On Number Fields with Unit Group of a Prescribed Reduction

Kyle Wu Mentor: Dr. Alexander Petrov

MIT Primes Conference, October 18-19

Fields

A field $(F, +, \cdot)$ is a commutative ring with multiplicative identity such that every non-zero element is invertible.

Fields

A field $(F, +, \cdot)$ is a commutative ring with multiplicative identity such that every non-zero element is invertible.

Example

We have that \mathbb{R} , \mathbb{C} , and $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ are fields under the standard operations and \mathbb{F}_7 (residues modulo 7) is a field under operations modulo 7.

A number field K is a field extension of \mathbb{Q} of finite degree.

A number field K is a field extension of $\mathbb Q$ of finite degree.

An algebraic number is a root of an integer polynomial. An algebraic integer is a root of a monic integer polynomial.

A number field K is a field extension of \mathbb{Q} of finite degree.

An algebraic number is a root of an integer polynomial. An algebraic integer is a root of a monic integer polynomial.

- Number fields are very closely related to algebraic numbers.
- Any number field K can be written in the form $\mathbb{Q}(\alpha)$, or \mathbb{Q} with α adjoined for some algebraic integer α .
- The degree of K is then equal to the degree of the minimal polynomial of α .

A number field K is a field extension of \mathbb{Q} of finite degree.

An algebraic number is a root of an integer polynomial. An algebraic integer is a root of a monic integer polynomial.

- Number fields are very closely related to algebraic numbers.
- Any number field K can be written in the form $\mathbb{Q}(\alpha)$, or \mathbb{Q} with α adjoined for some algebraic integer α .
- The degree of K is then equal to the degree of the minimal polynomial of α .

Example

As from before, $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a number field of degree 2.

The ring of integers \mathcal{O}_K of a number field K is the ring of all algebraic integers contained in K.

The ring of integers \mathcal{O}_K of a number field K is the ring of all algebraic integers contained in K.

Example

The ring of integers of $\mathbb{Q}(\sqrt{2})$ is equal to $\mathbb{Z}[\sqrt{2}]$.

The ring of integers \mathcal{O}_K of a number field K is the ring of all algebraic integers contained in K.

Example

The ring of integers of $\mathbb{Q}(\sqrt{2})$ is equal to $\mathbb{Z}[\sqrt{2}]$.

The unit group \mathcal{O}_{K}^{\times} of the ring of integers is the multiplicative group of elements of \mathcal{O}_{K} whose inverses lie in \mathcal{O}_{K} .

The ring of integers \mathcal{O}_K of a number field K is the ring of all algebraic integers contained in K.

Example

The ring of integers of $\mathbb{Q}(\sqrt{2})$ is equal to $\mathbb{Z}[\sqrt{2}]$.

The unit group \mathcal{O}_{K}^{\times} of the ring of integers is the multiplicative group of elements of \mathcal{O}_{K} whose inverses lie in \mathcal{O}_{K} .

Example

The unit group of $\mathbb{Z}[\sqrt{2}]$ is $\pm (1+\sqrt{2})^{\mathbb{Z}}=\{\pm (1+\sqrt{2})^k: k\in\mathbb{Z}\}.$

The ring of integers \mathcal{O}_K of a number field K is the ring of all algebraic integers contained in K.

Example

The ring of integers of $\mathbb{Q}(\sqrt{2})$ is equal to $\mathbb{Z}[\sqrt{2}]$.

The unit group \mathcal{O}_{K}^{\times} of the ring of integers is the multiplicative group of elements of \mathcal{O}_{K} whose inverses lie in \mathcal{O}_{K} .

Example

The unit group of $\mathbb{Z}[\sqrt{2}]$ is $\pm (1+\sqrt{2})^{\mathbb{Z}}=\{\pm (1+\sqrt{2})^k: k\in\mathbb{Z}\}$. Units can be quite unpredictable. For example, the unit group of $\mathbb{Z}[\sqrt{241}]$ is $\pm (71011068+4574225\sqrt{241})^{\mathbb{Z}}$.

Units in Pell's Equations

Consider an element $\alpha \in \mathbb{Q}(\sqrt{d})$, $\alpha \notin \mathbb{Q}$.

Units in Pell's Equations

Consider an element $\alpha \in \mathbb{Q}(\sqrt{d})$, $\alpha \notin \mathbb{Q}$.

- The minimal polynomial of α^{-1} is the reciprocal of the minimal polynomial of α .
- Thus, if α is a unit, we must have that the constant coefficient of its minimal polynomial is ± 1 .
- If $\alpha = a + b\sqrt{d}$, then its minimal polynomial is $(x a b\sqrt{d})(x a + b\sqrt{d})$ with constant coefficient $a^2 b^2d$.

Units in Pell's Equations

Consider an element $\alpha \in \mathbb{Q}(\sqrt{d})$, $\alpha \notin \mathbb{Q}$.

