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A field (F,+,-) is a commutative ring with multiplicative identity
such that every non-zero element is invertible.
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A field (F,+,-) is a commutative ring with multiplicative identity
such that every non-zero element is invertible.

We have that R, C, and Q(v/2) = {a+ bv/2 : a, b € Q} are fields
under the standard operations and F7 (residues modulo 7) is a field
under operations modulo 7.
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Number Fields

A number field K is a field extension of QQ of finite degree.
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Number Fields

A number field K is a field extension of QQ of finite degree.

An algebraic number is a root of an integer polynomial. An
algebraic integer is a root of a monic integer polynomial.
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Number Fields

A number field K is a field extension of QQ of finite degree.

An algebraic number is a root of an integer polynomial. An
algebraic integer is a root of a monic integer polynomial.

@ Number fields are very closely related to algebraic numbers.

@ Any number field K can be written in the form Q(«), or Q
with « adjoined for some algebraic integer a.

@ The degree of K is then equal to the degree of the minimal
polynomial of .
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Number Fields

A number field K is a field extension of QQ of finite degree.

An algebraic number is a root of an integer polynomial. An
algebraic integer is a root of a monic integer polynomial.

@ Number fields are very closely related to algebraic numbers.

@ Any number field K can be written in the form Q(«), or Q
with « adjoined for some algebraic integer a.

@ The degree of K is then equal to the degree of the minimal
polynomial of .

As from before, Q(v/2) = {a+ bv/2 : a,b € Q} is a number field
of degree 2.
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Ring of Integers and Unit Group

The ring of integers Ok of a number field K is the ring of all
algebraic integers contained in K.
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Ring of Integers and Unit Group

The ring of integers Ok of a number field K is the ring of all
algebraic integers contained in K.

The ring of integers of Q(v/2) is equal to Z[v/2].
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Ring of Integers and Unit Group

The ring of integers Ok of a number field K is the ring of all
algebraic integers contained in K.

The ring of integers of Q(v/2) is equal to Z[v/2].

The unit group O of the ring of integers is the multiplicative
group of elements of Ok whose inverses lie in Ok.
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Ring of Integers and Unit Group

The ring of integers Ok of a number field K is the ring of all
algebraic integers contained in K.

The ring of integers of Q(v/2) is equal to Z[v/2].

The unit group O of the ring of integers is the multiplicative
group of elements of Ok whose inverses lie in Ok.

The unit group of Z[v/2] is +(1 + v2)% = {£(1 4+ V2)* : k € Z}.
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Ring of Integers and Unit Group

The ring of integers Ok of a number field K is the ring of all
algebraic integers contained in K.

The ring of integers of Q(v/2) is equal to Z[v/2].

The unit group O of the ring of integers is the multiplicative
group of elements of Ok whose inverses lie in Ok.

The unit group of Z[v/2] is +(1 + v2)% = {£(1 4+ V2)* : k € Z}.
Units can be quite unpredictable. For example, the unit group of
Z[v/241] is £(71011068 + 4574225+/241)7.
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Units in Pell’s Equations

Consider an element a € Q(vd), a ¢ Q.
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Units in Pell’s Equations

Consider an element a € Q(vd), a ¢ Q.

@ The minimal polynomial of a1 is the reciprocal of the
minimal polynomial of a.

@ Thus, if « is a unit, we must have that the constant
coefficient of its minimal polynomial is +1.
o If @« = a+ bV/d, then its minimal polynomial is
(x —a— bVd)(x — a+ bv/d) with constant coefficient
2 2
a- — b-d.
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Units in Pell’s Equations

Consider an element a € Q(vd), a ¢ Q.

@ The minimal polynomial of a1 is the reciprocal of the
minimal polynomial of a.

@ Thus, if « is a unit, we must have that the constant
coefficient of its minimal polynomial is +1.
o If @« = a+ bV/d, then its minimal polynomial is
(x —a— bVd)(x — a+ bv/d) with constant coefficient
2 2
a- — b-d.

Thus, the unit group of Q(v/d) helps us completely characterize
the solutions to Pell's equations a> — b°d = +1!
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Dirichlet's Unit Theorem

For K = Q(«), let the minimal polynomial of « have r real roots
and 2r; complex roots. Here, we denote by (ri, r2) the signature of
K.
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Dirichlet's Unit Theorem

For K = Q(«), let the minimal polynomial of « have r real roots
and 2r; complex roots. Here, we denote by (ri, r2) the signature of
K.

Theorem (Dirichlet, 1846)

The unit group O is generated by a cyclic group of roots of unity
and r; + r» — 1 independent generators.
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Dirichlet's Unit Theorem

For K = Q(«), let the minimal polynomial of « have r real roots
and 2r; complex roots. Here, we denote by (ri, r2) the signature of

K.
Theorem (Dirichlet, 1846)

The unit group O is generated by a cyclic group of roots of unity
and r; + r» — 1 independent generators.

4

The polynomial x3 — 2 has one real root and two complex roots so
the unit group of Z(v/2) has rank 1.
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Finite Fields

A finite field is a field of finite order.
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Finite Fields

A finite field is a field of finite order.

@ All finite fields have size p” for prime p and integer n.

