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The Hadwiger-Nelson Problem

What is the minimum number of colors ¢ required to color each point in
the plane such that no two points at a distance 1 have the same color?

Asked by Nelson in 1950.
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The Hadwiger—Nelson Problem: ¢ > 3
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The Hadwiger—Nelson Problem: ¢ > 4

Moser Spindle
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The Hadwiger—Nelson Problem: ¢ > 5

De Grey Graph (2018), 1581 vertices.
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An Equivalent Question

o Let a unit-distance graph (UDG) be a graph with vertices being
points in the plane, and edges between points with distance 1.
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An Equivalent Question

o Let a unit-distance graph (UDG) be a graph with vertices being
points in the plane, and edges between points with distance 1.

o Over all finite UDGs, what is the maximum chromatic number?

(1,v3)

(1/2,/3/2) (3/2,v/3/2)

(0,0) (1,0)
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Other Open Questions

o How many edges can a UDG on n vertices have? What are the
densest UDGs?
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Other Open Questions

o How many edges can a UDG on n vertices have? What are the
densest UDGs?

o How many edges can UDGs in R? have, for d > 27
o How many edges can UDGs in K9 have, for a number field K?

o Dense UDGs give us information about many types of extremal
UDGs.
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Dense UDGs

o For d > 4, the question is well-understood: almost all graphs are
UDGs.
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Dense UDGs

o For d > 4, the question is well-understood: almost all graphs are
UDGs.

o For d = 2,3, there is a large gap between upper and lower bounds.
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Dense UDGs

o For d > 4, the question is well-understood: almost all graphs are
UDGs.
o For d = 2,3, there is a large gap between upper and lower bounds.

o For d = 2, the densest UDGs on up to 21 vertices are known. It is
suspected that we have discovered the densest possible UDGs on up

to ~ 30 vertices.
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Dense UDGs

o For d > 4, the question is well-understood: almost all graphs are
UDGs.

o For d = 2,3, there is a large gap between upper and lower bounds.

o For d = 2, the densest UDGs on up to 21 vertices are known. It is
suspected that we have discovered the densest possible UDGs on up
to = 30 vertices.

o For d = 3, little to no work has been done on computational
discovery. Complexity increases greatly.
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Searching For a UDG
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Searching For a UDG
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Searching For a UDG
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Searching For a UDG
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The Two Approaches

o Continuous: Use the whole circle.

o Discrete: Only use a (carefully selected) finite subset of each circle.
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The Continuous Approach
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The Continuous Approach: The Issue

Infinite action space = probability 0 of anything “useful”
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The Continuous Approach: Potential Fix

Relax definition to e-UDGs: include edges between points at distance 1
with a tolerance €. In other words, edges are drawn between points with
distance in [1 —¢&,1+¢].
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The Continuous Approach: Another Issue

The following is an e-UDG but not a UDG.
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The Continuous Approach: A Final Fix

Let a (¢,d)-UDG be an e-UDG such that no two vertices are within a
distance J from each other.

Anay Aggarwal . Y



The Continuous Approach: A Final Fix

Let a (¢,d)-UDG be an e-UDG such that no two vertices are within a
distance J from each other.

There exist functions e(n, d), d(n, d) > 0 such that any (e(n, d), J(n, d))
unit-distance graph in RY on n vertices is a unit-distance graph.

Anay Aggarwal . Y



The Continuous Approach: A Final Fix

Let a (¢,d)-UDG be an e-UDG such that no two vertices are within a
distance J from each other.

There exist functions e(n, d), d(n, d) > 0 such that any (e(n, d), J(n, d))
unit-distance graph in RY on n vertices is a unit-distance graph.

The € given by the proof of the above theorem for a fixed § is doubly
exponentially small (of the form r*SPOIY(n)), but we conjecture that the
tightest possible bound is Os(n~2).
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The Discrete Approach
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The Discrete Approach: Main Idea

Let G be a finite unit-distance graph G in RY. Then there exists a number
field K C R such that there exists a finite unit-distance graph G’ in K¢
such that G is a subgraph of G'.
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The Discrete Approach: Main Idea

Let G be a finite unit-distance graph G in RY. Then there exists a number
field K C R such that there exists a finite unit-distance graph G’ in K¢
such that G is a subgraph of G'.

Let K C R be a number field which is finite over Q. Let m € N and Ok
be the ring of integers of K. Then there are finitely many vectors

ve (L. OK)2 such that ||v|| = 1.
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The Discrete Approach: Main Idea

Let G be a finite unit-distance graph G in RY. Then there exists a number
field K C R such that there exists a finite unit-distance graph G’ in K¢
such that G is a subgraph of G'.

Let K C R be a number field which is finite over Q. Let m € N and Ok
be the ring of integers of K. Then there are finitely many vectors

ve (L. OK)2 such that ||v|| = 1.

