Field of Definition of Abelian Surfaces with Maximal Picard Rank

Sophia Hou

MIT PRIMES

October 18 2025

Big Picture

- Elliptic curves: curves where we can add points!
- Minimal field of definition of elliptic curve: studied through their j-invariant, which tells us the smallest field where they can be defined.
- Abelian surfaces: a two-dimensional version of elliptic curves.
- Our question: What is the smallest field of definition for these surfaces when they have the richest possible algebraic structure (maximal Picard rank)?
- This connects classical ideas (elliptic curves, lattices, *j*-invariant) with modern research in algebraic geometry and number theory.

Roadmap

Elliptic Curves, Complex Tori, and Fields

2 CM theory

Our work on abelian surfaces

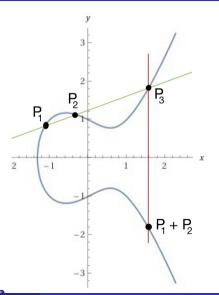
What is an elliptic curve?

- A (complex) **elliptic curve** is a special kind of curve.
- given with this kind of equation:

$$y^2 = x^3 + ax + b,$$
 $\Delta = -16(4a^3 + 27b^2) \neq 0.$

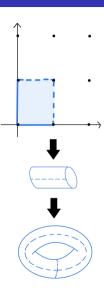
where a, b are complex numbers

• We can add points!



Why do we call an elliptic curve a complex torus?

- A lattice is $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ with $\omega_2/\omega_1 \notin \mathbb{R}$.
- Riemann's theorem (dim 1): every complex torus \mathbb{C}/Λ is an elliptic curve, and conversely every elliptic curve over \mathbb{C} is isomorphic to some \mathbb{C}/Λ .



j-invariant of an elliptic curve

ullet Any elliptic curve E over ${\mathbb C}$ can be written as

$$E: y^2 = x^3 + ax + b$$
, with $4a^3 + 27b^2 \neq 0$.

• The *j*-invariant uniquely determines its isomorphism class over \mathbb{C} :

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Example

For

$$E: y^2 = x^3 - 2x + 1,$$

we have a=-2, b=1, so

$$j(E) = 1728 \cdot \frac{4(-2)^3}{4(-2)^3 + 27(1)^2} = 1728 \cdot \frac{-32}{-5} = \frac{55296}{5}.$$

Minimal field of definition

• Any complex elliptic curve E/\mathbb{C} is isomorphic to

$$E': y^2 = x^3 + \frac{3j(E)}{1728 - j(E)}x + \frac{2j(E)}{1728 - j(E)}.$$

• The minimal field of definition of E is $\mathbb{Q}(j(E))$.

Example

For $E: y^2 = x^3 - 2x + 1$, we found $j(E) = \frac{55296}{5} \in \mathbb{Q}$. Therefore E can be defined over \mathbb{Q} itself.

If j(E) were an algebraic irrational (e.g. for CM curves like $j=76771008+44330496\sqrt{3}$) the minimal field would be $\mathbb{Q}(j(E))$.

Sophia Hou (MIT PRIMES) Cotober 18 2025

From curves to surfaces: what changes?

- In dimension 1, the j-invariant controls the minimal field of definition.
- In dimension 2, harder to describe the minimal field of definition for a general abelian surface
- However, **Picard-max** "very algebraic" abelian surfaces A become *products of CM elliptic curves*:

$$A \cong E_1 \times E_2$$
, $E_1 \sim E_2$, $\operatorname{End}(E_i)$ orders in an imaginary quadratic field.

- Our Question: what is the minimal field of definition of A (or its isomorphism class)?
 - \Rightarrow This is the focus of the rest of the talk.

Roadmap

Elliptic Curves, Complex Tori, and Fields

2 CM theory

Our work on abelian surfaces

Elliptic Curves as Complex Lattices

• Every elliptic curve E/\mathbb{C} can be viewed as a complex torus:

$$E = \mathbb{C}/\Lambda, \quad \Lambda = \langle \omega_1, \omega_2 \rangle.$$

Isogeny:

$$E_1=\mathbb{C}/\Lambda_1, E_2=\mathbb{C}/\Lambda_2$$
 are isogenous \iff there exists $\alpha\in\mathbb{C}$ such that $\alpha\Lambda_1\subseteq\Lambda_2.$

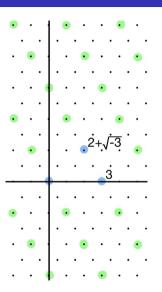
Complex Multiplication and Example Lattice

- E has complex multiplication (CM) if $\operatorname{End}(E)$ is larger than \mathbb{Z} .
- Equivalently, $\operatorname{End}(E)$ is an order $\mathcal{O} \subset K = \mathbb{Q}(\sqrt{-n})$ in an imaginary quadratic field.
- Such orders have the form $\mathcal{O} = \mathbb{Z} + f \mathcal{O}_K$ with conductor f.

