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Motivation

Definition

Consider a Boolean function f . We call the set {x : f(x) = 1} a language/decision problem
associated with f .
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Motivation

Definition

Consider a Boolean function f . We call the set {x : f(x) = 1} a language/decision problem
associated with f .

Definition

A complexity class is a set of languages.

It is of interest to us to look at complexity classes of efficiently computable languages, i.e.
sets of languages that can be computed within a certain resource constraint.

Circuits are mathematically simpler and are much more powerful than classical
computation models, like Turing Machines.
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Graphs

Definition (Directed Graph)

A directed graph is an ordered pair G = (V,E), where V is a finite set of vertices, and
E ⊆ V × V is a set of ordered pairs (u, v) called directed edges, where each edge goes from
vertex u to vertex v.
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Graphs

Definition (Cycle in a Directed Graph)

A cycle in a directed graph is a sequence of distinct vertices

v1, v2, . . . , vk (k ≥ 2)

such that (vi, vi+1) ∈ E for all 1 ≤ i < k, and additionally (vk, v1) ∈ E.
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Graphs

Definition (Directed Acyclic Graph)

A directed acyclic graph is a directed graph that contains no directed cycles.
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What is a circuit?

Definition

A circuit is a directed acyclic graph in which nodes of in-degree 0 are called inputs and all
other nodes are called gates. Gates of out-degree 0 are called outputs. Each gate g of
in-degree k is labeled with a k-ary function fg, and computes it in a natural way.
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Definition

A circuit is a directed acyclic graph in which nodes of in-degree 0 are called inputs and all
other nodes are called gates. Gates of out-degree 0 are called outputs. Each gate g of
in-degree k is labeled with a k-ary function fg, and computes it in a natural way.
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What is a circuit?

Definition

A circuit is a directed acyclic graph in which nodes of in-degree 0 are called inputs and all
other nodes are called gates. Gates of out-degree 0 are called outputs. Each gate g of
in-degree k is labeled with a k-ary function fg, and computes it in a natural way.
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x2 = 1 x4 = 0
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x5 = 1

1 ∧ 0 = 0

¬0 = 1

1 ∧ 0 = 0

¬1 = 0

0 ∨ 0 = 0

1 ∧ 0 = 0
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Circuit families

Definition

A circuit family is a sequence {Cn}n∈N of circuits, where Cn has n inputs and a single output.

C1 C2 C3
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Circuit families

The size of a circuit is the total number of gates it contains.
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Circuit families

The size of a circuit is the total number of gates it contains.

Definition

For a function T : N → N such that T (n) ≥ |Cn| for all n ∈ N, we say {Cn} has size T (n).

C1

|C1| = 1

C2

|C2| = 2

C3

|C3| = 3
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Circuit families

The depth of a circuit is the length of the longest path from an input to an output.
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Circuit families

The depth of a circuit is the length of the longest path from an input to an output.

Definition

For a function T : N → N such that T (n) ≥ depth(Cn) for all n ∈ N, we say {Cn} has depth
T (n).

C1

depth(C1) = 1

C2

depth(C2) = 2

C3

depth(C3) = 2
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Relevant Boolean functions

The n-ary Boolean function AND : {0, 1}n → {0, 1} outputs 1 iff all of its inputs are 1.
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Relevant Boolean functions

The n-ary Boolean function AND : {0, 1}n → {0, 1} outputs 1 iff all of its inputs are 1.

The n-ary Boolean function OR : {0, 1}n → {0, 1} outputs 1 iff at least one of its inputs
is 1.

For a fixed positive integer m, the n-ary function MODm : {0, 1}n → {0, 1} outputs 1 iff
the sum of its inputs is divisible by m.

The three functions above are examples of symmetric functions.

Definition

A Boolean function f is called symmetric if there exists g : N → {0, 1} such that for each
binary vector x,

f(x) = g (|x|1) ,

i.e., it depends only on the number of 1s in the input.
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Circuit Complexity Classes

Definition

An alternating circuit is a circuit in which every gate computes an AND or OR function of
unbounded in-degree.
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Circuit Complexity Classes

Definition

An alternating circuit is a circuit in which every gate computes an AND or OR function of
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and depth O(logi n).
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Circuit Complexity Classes

Definition

An alternating circuit is a circuit in which every gate computes an AND or OR function of
unbounded in-degree.

ACi is the class of languages computable by alternating circuit families of polynomial size
and depth O(logi n).

Definition

A counting circuit is a circuit in which every gate computes a MOD function of unbounded
in-degree.
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Circuit Complexity Classes

Definition

An alternating circuit is a circuit in which every gate computes an AND or OR function of
unbounded in-degree.

ACi is the class of languages computable by alternating circuit families of polynomial size
and depth O(logi n).

Definition

A counting circuit is a circuit in which every gate computes a MOD function of unbounded
in-degree.

CCi[m] is the class of languages computable by counting circuit families of polynomial
size and depth O(logi n), where every gate computes the MODm function.
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Circuit Complexity Classes (cont.)

