Automated Discovery of Extremal Unit-Distance Graphs

Anay Aggarwal MIT PRIMES-USA Under the Direction of Andrew Gritsevskiy & Dr. Jesse Geneson

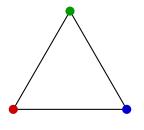
October 2025

The Hadwiger-Nelson Problem

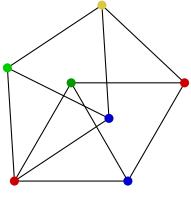
What is the minimum number of colors c required to color each point in the plane such that no two points at a distance 1 have the same color?

Asked by Nelson in 1950.

The Hadwiger–Nelson Problem: $c \ge 3$

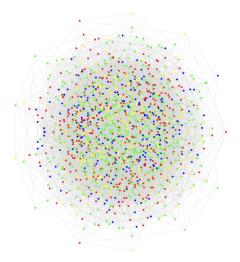


The Hadwiger–Nelson Problem: $c \ge 4$



Moser Spindle

The Hadwiger–Nelson Problem: $c \ge 5$



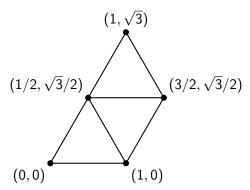
De Grey Graph (2018), 1581 vertices.

An Equivalent Question

• Let a *unit-distance graph* (UDG) be a graph with vertices being points in the plane, and edges between points with distance 1.

An Equivalent Question

- Let a unit-distance graph (UDG) be a graph with vertices being points in the plane, and edges between points with distance 1.
- Over all finite UDGs, what is the maximum chromatic number?



• How many edges can a UDG on n vertices have? What are the densest UDGs?

- How many edges can a UDG on n vertices have? What are the densest UDGs?
- How many edges can UDGs in \mathbb{R}^d have, for $d \geq 2$?

- How many edges can a UDG on n vertices have? What are the densest UDGs?
- How many edges can UDGs in \mathbb{R}^d have, for $d \geq 2$?
- How many edges can UDGs in K^d have, for a number field K?

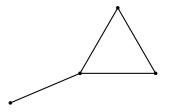
- How many edges can a UDG on n vertices have? What are the densest UDGs?
- How many edges can UDGs in \mathbb{R}^d have, for $d \geq 2$?
- How many edges can UDGs in K^d have, for a number field K?
- Dense UDGs give us information about many types of extremal UDGs.

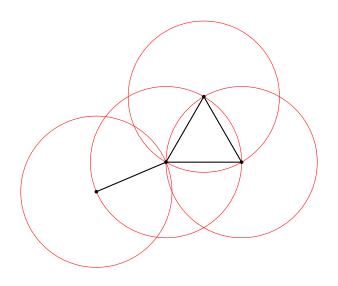
• For $d \ge 4$, the question is well-understood: almost all graphs are UDGs.

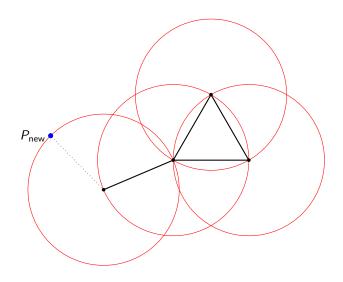
- For $d \ge 4$, the question is well-understood: almost all graphs are UDGs.
- For d = 2, 3, there is a large gap between upper and lower bounds.

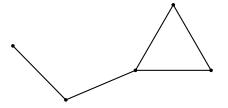
- For $d \ge 4$, the question is well-understood: almost all graphs are UDGs.
- For d = 2, 3, there is a large gap between upper and lower bounds.
- For d=2, the densest UDGs on up to 21 vertices are known. It is suspected that we have discovered the densest possible UDGs on up to ≈ 30 vertices.

- For $d \ge 4$, the question is well-understood: almost all graphs are UDGs.
- For d = 2, 3, there is a large gap between upper and lower bounds.
- For d=2, the densest UDGs on up to 21 vertices are known. It is suspected that we have discovered the densest possible UDGs on up to ≈ 30 vertices.
- For d = 3, little to no work has been done on computational discovery. Complexity increases greatly.









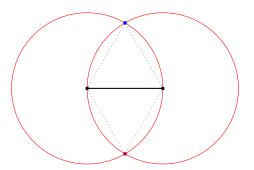
The Two Approaches

- Continuous: Use the whole circle.
- Discrete: Only use a (carefully selected) finite subset of each circle.

The Continuous Approach

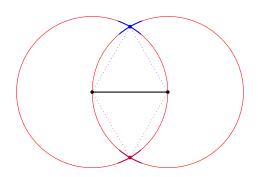
The Continuous Approach: The Issue

Infinite action space \implies probability 0 of anything "useful"



The Continuous Approach: Potential Fix

Relax definition to ε -**UDGs**: include edges between points at distance 1 with a tolerance ε . In other words, edges are drawn between points with distance in $[1-\varepsilon,1+\varepsilon]$.



The Continuous Approach: Another Issue

The following is an ε -UDG but not a UDG.

The Continuous Approach: A Final Fix

Let a (ε, δ) -**UDG** be an ε -UDG such that no two vertices are within a distance δ from each other.