@ The multiplicative group of a finite field I is cyclic.
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Finite Fields

A finite field is a field of finite order.

@ All finite fields have size p” for prime p and integer n.

@ The multiplicative group of a finite field I is cyclic.

As from before, F7 is a finite field.
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Inert Primes and the Reduction Map

A prime p is inert in K if the ideal pOk is prime.
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Inert Primes and the Reduction Map

A prime p is inert in K if the ideal pOk is prime.

@ There is a natural reduction map ¢, : Ox — Ok /pOk given
by reducing elements of Ok modulo pOk.

@ In the case where p is inert, we see that Ok /pQOk is a field.
e We have that O /pOy = Fpn, where n is the degree of K.
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Possible Images of the Unit Group

We consider the following problem:
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Possible Images of the Unit Group

We consider the following problem:

For a rational prime p, positive integer n, what subgroups of ]F;n
are realizable as the image of the unit group of a number field
under reduction modulo p?
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Possible Images of the Unit Group

We consider the following problem:

For a rational prime p, positive integer n, what subgroups of ]F;n
are realizable as the image of the unit group of a number field
under reduction modulo p?

Specifically, we consider the map

O = (Ok/pOK)* ~ F,.

The subgroup {£1} of FJ; can be realized as the image of the unit
group of Q(v/231), since the unit group is (76 + 5v/231)Z.
Under reduction modulo 5, this becomes +1%.
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Results on the Maximal Image and Quadratic Case

For odd prime p, define the subgroup Upx to be the subgroup of
pn
index (p —1)/2 in the cyclic group .
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Results on the Maximal Image and Quadratic Case

For odd prime p, define the subgroup Upx to be the subgroup of
pn

index (p —1)/2 in the cyclic group .

The largest subgroup of IFpn attainable as an image of the
reduction map on the group of units of a number field in which p
is inert is Upx , occuring for infinitely many number fields K.

ph
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Results on the Maximal Image and Quadratic Case

For odd prime p, define the subgroup Upx to be the subgroup of
pn

index (p —1)/2 in the cyclic group .

The largest subgroup of IFpn attainable as an image of the
reduction map on the group of units of a number field in which p
is inert is Upx , occuring for infinitely many number fields K.

ph

In the case where n = 2, the signature is either (0,1) (complex
quadratic number field) or (2,0) (real quadratic number field). In
the second case, we have the following complete result:

Every subgroup of U]Fx is attainable as the image of the reduction

map on the group of unlts of a real quadratic number field in
which p is inert.

————=————=— =
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Generalization to Fields of Higher Degree

Considering our results in the real quadratic case, we conjecture
the following generalization:

Every subgroup of UFXH is attainable as the image of the reduction

map on the group of units of a number field of degree n and
specified signature (ry, rp) in which n +rn» —1 > 0.
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An order O of a number field K is a subring of K that is finitely
generated (as a Z-module) for which the field of fractions of O, or
{a/B :a,p € O}, is equal to K.
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An order O of a number field K is a subring of K that is finitely
generated (as a Z-module) for which the field of fractions of O, or
{a/B :a,p € O}, is equal to K.

As from before, Ok is an example of an order of K. We also have
that Z[v/8] is an order of Q(1/2). By containment, it is “smaller”
than Z[v/2].

Orders generalize the notion of the ring of integers.
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An order O of a number field K is a subring of K that is finitely
generated (as a Z-module) for which the field of fractions of O, or
{a/B :a,p € O}, is equal to K.

As from before, Ok is an example of an order of K. We also have
that Z[v/8] is an order of Q(1/2). By containment, it is “smaller”
than Z[v/2].

Orders generalize the notion of the ring of integers.

@ The ring of integers is the maximal order of K.

@ Dirichlet’s unit theorem holds for orders as well, so the
structure of the unit group of an order O* is well known.
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Results for an Order

With the notion of orders, we may change the conditions of our
problem, instead fixing a number field K and odd prime p inert in
K, then varying our choice of order O and looking at its unit group.
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Results for an Order

With the notion of orders, we may change the conditions of our
problem, instead fixing a number field K and odd prime p inert in
K, then varying our choice of order O and looking at its unit group.

We will say that for a number field K of degree n a prime p
remains inert in an order O if O/pO = Fpn.
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Results for an Order

With the notion of orders, we may change the conditions of our
problem, instead fixing a number field K and odd prime p inert in
K, then varying our choice of order O and looking at its unit group.

We will say that for a number field K of degree n a prime p
remains inert in an order O if O/pO = Fpn.

For a real quadratic number field K and prime p inert in K, let the

image of the unit group of O under reduction modulo p be a

subgroup U of UF><2. Then, for every subgroup S < U, there exists
P

an order O of K in which p remains inert and the reduction of O*
modulo p is the subgroup S.
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Generalization to Fields of Higher Degree

Considering our results in the real quadratic case, we conjecture
the following generalization for orders:
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Generalization to Fields of Higher Degree

Considering our results in the real quadratic case, we conjecture
the following generalization for orders:

For a number field K of degree n and prime p inert in K, let the

image of the unit group of O under reduction modulo p be a

subgroup U of Upx . Then, for every subgroup S < U, there exists
phn

an order O of K in which p remains inert and the reduction of O*
modulo p is the subgroup S.
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