Definition

An alternating circuit with counting is a circuit in which every gate computes either a MOD
function, the AND function, or the OR function, all of unbounded in-degree.
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Circuit Complexity Classes (cont.)

Definition

An alternating circuit with counting is a circuit in which every gate computes either a MOD
function, the AND function, or the OR function, all of unbounded in-degree.

ACi[m] is the class of languages computable by alternating counting circuit families of
polynomial size and depth O(logi n), where every MOD gate computes the MODm

function.
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Circuit Complexity Classes (cont.)

Definition

An alternating circuit with counting is a circuit in which every gate computes either a MOD
function, the AND function, or the OR function, all of unbounded in-degree.

ACi[m] is the class of languages computable by alternating counting circuit families of
polynomial size and depth O(logi n), where every MOD gate computes the MODm

function.

We will focus on CC0.
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Key lower bound

Theorem (Razborov, Smolensky)

For distinct primes p ̸= q, any depth-d AC0[q] circuit that computes MODp must have size at
least exp

(
Ω(n1/(2d))

)
.
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Key lower bound

Theorem (Razborov, Smolensky)

For distinct primes p ̸= q, any depth-d AC0[q] circuit that computes MODp must have size at
least exp

(
Ω(n1/(2d))

)
.

This is a powerful lower bound which shows the weakness of prime-modulus counting
circuits.
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Key lower bound

Theorem (Razborov, Smolensky)

For distinct primes p ̸= q, any depth-d AC0[q] circuit that computes MODp must have size at
least exp

(
Ω(n1/(2d))

)
.

This is a powerful lower bound which shows the weakness of prime-modulus counting
circuits.

Motivates us to consider composite moduli.
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Symmetric Upper Bounds

Theorem (Chapman, Williams)

For every ε > 0, there is a modulus m ≤ (1/ε)2/ε such that every symmetric function on n
bits can be computed by depth-3 MODm circuits of exp(O(nε)) size.
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For every ε > 0, there is a modulus m ≤ (1/ε)2/ε such that every symmetric function on n
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In particular, the construction yields circuits of size exp(O(n1/k log n)) where
m = p1 . . . pk is a product of k distinct primes.
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Symmetric Upper Bounds

Theorem (Chapman, Williams)

For every ε > 0, there is a modulus m ≤ (1/ε)2/ε such that every symmetric function on n
bits can be computed by depth-3 MODm circuits of exp(O(nε)) size.

In particular, the construction yields circuits of size exp(O(n1/k log n)) where
m = p1 . . . pk is a product of k distinct primes.

Example

Every symmetric Boolean function on n variables has depth-three MOD30 circuits of size
exp(O(n1/3 log n)).
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Generalization

Symmetric functions are those that depend only on the polynomial
n∑

i=1

xi. If we have a

function that is instead dependent only on the value of a different polynomial, we can
compute it in a similar manner.
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Generalization

Symmetric functions are those that depend only on the polynomial
n∑

i=1

xi. If we have a

function that is instead dependent only on the value of a different polynomial, we can
compute it in a similar manner.

Theorem

Let f be a Boolean function on n bits x1, . . . , xn and m be a product of k ≥ 2 distinct primes.
Let I(x) ∈ Z[x1, . . . , xn] of degree d, whose maximum value over all Boolean inputs is M .
Then, every f that depends solely on the value of I(x) can be computed by depth-3 MODm

circuits of size exp(O(d ·M1/k logM)).
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Example

Example

Consider f(x) =
n∨

i=1

(xi ∧ xi+1).
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Example

Example

Consider f(x) =
n∨

i=1

(xi ∧ xi+1).

What is this function doing? How can we mimic this with a simple polynomial?
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Example

Example

Consider f(x) =
n∨

i=1

(xi ∧ xi+1).

What is this function doing? How can we mimic this with a simple polynomial?

We can use the degree-two polynomial I(x) =
∑n

i=1 xixi+1 to give us depth-three
MODm circuits of size exp(O(n1/k log n)) computing f .
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Symmetry Composition

Theorem

Let m = p1 · · · pk be a product of k distinct primes, and let g be an n-variate symmetric
function. For each 1 ≤ i ≤ n, let hi be a function that depends only on nϵ inputs. Then
f(x) := g(h1(x), . . . , hn(x)) can be computed with depth-three MODm circuits of size
exp(O(n2/k+ϵ logm)).
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Symmetry Composition

Theorem

Let m = p1 · · · pk be a product of k distinct primes, and let g be an n-variate symmetric
function. For each 1 ≤ i ≤ n, let hi be a function that depends only on nϵ inputs. Then
f(x) := g(h1(x), . . . , hn(x)) can be computed with depth-three MODm circuits of size
exp(O(n2/k+ϵ logm)).

Corollary

Let g be an n-variate symmetric function. For each 1 ≤ i ≤ n, let hi be a function that
depends only on a subpolynomial number of inputs. Then f(x) := g(h1(x), . . . , hn(x)) can be
computed with a counting circuit family of depth three and subexponential size.
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