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Background

Definition

A rank n lattice in Qn is the image of a non-degenerate linear transformation
of Zn.

Example

The basis vectors (3/2, 0) and (0, 3) generate the rank 2 lattice consisting of
points (3n/2, 3m) for n,m ∈ Z.
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Background

Definition

A quadratic form on Qn is a function P : Qn → Q of the form

P (x1, x2, . . . xn) =
n∑
i=1

n∑
j=1

aijxixj .

Given P and a choice of a basis for Qn, there exists a symmetric n× n matrix
M such that

2P


u1

...
un


 =

[
u1 · · ·un

] [
M

]u1

...
un

 .
Definition

Given a quadratic form P and a lattice L, a Gram matrix of L is a matrix M of
the form above, where the basis chosen is one that spans L. The determinant
of L is the determinant of any one of its Gram matrices.
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Background

Lattice: Z2 Quadratic form: P (x, y) = x2 + xy + 2y2

Choice of basis:

[
1
0

]
,

[
0
1

]
Gram matrix:

[
2 1
1 4

]
Determinant: 7

Example: 2P (1, 2) =
[
1 2

] [2 1
1 4

] [
1
2

]
= 22
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Background

Lattice: Z
2
× Z Quadratic form: P (x, y) = 4x2 + 2xy + 2y2
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Background

Definition

Given a quadratic form P and a lattice L, we say L is integral if all the entries
in the Gram matrix are integers. We say L is even-integral if all the entries in
the Gram matrix are integers and the entries on the diagonal are even.

Equivalently, L is even-integral if P (v) is an integer for all v ∈ L.

Example

A lattice with gram matrix 2 1 0
1 0 −4
0 −4 3


is integral, but not even, since 3 is on the diagonal.
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Background

Definition

Let L1 be a lattice with quadratic form P1 and let L2 be a lattice with
quadratic form P2. Lattices L1 and L2 are isometric if there exists a linear
bijection f : L1 → L2 such that P1(v1) = P2(f(v1)) for all v1 ∈ L1.

16

8

4

4

8

11

4

1

2

7

8

2

0

2

8

7

2

1

4

11

8

4

4

8

16

≃

16

8

4

4

8

11

4

1

2

7

8

2

0

2

8

7

2

1

4

11

8

4

4

8

16

Equivalently, L1 and L2 are equivalent if every Gram matrix of L1 is a Gram
matrix of L2 and vice versa.

Theorem (Minkowski)

For a fixed rank and determinant, there are finitely many isometry classes.
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Background

Definition

Let L1 and L2 be integral lattices with quadratic forms P1 and P2,
respectively. Lattices L1 and L2 are locally isometric at p if

L1 ⊗ Zp ≃ L2 ⊗ Zp

as quadratic Zp-lattices.

Let L1 and L2 have gram matrices G1 and G2, respectively. An equivalent
definition is that for each positive integer k, there exists a matrix
U ∈ GLn(Z/pkZ) such that

U⊺G1U ≡ G2 (mod pk).

Definition

Let L1 and L2 be lattices with quadratic forms P1 and P2, respectively.
Lattices L1 and L2 have the same signature if L1 ⊗ R ≃ L2 ⊗ R.

Equivalently, there exists an invertible n× n matrix U of reals such that
U⊺G1U = G2.
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Background

Definition

The genus of an integral lattice L is the set of all integral lattices L′ such that:

L and L′ are locally isometric at p for all primes p,

L and L′ have the same signature.

Idea: The genus groups together lattices that “look the same” locally
everywhere, though they may differ in actuality.
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Background

L1 = L2 = Z2, P1(x, y) = x2 + 82y2, P2(x, y) = 2x2 + 41y2.

Claim: Lattices L1 and L2 are in the same genus.
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Lattice L1 with quadratic form P1
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Lattice L2 with quadratic form P2

L1 and L2 aren’t isometric because L1 represents 1 at (1, 0) while L2 doesn’t
represent 1.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Background

L1 = L2 = Z2, P1(x, y) = x2 + 82y2, P2(x, y) = 2x2 + 41y2.

Theorem

Lattices L1 and L2 are in the same genus iff they share a common determinant
d and are locally isometric at p for p | 2d.

L1 ⊗ Z2 ≃ L2 ⊗ Z2 because we can take the bijection that sends
(
x, y

)
to(

y
√
41, x/

√
41

)
; we have

P1

(
x, y

)
= P2

(
y
√
41, x/

√
41

)
.

Similarly, L1 ⊗ Z41 ≃ L2 ⊗ Z41 because we can take the bijection that
sends

(
x, y

)
to

(
x/

√
2, y

√
2
)
; we have

P1

(
x, y

)
= P2

(
x/

√
2, y

√
2
)
.

