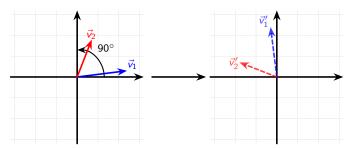
Computing Orbital Integrals as Local Densities

Michael Middlezong, Lucas Qi Mentor: Thomas Rüd

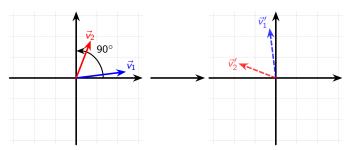
MIT PRIMES Conference 2025

October 18, 2025

Consider this linear transformation on \mathbb{R}^2 :



Consider this linear transformation on \mathbb{R}^2 :

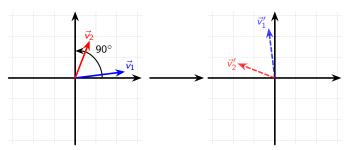


Good basis:
$$\{(1,0),(0,1)\}$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

All coefficients are integers.

Consider this linear transformation on \mathbb{R}^2 :



Good basis:
$$\{(1,0),(0,1)\}$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

All coefficients are integers.

Bad basis:
$$\{(2,0),(0,1)\}$$

$$\begin{pmatrix}
0 & -1/2 \\
2 & 0
\end{pmatrix}$$

Not an integer!

Question

Given a linear transformation, what is the probability that a random basis is "good" (associated matrix has integer coefficients)?

Question

Given a linear transformation, what is the probability that a random basis is "good" (associated matrix has integer coefficients)?

Probability \implies need a measure on the set of bases.

However, in \mathbb{R} , the probability will always be 0. The problem is more interesting in \mathbb{Q}_p .

p-adic integers

Definition

The set of p-adic integers, denoted \mathbb{Z}_p , is the ring of infinite power series

$$\mathbb{Z}_p := \left\{ \sum_{i=0}^{\infty} \mathsf{a}_i \mathsf{p}^i \right\}$$

with $0 \le a_i < p$ for each i.

p-adic integers

Definition

The set of p-adic integers, denoted \mathbb{Z}_p , is the ring of infinite power series

$$\mathbb{Z}_p := \left\{ \sum_{i=0}^{\infty} \mathsf{a}_i \mathsf{p}^i \right\}$$

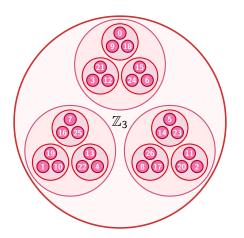
with $0 \le a_i < p$ for each i.

Remark

We can see p-adic integers as having a base-p representation that extends infinitely to the left:

$$\dots \overline{a_2 a_1 a_0} = a_0 + a_1 p + a_2 p^2 + \dots$$

Illustration of *p*-adic integers



p-adic numbers

Definition

The field of *p*-adic numbers, denoted \mathbb{Q}_p , is the field of fractions of \mathbb{Z}_p . Consequently, every element of \mathbb{Q}_p can be represented as follows:

$$\mathbb{Q}_p = \left\{ \sum_{i=m}^{\infty} a_i p^i \right\}$$

where $m \in \mathbb{Z}$ (notably, m can be negative) and $0 \le a_i < p$.

p-adic measures

When a topological group (like \mathbb{Q}_p) satisfies certain conditions (locally compact and Hausdorff), it admits a translation-invariant measure known as a **Haar measure** which is unique up to scaling.

Definition

Let μ be the Haar measure of \mathbb{Q}_p normalized so that $\mu(\mathbb{Z}_p) = 1$. This is the **canonical measure** on \mathbb{Q}_p .

Returning back to our illustration...

Question

Given a linear transformation, what is the probability that a random basis is "good" (associated matrix has integer coefficients)?

Question

Given a linear transformation, what is the probability that a random basis is "good" (associated matrix has integer coefficients)?

- Fix a linear transformation.
- Each basis gives rise to a matrix.
- How do we know which matrices can arise?

Question

Given a linear transformation, what is the probability that a random basis is "good" (associated matrix has integer coefficients)?

- Fix a linear transformation.
- Each basis gives rise to a matrix.
- How do we know which matrices can arise?