- The minimal polynomial of α^{-1} is the reciprocal of the minimal polynomial of α .
- Thus, if α is a unit, we must have that the constant coefficient of its minimal polynomial is ± 1 .
- If $\alpha = a + b\sqrt{d}$, then its minimal polynomial is $(x a b\sqrt{d})(x a + b\sqrt{d})$ with constant coefficient $a^2 b^2d$.

Thus, the unit group of $\mathbb{Q}(\sqrt{d})$ helps us completely characterize the solutions to Pell's equations $a^2-b^2d=\pm 1!$

Dirichlet's Unit Theorem

For $K = \mathbb{Q}(\alpha)$, let the minimal polynomial of α have r_1 real roots and $2r_2$ complex roots. Here, we denote by (r_1, r_2) the signature of K.

Dirichlet's Unit Theorem

For $K = \mathbb{Q}(\alpha)$, let the minimal polynomial of α have r_1 real roots and $2r_2$ complex roots. Here, we denote by (r_1, r_2) the signature of K.

Theorem (Dirichlet, 1846)

The unit group \mathcal{O}_K^{\times} is generated by a cyclic group of roots of unity and $r_1 + r_2 - 1$ independent generators.

Dirichlet's Unit Theorem

For $K = \mathbb{Q}(\alpha)$, let the minimal polynomial of α have r_1 real roots and $2r_2$ complex roots. Here, we denote by (r_1, r_2) the signature of K.

Theorem (Dirichlet, 1846)

The unit group \mathcal{O}_K^{\times} is generated by a cyclic group of roots of unity and r_1+r_2-1 independent generators.

Example

The polynomial x^3-2 has one real root and two complex roots so the unit group of $\mathbb{Z}(\sqrt[3]{2})$ has rank 1.

Finite Fields

A finite field is a field of finite order.

Finite Fields

A finite field is a field of finite order.

- All finite fields have size p^n for prime p and integer n.
- ullet The multiplicative group of a finite field $\mathbb{F}_q^{ imes}$ is cyclic.

Finite Fields

A finite field is a field of finite order.

- All finite fields have size p^n for prime p and integer n.
- ullet The multiplicative group of a finite field $\mathbb{F}_q^{ imes}$ is cyclic.

Example

As from before, \mathbb{F}_7 is a finite field.

Inert Primes and the Reduction Map

A prime p is inert in K if the ideal $p\mathcal{O}_K$ is prime.

Inert Primes and the Reduction Map

A prime p is inert in K if the ideal $p\mathcal{O}_K$ is prime.

- There is a natural reduction map $\phi_p: \mathcal{O}_K \to \mathcal{O}_K/p\mathcal{O}_K$ given by reducing elements of \mathcal{O}_K modulo $p\mathcal{O}_K$.
- In the case where p is inert, we see that $\mathcal{O}_K/p\mathcal{O}_K$ is a field.
- We have that $\mathcal{O}_K/p\mathcal{O}_K\cong \mathbb{F}_{p^n}$, where n is the degree of K.

Possible Images of the Unit Group

We consider the following problem:

Possible Images of the Unit Group

We consider the following problem:

Question

For a rational prime p, positive integer n, what subgroups of $\mathbb{F}_{p^n}^{\times}$ are realizable as the image of the unit group of a number field under reduction modulo p?

Possible Images of the Unit Group

We consider the following problem:

Question

For a rational prime p, positive integer n, what subgroups of $\mathbb{F}_{p^n}^{\times}$ are realizable as the image of the unit group of a number field under reduction modulo p?

Specifically, we consider the map

$$\mathcal{O}_{K}^{\times} \to (\mathcal{O}_{K}/p\mathcal{O}_{K})^{\times} \simeq \mathbb{F}_{p^{n}}^{\times}.$$

Example

The subgroup $\{\pm 1\}$ of \mathbb{F}_{25}^{\times} can be realized as the image of the unit group of $\mathbb{Q}(\sqrt{231})$, since the unit group is $\pm (76+5\sqrt{231})^{\mathbb{Z}}$. Under reduction modulo 5, this becomes $\pm 1^{\mathbb{Z}}$.

Results on the Maximal Image and Quadratic Case

For odd prime p, define the subgroup $U_{\mathbb{F}_{p^n}^{\times}}$ to be the subgroup of index (p-1)/2 in the cyclic group $\mathbb{F}_{p^n}^{\times}$.

Results on the Maximal Image and Quadratic Case

For odd prime p, define the subgroup $U_{\mathbb{F}_{p^n}^{\times}}$ to be the subgroup of index (p-1)/2 in the cyclic group $\mathbb{F}_{p^n}^{\times}$.

$\mathsf{Theorem}$

The largest subgroup of \mathbb{F}_{p^n} attainable as an image of the reduction map on the group of units of a number field in which p is inert is $U_{\mathbb{F}_{p^n}^{\times}}$, occurring for infinitely many number fields K.