This means that we may select a number field K and a denominator m to
search in, and the action space is finite. Furthermore, we have an
algorithm to compute it. In other words, it suffices to look at lattices.
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The Discrete Approach: The Moser Lattice

Over C, the lattice generated by the Moser Spindle is Z Héﬁ, 5+ivVIL |,

The densest known UDGs in R? all lie in the Moser Lattice.
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The Discrete Approach: The Raiskii Spindle

Raiskii Spindle in R3
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The Discrete Approach: The Raiskii Spindle

Raiskii Spindle in R3

The lattice generated by the R? Raiskii Spindle is a subset of
Q[vV7d? +8d,v/2,+/d + 1]¢ and is generated by at most 2(d — 1) vectors.
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Computational Results
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Computational Results

o Simulated annealing with the discrete approach seems to produce
the best results in practice.
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o It replicates the best known lower bounds in R? up to 30 vertices and
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Anay Aggarwal . T R



Computational Results

o Simulated annealing with the discrete approach seems to produce
the best results in practice.

o It replicates the best known lower bounds in R? up to 30 vertices and
develops new lower bounds in R3.

o Results produced without GPU use (6-core 2019 Macbook Pro),
significantly faster than previous results.
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Computational Results

o Simulated annealing with the discrete approach seems to produce
the best results in practice.

o It replicates the best known lower bounds in R? up to 30 vertices and
develops new lower bounds in R3.

o Results produced without GPU use (6-core 2019 Macbook Pro),
significantly faster than previous results.

o Developing upper bounds in R3 is tedious and computationally
intensive. It is a work in progress.
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Computational Results: Examples

Best 3D UDG Found: 12 vertices, 32 edges

Best UDG Found: 18 vertices, 46 edges

. .
1645
.
. . °
L
1650
N . .
g 1274
z . L ] 7{
/e » d
o -1655
H L g
H . e
H [ . N
2 1525
. [ L] */
520
1660 / -t °
. . w1 *
10—
. e
1665 176 ==
14 ~
. . e
©Orgp g, 1170 i
Tias N Ses
1166
1164

Tias Ciiao Tifss e
X coordinate (scaled by 1175)
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From Geometry to Quantum Logic
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From Geometry to Quantum Logic

o UDGs also arise in quantum mechanics through their special case:
orthogonality graphs.
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From Geometry to Quantum Logic

o UDGs also arise in quantum mechanics through their special case:
orthogonality graphs.

o Specifically, they model relationships between quantum
measurements that can or cannot be simultaneously assigned
definite outcomes.

Anay Aggarwal . Y



Quantum Contextuality

o Orthogonality graphs that have nonzero contextuality (a notion that
can be defined purely graph-theoretically in terms of cliques) are
called Kochen-Specker sets.
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Quantum Contextuality

o Orthogonality graphs that have nonzero contextuality (a notion that
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Quantum Contextuality

o Orthogonality graphs that have nonzero contextuality (a notion that
can be defined purely graph-theoretically in terms of cliques) are
called Kochen-Specker sets.

o Known examples:

117-vector set in R3 (Kochen—Specker, 1967)

33-vector set in R (Peres, 1991)

Claimed existence of 31-vector set in R3, never published (Peres, 1991)
18-vector set in R* (Cabello et al., 1996)

© © 0 o
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Quantum Contextuality

o We have additional studied contextuality measures for graphs in
general, producing results for (for example) random graphs.
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Quantum Contextuality

o We have additional studied contextuality measures for graphs in
general, producing results for (for example) random graphs.

o Computational discovery of Kochen-Specker Sets or orthogonality
graphs with high contextuality measures is the next step.

Anay Aggarwal . Ry



Thanks to:

o My wonderful mentors Andrew Gritsevskiy and Dr. Jesse Geneson,

o The MIT PRIMES-USA program for this opportunity to conduct
research,

o My family and friends for their support throughout this process.

Anay Aggarwal . Ry



References |

Diverse beam search to find densest-known planar
unit distance graphs.

“Solution to problem 10".
The chromatic number of the plane is at

least 5.

“Two simple proofs of the Kochen-Specker theorem” .

Anay Aggarwal . Ry


https://arxiv.org/abs/2406.15317
https://arxiv.org/abs/2406.15317
https://doi.org/10.1017/S0008439500025753
https://arxiv.org/abs/1804.02385
https://arxiv.org/abs/1804.02385
https://doi.org/10.1088/0305-4470/24/4/003
https://dx.doi.org/10.1088/0305-4470/24/4/003

References |l

“Bell-Kochen-Specker theorem: A proof with 18 vectors”.

The Erdés unit
distance problem for small point sets.

“The Problem of Hidden
Variables in Quantum Mechanics”.

Anay Aggarwal . Ry


https://doi.org/10.1016/0375-9601(96)00134-x
http://dx.doi.org/10.1016/0375-9601(96)00134-X
https://arxiv.org/abs/2412.11914
https://arxiv.org/abs/2412.11914
https://arxiv.org/abs/2412.11914

	References