Definition

Given a matrix $\gamma \in GL_n(\mathbb{Q}_p)$, the set of matrices that you can get by using different bases is called the **orbit** of γ , denoted by $Orb(\gamma)$.

Question

Given a linear transformation, what is the probability that a random basis is "good" (associated matrix has integer coefficients)?

- Fix a linear transformation.
- Each basis gives rise to a matrix.
- How do we know which matrices can arise?

Definition

Given a matrix $\gamma \in GL_n(\mathbb{Q}_p)$, the set of matrices that you can get by using different bases is called the **orbit** of γ , denoted by $Orb(\gamma)$.

Goal: define a measure on $Orb(\gamma)$.

Characteristic polynomials

A matrix's **characteristic polynomial** is invariant under basis change.

Characteristic polynomials

A matrix's characteristic polynomial is invariant under basis change.

Example

In GL_2 , characteristic polynomials are determined by trace and determinant:

$$\chi_{\gamma}(x) = x^2 - \operatorname{tr}(\gamma)x + \operatorname{det}(\gamma).$$

Characteristic polynomials

A matrix's characteristic polynomial is invariant under basis change.

Example

In GL₂, characteristic polynomials are determined by trace and determinant:

$$\chi_{\gamma}(x) = x^2 - \operatorname{tr}(\gamma)x + \operatorname{det}(\gamma).$$

Proposition

For almost all matrices, the orbit of a matrix is *precisely* the set of matrices with the same characteristic polynomial.

Quotient measure

$$\frac{\text{measure on } \operatorname{GL}_n}{\text{measure on } \underbrace{\text{set of char polys}}} = \text{measure on } \operatorname{Orb}(\gamma)$$

Quotient measure

$$\frac{\text{measure on } \operatorname{GL}_n}{\text{measure on } \underbrace{\text{set of char polys}}} = \text{measure on } \operatorname{Orb}(\gamma)$$

This way of defining a measure leads to the **geometric measure**, denoted by μ^{geom} .

Quotient measure

$$\frac{\text{measure on } \operatorname{GL}_n}{\text{measure on } \underbrace{\text{set of char polys}}} = \text{measure on } \operatorname{Orb}(\gamma)$$

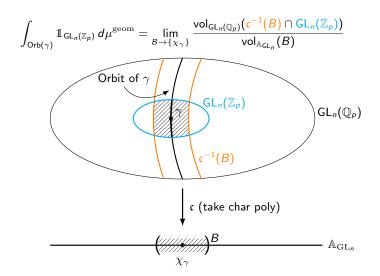
This way of defining a measure leads to the **geometric measure**, denoted by μ^{geom} .

Problem

Compute

$$\int_{\mathsf{Orb}(\gamma)} \mathbb{1}_{\mathsf{GL}_n(\mathbb{Z}_p)} \, d\mu^{\mathrm{geom}}.$$

Illustration of the geometric measure



Local ratios

Let $\gamma \in GL_n(\mathbb{Z}_p)$. Define

$$\nu_k(\gamma) = \frac{\#\{h \in \mathsf{GL}_n(\mathbb{Z}/p^k\mathbb{Z}) \colon \chi_h \equiv \chi_\gamma \bmod p^k\}}{\#\mathsf{GL}_n(\mathbb{Z}/p^k\mathbb{Z})/\#\mathbb{A}_{\mathsf{GL}_n}(\mathbb{Z}/p^k\mathbb{Z})}.$$
normalizing factor

Local ratios

Let $\gamma \in GL_n(\mathbb{Z}_p)$. Define

$$\nu_k(\gamma) = \frac{\#\{h \in \mathsf{GL}_n(\mathbb{Z}/p^k\mathbb{Z}) \colon \chi_h \equiv \chi_\gamma \bmod p^k\}}{\#\mathsf{GL}_n(\mathbb{Z}/p^k\mathbb{Z})/\#\mathbb{A}_{\mathsf{GL}_n}(\mathbb{Z}/p^k\mathbb{Z})}.$$
normalizing factor

Theorem (Achter-Gordon, 2017)

In GL_2 , the ratios converge to the orbital integral (up to a constant):

$$\lim_{k\to\infty}\nu_k(\gamma)=(*)\cdot\int_{\operatorname{Orb}(\gamma)}\mathbb{1}_{\operatorname{GL}_2(\mathbb{Z}_p)}\,d\mu^{\mathrm{geom}}.$$

Research questions

- Can local ratios be used to compute orbital integrals in GL_n and SL_n ?
- Can we compute orbital integrals where the test function $\mathbb{1}_{\mathsf{GL}_n(\mathbb{Z}_p)}$ is different?