The Continuous Approach: A Final Fix

Let a (ε, δ) -**UDG** be an ε -UDG such that no two vertices are within a distance δ from each other.

Theorem (Aggarwal, 2025)

There exist functions $\varepsilon(n,d)$, $\delta(n,d) > 0$ such that any $(\varepsilon(n,d),\delta(n,d))$ unit-distance graph in \mathbb{R}^d on n vertices is a unit-distance graph.

The Continuous Approach: A Final Fix

Let a (ε, δ) -**UDG** be an ε -UDG such that no two vertices are within a distance δ from each other.

Theorem (Aggarwal, 2025)

There exist functions $\varepsilon(n,d)$, $\delta(n,d) > 0$ such that any $(\varepsilon(n,d),\delta(n,d))$ unit-distance graph in \mathbb{R}^d on n vertices is a unit-distance graph.

The ε given by the proof of the above theorem for a fixed δ is doubly exponentially small (of the form $r^{-s^{\mathrm{poly}(n)}}$), but we conjecture that the tightest possible bound is $O_{\delta}(n^{-2})$.

The Discrete Approach

The Discrete Approach: Main Idea

Theorem (Aggarwal, 2025)

Let G be a finite unit-distance graph G in \mathbb{R}^d . Then there exists a number field $K \subset \mathbb{R}$ such that there exists a finite unit-distance graph G' in K^d such that G is a subgraph of G'.

The Discrete Approach: Main Idea

Theorem (Aggarwal, 2025)

Let G be a finite unit-distance graph G in \mathbb{R}^d . Then there exists a number field $K \subset \mathbb{R}$ such that there exists a finite unit-distance graph G' in K^d such that G is a subgraph of G'.

Theorem (Aggarwal, 2025)

Let $K \subset \mathbb{R}$ be a number field which is finite over \mathbb{Q} . Let $m \in \mathbb{N}$ and O_K be the ring of integers of K. Then there are finitely many vectors $\mathbf{v} \in \left(\frac{1}{m} \cdot O_K\right)^2$ such that $||\mathbf{v}|| = 1$.

The Discrete Approach: Main Idea

Theorem (Aggarwal, 2025)

Let G be a finite unit-distance graph G in \mathbb{R}^d . Then there exists a number field $K \subset \mathbb{R}$ such that there exists a finite unit-distance graph G' in K^d such that G is a subgraph of G'.

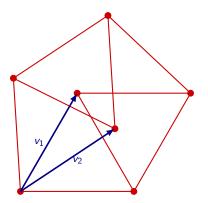
Theorem (Aggarwal, 2025)

Let $K \subset \mathbb{R}$ be a number field which is finite over \mathbb{Q} . Let $m \in \mathbb{N}$ and O_K be the ring of integers of K. Then there are finitely many vectors $\mathbf{v} \in \left(\frac{1}{m} \cdot O_K\right)^2$ such that $||\mathbf{v}|| = 1$.

This means that we may select a number field K and a denominator m to search in, and the action space is finite. Furthermore, we have an algorithm to compute it. In other words, it suffices to look at lattices.

The Discrete Approach: The Moser Lattice

Over \mathbb{C} , the lattice generated by the Moser Spindle is $\mathbb{Z}\left[\frac{1+i\sqrt{3}}{2},\frac{5+i\sqrt{11}}{6}\right]$:



The densest known UDGs in \mathbb{R}^2 all lie in the Moser Lattice.

The Discrete Approach: The Raiskii Spindle

Raiskii Spindle in $\ensuremath{\mathbb{R}}^3$

The Discrete Approach: The Raiskii Spindle

Raiskii Spindle in $\ensuremath{\mathbb{R}}^3$

Theorem (Aggarwal, 2025)

The lattice generated by the \mathbb{R}^d Raiskii Spindle is a subset of $\mathbb{Q}[\sqrt{7d^2+8d},\sqrt{2},\sqrt{d+1}]^d$ and is generated by at most 2(d-1) vectors.

Computational Results

Computational Results

• **Simulated annealing** with the discrete approach seems to produce the best results in practice.

Computational Results

- **Simulated annealing** with the discrete approach seems to produce the best results in practice.
- It replicates the best known lower bounds in \mathbb{R}^2 up to 30 vertices and develops new lower bounds in \mathbb{R}^3 .

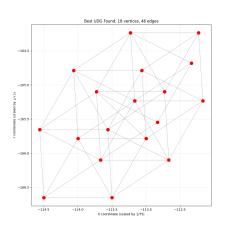
Computational Results

- **Simulated annealing** with the discrete approach seems to produce the best results in practice.
- It replicates the best known lower bounds in \mathbb{R}^2 up to 30 vertices and develops new lower bounds in \mathbb{R}^3 .
- Results produced without GPU use (6-core 2019 Macbook Pro), significantly faster than previous results.