Lastly, L1 ⊗ R ≃ L2 ⊗ R because we send
(
x, y

)
to

(
x/

√
2, y

√
2
)
.
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Background

Definition

A genus symbol is a compact way to encode the local invariants of a quadratic
lattice at all primes p. It records the isometry class of L⊗ Zp for each p.

For most p, the local structure is simple, so only finitely many primes
contribute nontrivial data.

The genus symbol thus describes the entire genus, without listing all
lattices in it.

Example

The genus symbol of L = Z2 and P (x, y) = x2 + 82y2 tells us that the
quadratic form is positive definite and the determinant is 82. It also gives us
additional info on p = 2 and p = 41. For example, at p = 41 the local genus
symbol is

11411
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Problem

Problem: Given a rank n and determinant d, find every genus of that rank and
determinant and find a representative for each genus (a lattice in the genus).
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Counting Genus Symbols

To find the complexity of finding a representative for every genus of a given
rank and determinant, we need to know how many genus symbols have that
rank and determinant.

Theorem (A.-C.-G.-W., 2025)

Let n, d ∈ Z such that n > 0. Let p | d be an odd prime with νp(d) < n. Then
Lp(n, d), which is the number of valid p-adic genus symbols of rank n and
determinant d is

Lp(n, d) ∼
1

8νp(d)
eπ
√
νp(d).

However, for p = 2, it is significantly harder to count the number of genus
symbols due to the inability to diagonalize the form. Therefore, a precise
formula for the number of genus symbols for p = 2 is difficult.
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Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp
4 At each p, locally modify L′ so L′

p = Lp
5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp
4 At each p, locally modify L′ so L′

p = Lp
5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp
4 At each p, locally modify L′ so L′

p = Lp
5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp
4 At each p, locally modify L′ so L′

p = Lp
5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp

4 At each p, locally modify L′ so L′
p = Lp

5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp
4 At each p, locally modify L′ so L′

p = Lp

5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp
4 At each p, locally modify L′ so L′

p = Lp
5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp
4 At each p, locally modify L′ so L′

p = Lp
5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.

Victor Chen, Rohan Garg, and Benny Wang Efficient Enumeration of Quadratic Lattices



Computing a Representative

The Brandhorst algorithm is designed to compute a lattice representative of a
genus. It is the currently implemented algorithm in SageMath.

Overview of the algorithm:

1 Find a rational representative L of the genus γ

2 Take the maximal overlattice of L to be L′

3 For each prime p, find a local representative Lp of γ at Zp
4 At each p, locally modify L′ so L′

p = Lp
5 Return the resulting lattice

Note: This algorithm is restricted by the time complexity of finding a maximal
lattice

Theorem (A.-C.-G.-W., 2025)

The Brandhorst Algorithm has the same time complexity as finding a maximal
lattice.
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Computing a Representative

Issue: The current algorithm to find maximal lattices is computationally
inefficient, so the bulk of the computation time is spent doing this.

Brandhorst Maximal Overlattice Algorithm:
At each prime p, take the overlattice of L that is maximal over Zp.

Theorem (A.-C.-G.-W., 2025)

Let ψ be the exponent of the time complexity of matrix multiplication. Then,
the Brandhorst Maximal Overlattice Algorithm runs in O(24n + n1+ψ log d)
time.

Corollary (A.-C.-G.-W., 2025)

The Brandhorst Algorithm for computing representatives runs in
O(24n + n1+ψ log d) time.
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Original Maximal Overlattice Algorithm

The Hanke algorithm is an algorithm designed specifically for computing the
maximal overlattice of a lattice and can be used along with the previous
algorithm to find the representative.

Theorem (A.-C.-G.-W., 2025)

The Hanke algorithm runs in O(2nn3) time.

This algorithm still runs in exponential time, but the cost of this exponential
step is faster than the exponential step in the previous algorithm.
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Improved Maximal Overlattice Algorithm

However, we are able to optimize the algorithm. The only exponential step is
finding an even 2-neighbor of our current lattice. A 2-neighbor of a lattice L is
a lattice L′ such that L/(L ∩ L′) ∼= L′/(L ∩ L′) ∼= F2.

We were able to prove that this is equivalent to finding a primitive vector
v in a certain sublattice such that Q(v) ≡ 0 (mod 8).

It is known in literature that such a vector always exists for quadratic
forms of at least 5 variables. Therefore, we can set any variable after the
5th to zero, and brute force the remaining up to 85 possibilities.

This allows the algorithm to be optimized to O(n3 log d), which is the
fastest known algorithm to compute maximal overlattices.
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Conclusion and Future Steps

Using the Hanke algorithm, we can achieve a complexity of O(n3 log d);
faster than another existing O(n8 log d) algorithm for computing
representatives (due to Dubey and Holenstein).

We hope to implement and test these algorithms to classify more lattices
on the LMFDB, which is a database of number theoretic objects.

We can use the local version of the optimized Hanke algorithm in the Sage
algorithm to speed it up.
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