Conjugacy is different in SL_n

Example (SL₂ conjugacy is stricter)

The $SL_2(\mathbb{R})$ matrices $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ have the same trace and determinant, but are not conjugate by an element of $SL_2(\mathbb{R})$.

Proof. Suppose $M \in \mathsf{SL}_2(\mathbb{C})$ satisfies

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = M^{-1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} M.$$

Rearranging, we have

$$M\begin{pmatrix}0&1\\-1&0\end{pmatrix}=\begin{pmatrix}0&-1\\1&0\end{pmatrix}M.$$

Conjugacy is different in SL_n

Now, setting $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and multiplying yields

$$\begin{pmatrix} -b & a \\ -d & c \end{pmatrix} = \begin{pmatrix} -c & -d \\ a & b \end{pmatrix},$$

so a = -d and b = c. Since M has determinant 1, we have

$$ad - bc = -a^2 - b^2 = 1 \implies a^2 + b^2 = -1.$$

Therefore, M cannot have all real entries. \square

Summary of our results

 We showed local ratios converge to orbital integrals in GL_n (up to a constant).

Theorem (Middlezong-Qi-Rüd, 2025)

In $GL_n(\mathbb{Q}_p)$, the local densities converge as follows:

$$\lim_{k\to\infty}\nu_k(\gamma)=\frac{p^{n^2-1}}{\#\operatorname{\mathsf{SL}}_n(\mathbb{F}_p)}\cdot\int_{\operatorname{\mathsf{Orb}}(\gamma)}\mathbb{1}_{\operatorname{\mathsf{GL}}_n(\mathbb{Z}_p)}\,d\mu^{\mathrm{geom}}.$$

Summary of our results

• We extended the method from integer test functions to bi- $GL_n(\mathbb{Z}_p)$ -invariant test functions.

Theorem (Middlezong-Qi-Rüd, 2025)

Let γ be an element of $S = GL_n(\mathbb{Z}_p) \operatorname{diag}(p^{\lambda_1}, \ldots, p^{\lambda_n}) \operatorname{GL}_n(\mathbb{Z}_p)$, where $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$. Then,

$$\lim_{k\to\infty}\nu_k(\gamma)=p^{-(n-1)(\lambda_1+\cdots+\lambda_n)}\cdot\frac{p^{n^2-1}}{\#\operatorname{SL}_n(\mathbb{F}_p)}\int_{\operatorname{Orb}(\gamma)}\mathbb{1}_S\,d\mu^{\mathrm{geom}}.$$

Summary of our results

• We defined a local ratio for SL_n using an additional conjugacy criterion. In SL_2 , we showed that this ratio converges to the orbital integral, and we also provide the explicit factor needed to convert to the orbital integral using the canonical measure.

Theorem (Middlezong-Qi-Rüd, 2025)

The SL_2 ratios are related to the canonical measure orbital integral $O^{can}(\gamma)$ by the following:

$$\lim_{k\to\infty} \nu_k^{\operatorname{SL}_2}(\gamma) = p^{-\delta} \cdot O^{\operatorname{can}}(\gamma) \cdot \begin{cases} \frac{p}{p-1}, & \chi=1 \quad \text{(hyperbolic)}, \\ 1, & \chi=0 \quad \text{(ramified elliptic)}, \\ \frac{p}{p+1}, & \chi=-1 \quad \text{(unramified elliptic)}. \end{cases}$$

Here, δ and χ are values that depend on γ .

Acknowledgments

We would like to thank:

- Dr. Thomas Rüd for his mentorship and guidance throughout the project.
- Dr. Eran Assaf for his valuable feedback on our presentation.
- The MIT PRIMES-USA program for making this project possible and hosting the PRIMES Conference.

References

Jeffrey D. Achter and Julia Gordon, *Elliptic curves, random matrices and orbital integrals*, Pacific J. Math. **286** (2017), no. 1, 1–24, With an appendix by S. Ali Altuğ. MR 3582398