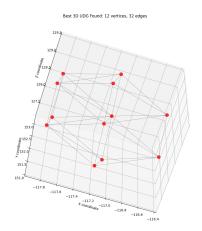
Computational Results

- **Simulated annealing** with the discrete approach seems to produce the best results in practice.
- It replicates the best known lower bounds in \mathbb{R}^2 up to 30 vertices and develops new lower bounds in \mathbb{R}^3 .
- Results produced without GPU use (6-core 2019 Macbook Pro), significantly faster than previous results.
- Developing upper bounds in \mathbb{R}^3 is tedious and computationally intensive. It is a work in progress.

Computational Results: Examples



Densest 18 vertex UDG in \mathbb{R}^2



Densest 12 vertex UDG in \mathbb{R}^3

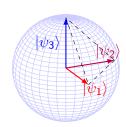
From Geometry to Quantum Logic

From Geometry to Quantum Logic

• UDGs also arise in **quantum mechanics** through their special case: **orthogonality graphs**.

From Geometry to Quantum Logic

- UDGs also arise in quantum mechanics through their special case: orthogonality graphs.
- Specifically, they model relationships between quantum measurements that can or cannot be simultaneously assigned definite outcomes.



 Orthogonality graphs that have nonzero contextuality (a notion that can be defined purely graph-theoretically in terms of cliques) are called Kochen-Specker sets.

- Orthogonality graphs that have nonzero contextuality (a notion that can be defined purely graph-theoretically in terms of cliques) are called Kochen-Specker sets.
- Known examples:

- Orthogonality graphs that have nonzero contextuality (a notion that can be defined purely graph-theoretically in terms of cliques) are called Kochen-Specker sets.
- Known examples:
 - 117-vector set in \mathbb{R}^3 (Kochen-Specker, 1967)

- Orthogonality graphs that have nonzero contextuality (a notion that can be defined purely graph-theoretically in terms of cliques) are called Kochen-Specker sets.
- Known examples:
 - 117-vector set in \mathbb{R}^3 (Kochen–Specker, 1967)
 - 33-vector set in \mathbb{R}^3 (Peres, 1991)

- Orthogonality graphs that have nonzero contextuality (a notion that can be defined purely graph-theoretically in terms of cliques) are called Kochen-Specker sets.
- Known examples:
 - 117-vector set in \mathbb{R}^3 (Kochen-Specker, 1967)
 - 33-vector set in \mathbb{R}^3 (Peres, 1991)
 - \bullet Claimed existence of 31-vector set in \mathbb{R}^3 , never published (Peres, 1991)

- Orthogonality graphs that have nonzero contextuality (a notion that can be defined purely graph-theoretically in terms of cliques) are called Kochen-Specker sets.
- Known examples:
 - 117-vector set in \mathbb{R}^3 (Kochen-Specker, 1967)
 - 33-vector set in \mathbb{R}^3 (Peres, 1991)
 - ullet Claimed existence of 31-vector set in \mathbb{R}^3 , never published (Peres, 1991)
 - 18-vector set in \mathbb{R}^4 (Cabello et al., 1996)

• We have additional studied contextuality measures for graphs in general, producing results for (for example) random graphs.

- We have additional studied contextuality measures for graphs in general, producing results for (for example) random graphs.
- Computational discovery of Kochen-Specker Sets or orthogonality graphs with high contextuality measures is the next step.

Thanks to:

- My wonderful mentors Andrew Gritsevskiy and Dr. Jesse Geneson,
- The MIT PRIMES-USA program for this opportunity to conduct research,
- My family and friends for their support throughout this process.

References I

- [1] Peter Engel et al. Diverse beam search to find densest-known planar unit distance graphs. 2024. arXiv: 2406.15317 [math.CO]. URL: https://arxiv.org/abs/2406.15317.
- [2] Leo Moser and William Moser. "Solution to problem 10". In: Canadian Mathematical Bulletin 4 (1961), pp. 187–189. DOI: 10.1017/S0008439500025753.
- [3] Aubrey D. N. J. de Grey. The chromatic number of the plane is at least 5. 2018. arXiv: 1804.02385 [math.CO]. URL: https://arxiv.org/abs/1804.02385.
- [4] A Peres. "Two simple proofs of the Kochen-Specker theorem". In: Journal of Physics A: Mathematical and General 24.4 (Feb. 1991), p. L175. DOI: 10.1088/0305-4470/24/4/003. URL: https://dx.doi.org/10.1088/0305-4470/24/4/003.

References II

- [5] Adán Cabello, JoséM. Estebaranz, and Guillermo García-Alcaine. "Bell-Kochen-Specker theorem: A proof with 18 vectors". In: *Physics Letters A* 212.4 (Mar. 1996), pp. 183–187. ISSN: 0375-9601. DOI: 10.1016/0375-9601(96)00134-x. URL: http://dx.doi.org/10.1016/0375-9601(96)00134-X.
- [6] Boris Alexeev, Dustin G. Mixon, and Hans Parshall. The Erdős unit distance problem for small point sets. 2025. arXiv: 2412.11914 [math.CO]. URL: https://arxiv.org/abs/2412.11914.
- [7] Simon Kochen and Ernst P. Specker. "The Problem of Hidden Variables in Quantum Mechanics". In: *Journal of Mathematics and Mechanics* 17.1 (1967), pp. 59–87.