Results on the Maximal Image and Quadratic Case

For odd prime p, define the subgroup $U_{\mathbb{F}_{p^n}^{\times}}$ to be the subgroup of index (p-1)/2 in the cyclic group $\mathbb{F}_{p^n}^{\times}$.

Theorem

The largest subgroup of \mathbb{F}_{p^n} attainable as an image of the reduction map on the group of units of a number field in which p is inert is $U_{\mathbb{F}_{p^n}^\times}$, occurring for infinitely many number fields K.

In the case where n=2, the signature is either (0,1) (complex quadratic number field) or (2,0) (real quadratic number field). In the second case, we have the following complete result:

Theorem

Every subgroup of $U_{\mathbb{F}_{p^2}^{\times}}$ is attainable as the image of the reduction map on the group of units of a real quadratic number field in which p is inert.

Generalization to Fields of Higher Degree

Considering our results in the real quadratic case, we conjecture the following generalization:

Conjecture

Every subgroup of $U_{\mathbb{F}_{\rho^n}^{\times}}$ is attainable as the image of the reduction map on the group of units of a number field of degree n and specified signature (r_1, r_2) in which $r_1 + r_2 - 1 > 0$.

Orders

An order \mathcal{O} of a number field K is a subring of K that is finitely generated (as a \mathbb{Z} -module) for which the field of fractions of \mathcal{O} , or $\{\alpha/\beta:\alpha,\beta\in\mathcal{O}\}$, is equal to K.

Orders

An order \mathcal{O} of a number field K is a subring of K that is finitely generated (as a \mathbb{Z} -module) for which the field of fractions of \mathcal{O} , or $\{\alpha/\beta:\alpha,\beta\in\mathcal{O}\}$, is equal to K.

Example

As from before, \mathcal{O}_K is an example of an order of K. We also have that $\mathbb{Z}[\sqrt{8}]$ is an order of $\mathbb{Q}(\sqrt{2})$. By containment, it is "smaller" than $\mathbb{Z}[\sqrt{2}]$.

Orders generalize the notion of the ring of integers.

Orders

An order \mathcal{O} of a number field K is a subring of K that is finitely generated (as a \mathbb{Z} -module) for which the field of fractions of \mathcal{O} , or $\{\alpha/\beta:\alpha,\beta\in\mathcal{O}\}$, is equal to K.

Example

As from before, \mathcal{O}_K is an example of an order of K. We also have that $\mathbb{Z}[\sqrt{8}]$ is an order of $\mathbb{Q}(\sqrt{2})$. By containment, it is "smaller" than $\mathbb{Z}[\sqrt{2}]$.

Orders generalize the notion of the ring of integers.

- The ring of integers is the maximal order of K.
- Dirichlet's unit theorem holds for orders as well, so the structure of the unit group of an order \mathcal{O}^{\times} is well known.

Results for an Order

With the notion of orders, we may change the conditions of our problem, instead fixing a number field K and odd prime p inert in K, then varying our choice of order \mathcal{O} and looking at its unit group.

Results for an Order

With the notion of orders, we may change the conditions of our problem, instead fixing a number field K and odd prime p inert in K, then varying our choice of order \mathcal{O} and looking at its unit group.

We will say that for a number field K of degree n a prime p remains inert in an order \mathcal{O} if $\mathcal{O}/p\mathcal{O} \cong \mathbb{F}_{p^n}$.

Results for an Order

With the notion of orders, we may change the conditions of our problem, instead fixing a number field K and odd prime p inert in K, then varying our choice of order \mathcal{O} and looking at its unit group.

We will say that for a number field K of degree n a prime p remains inert in an order \mathcal{O} if $\mathcal{O}/p\mathcal{O} \cong \mathbb{F}_{p^n}$.

$\mathsf{Theorem}$

For a real quadratic number field K and prime p inert in K, let the image of the unit group of \mathcal{O}_K^{\times} under reduction modulo p be a subgroup U of $U_{\mathbb{F}_{p^2}^{\times}}$. Then, for every subgroup $S \leq U$, there exists an order \mathcal{O} of K in which p remains inert and the reduction of \mathcal{O}^{\times} modulo p is the subgroup S.

Generalization to Fields of Higher Degree

Considering our results in the real quadratic case, we conjecture the following generalization for orders:

Generalization to Fields of Higher Degree

Considering our results in the real quadratic case, we conjecture the following generalization for orders:

Conjecture

For a number field K of degree n and prime p inert in K, let the image of the unit group of \mathcal{O}_K^{\times} under reduction modulo p be a subgroup U of $U_{\mathbb{F}_{p^n}^{\times}}$. Then, for every subgroup $S \leq U$, there exists an order \mathcal{O} of K in which p remains inert and the reduction of \mathcal{O}^{\times} modulo p is the subgroup S.

Acknowledgements

- I would like to give special thanks to my mentor Dr. Alexander Petrov for proposing this topic, and for the guidance and resources he provided me throughout the research period.
- I would also like to thank the PRIMES-USA program and its organizers for providing me with this research opportunity.