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Fields

A field (F ,+, ·) is a commutative ring with multiplicative identity
such that every non-zero element is invertible.

Example

We have that R, C, and Q(
√
2) = {a+ b

√
2 : a, b ∈ Q} are fields

under the standard operations and F7 (residues modulo 7) is a field
under operations modulo 7.
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Number Fields

A number field K is a field extension of Q of finite degree.

An algebraic number is a root of an integer polynomial. An
algebraic integer is a root of a monic integer polynomial.

Number fields are very closely related to algebraic numbers.

Any number field K can be written in the form Q(α), or Q
with α adjoined for some algebraic integer α.

The degree of K is then equal to the degree of the minimal
polynomial of α.

Example

As from before, Q(
√
2) = {a+ b

√
2 : a, b ∈ Q} is a number field

of degree 2.
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Ring of Integers and Unit Group

The ring of integers OK of a number field K is the ring of all
algebraic integers contained in K .

Example

The ring of integers of Q(
√
2) is equal to Z[

√
2].

The unit group O×
K of the ring of integers is the multiplicative

group of elements of OK whose inverses lie in OK .

Example

The unit group of Z[
√
2] is ±(1 +

√
2)Z = {±(1 +

√
2)k : k ∈ Z}.

Units can be quite unpredictable. For example, the unit group of
Z[
√
241] is ±(71011068 + 4574225

√
241)Z.
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Units in Pell’s Equations

Consider an element α ∈ Q(
√
d), α ̸∈ Q.

The minimal polynomial of α−1 is the reciprocal of the
minimal polynomial of α.

Thus, if α is a unit, we must have that the constant
coefficient of its minimal polynomial is ±1.

If α = a+ b
√
d , then its minimal polynomial is

(x − a− b
√
d)(x − a+ b

√
d) with constant coefficient

a2 − b2d .

Thus, the unit group of Q(
√
d) helps us completely characterize

the solutions to Pell’s equations a2 − b2d = ±1!
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Dirichlet’s Unit Theorem

For K = Q(α), let the minimal polynomial of α have r1 real roots
and 2r2 complex roots. Here, we denote by (r1, r2) the signature of
K .

Theorem (Dirichlet, 1846)

The unit group O×
K is generated by a cyclic group of roots of unity

and r1 + r2 − 1 independent generators.

Example

The polynomial x3 − 2 has one real root and two complex roots so
the unit group of Z( 3

√
2) has rank 1.
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Finite Fields

A finite field is a field of finite order.

All finite fields have size pn for prime p and integer n.

The multiplicative group of a finite field F×
q is cyclic.

Example

As from before, F7 is a finite field.
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Inert Primes and the Reduction Map

A prime p is inert in K if the ideal pOK is prime.

There is a natural reduction map ϕp : OK → OK/pOK given
by reducing elements of OK modulo pOK .

In the case where p is inert, we see that OK/pOK is a field.

We have that OK/pOK
∼= Fpn , where n is the degree of K .
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Possible Images of the Unit Group

We consider the following problem:

Question

For a rational prime p, positive integer n, what subgroups of F×
pn

are realizable as the image of the unit group of a number field
under reduction modulo p?

Specifically, we consider the map

O×
K → (OK/pOK )

× ≃ F×
pn .

Example

The subgroup {±1} of F×
25 can be realized as the image of the unit

group of Q(
√
231), since the unit group is ±(76 + 5

√
231)Z.

Under reduction modulo 5, this becomes ±1Z.
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Results on the Maximal Image and Quadratic Case

For odd prime p, define the subgroup UF×
pn

to be the subgroup of

index (p − 1)/2 in the cyclic group F×
pn .

Theorem

The largest subgroup of Fpn attainable as an image of the
reduction map on the group of units of a number field in which p
is inert is UF×

pn
, occuring for infinitely many number fields K .

In the case where n = 2, the signature is either (0, 1) (complex
quadratic number field) or (2, 0) (real quadratic number field). In
the second case, we have the following complete result:

Theorem

Every subgroup of UF×
p2

is attainable as the image of the reduction

map on the group of units of a real quadratic number field in
which p is inert.
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Generalization to Fields of Higher Degree

Considering our results in the real quadratic case, we conjecture
the following generalization:

Conjecture

Every subgroup of UF×
pn

is attainable as the image of the reduction

map on the group of units of a number field of degree n and
specified signature (r1, r2) in which r1 + r2 − 1 > 0.
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Orders

An order O of a number field K is a subring of K that is finitely
generated (as a Z-module) for which the field of fractions of O, or
{α/β : α, β ∈ O}, is equal to K .

Example

As from before, OK is an example of an order of K . We also have
that Z[

√
8] is an order of Q(

√
2). By containment, it is “smaller”

than Z[
√
2].

Orders generalize the notion of the ring of integers.

The ring of integers is the maximal order of K .

Dirichlet’s unit theorem holds for orders as well, so the
structure of the unit group of an order O× is well known.
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Results for an Order

With the notion of orders, we may change the conditions of our
problem, instead fixing a number field K and odd prime p inert in
K , then varying our choice of order O and looking at its unit group.

We will say that for a number field K of degree n a prime p
remains inert in an order O if O/pO ∼= Fpn .

Theorem

For a real quadratic number field K and prime p inert in K , let the
image of the unit group of O×

K under reduction modulo p be a
subgroup U of UF×

p2
. Then, for every subgroup S ≤ U, there exists

an order O of K in which p remains inert and the reduction of O×

modulo p is the subgroup S .
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