⟩
|ψ3⟩
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Quantum Contextuality

Orthogonality graphs that have nonzero contextuality (a notion that
can be defined purely graph-theoretically in terms of cliques) are
called Kochen-Specker sets.

Known examples:

117-vector set in R3 (Kochen–Specker, 1967)
33-vector set in R3 (Peres, 1991)
Claimed existence of 31-vector set in R3, never published (Peres, 1991)
18-vector set in R4 (Cabello et al., 1996)
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Quantum Contextuality

We have additional studied contextuality measures for graphs in
general, producing results for (for example) random graphs.

Computational discovery of Kochen-Specker Sets or orthogonality
graphs with high contextuality measures is the next step.
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