Example

For
$$\Lambda = \langle 3, 2 + \sqrt{-3} \rangle$$
,

$$\operatorname{End}(\mathbb{C}/\Lambda) = \mathbb{Z}[3\sqrt{-3}].$$

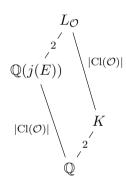


Ring Class Fields and j-invariants

• First Main Theorem of Complex Multiplication:

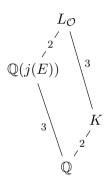
$$K(j(\mathcal{O})) = L_{\mathcal{O}}, \quad \operatorname{Gal}(L_{\mathcal{O}}/K) \cong \operatorname{Cl}(\mathcal{O}).$$

- The field $L_{\mathcal{O}}$ is the *ring class field* of \mathcal{O} , i.e. the maximal abelian extension of K unramified outside primes dividing the conductor of \mathcal{O} .
- Real $j \colon j(E) \in \mathbb{R} \iff$ the class $[E] \in \mathrm{Cl}(\mathcal{O})$ has order ≤ 2 .



Example: $\mathcal{O} = \mathbb{Z}[3\sqrt{-3}]$

- Here $K = \mathbb{Q}(\sqrt{-3})$ and $\mathcal{O} = \mathbb{Z}[3\sqrt{-3}]$ has conductor 3.
- Its class group $Cl(\mathcal{O})$ has order 3 with elements $\{1, [\Lambda], [\Lambda]^2\}$.
- Thus $[L_{\mathcal{O}}:K]=3$ and $\mathrm{Gal}(L_{\mathcal{O}}/K)\cong\mathrm{Cl}(\mathcal{O}).$
- The class $[\Lambda]$ has order 3, so $j(\Lambda) \notin \mathbb{R}$.
- The three CM j-values form one real and one complex-conjugate pair, generating the same ring class field $L_{\mathcal{O}}$.



Roadmap

Elliptic Curves, Complex Tori, and Fields

2 CM theory

Our work on abelian surfaces

Picard-maximal Abelian Surfaces

Theorem (Schoen)

A complex abelian surface has maximal Picard rank \iff it is isomorphic to

 $A \cong E_1 \times E_2$, with E_1, E_2 CM and isogenous.

Theorem (Shioda-Mitani)

Up to isomorphism, such surfaces are classified by a pair (d, E):

$$\mathcal{A}_{d,E} := \mathbb{C}/\mathcal{O} \times E, \quad \mathcal{O} = \mathbb{Z}[d\alpha], \text{ End}(E) = \mathbb{Z}[\alpha].$$

Main Theorem

Setup. For a decomposition of the abelian surface $A_{d,E} \simeq E_1 \times E_2$ the **field of definition** of the decomposition is $\mathbb{Q}(j(E), j(E_1), j(E_2))$.

Theorem (Devadas-Hou)

If $d=p^n$ is a prime power and E is an elliptic curve with CM by \mathcal{O} , the minimal field of definition of a decomposition of $\mathcal{A}_{p^n,E}$ is

$$\mathbb{Q}\!\big(j(E),\,j(E_1),\,j(E_2)\big) \;=\; \begin{cases} \text{the maximal real subfield of $L_{\mathcal{O}'}$,} & \text{if $j(E)\in\mathbb{R}$,} \\ L_{\mathcal{O}'}, & \text{if $j(E)\notin\mathbb{R}$,} \end{cases}$$

where $L_{\mathcal{O}'}$ is the ring class field of $\mathcal{O}' = \mathbb{Z} + p^n \mathcal{O}$.

Degrees. In the real-j case the degree $[L_{\mathcal{O}'}:\mathbb{Q}]$ is $|\mathrm{Cl}(\mathcal{O}')|$; otherwise it is $[L_{\mathcal{O}'}:\mathbb{Q}]=2\,|\mathrm{Cl}(\mathcal{O}')|$.

Sophia Hou (MIT PRIMES) Field of Definition of Abelian Surfaces with Maximal Fit October 18 2025

16 / 18

How we proved it

1 Decomposition lemma. Show

$$\mathcal{A}_{p^n,E} \cong E_1 \times E_2 \iff \left(\operatorname{End}(E_1) = \mathcal{O}, \ \operatorname{End}(E_2) = \mathcal{O}', \ [E_1] \cdot \phi([E_2]) = [E] \in \operatorname{Cl}(\mathcal{O}) \right),$$

where $\phi: Cl(\mathcal{O}') \to Cl(\mathcal{O})$ is the natural map.

Degree lower bound. $j(E_2)$ is a root of the Hilbert class polynomial of \mathcal{O}' (which has degree $|\operatorname{Cl}(\mathcal{O}')|$) so

$$\left[\mathbb{Q}(j(E), j(E_1), j(E_2)) : \mathbb{Q}\right] \geq |\mathrm{Cl}(\mathcal{O}')|.$$

- 3 Case split via CM/class field theory.
 - If $j(E) \in \mathbb{R}$ (i.e. [E] has order ≤ 2 in $\mathrm{Cl}(\mathcal{O})$), then $j(\mathbb{C}/\mathcal{O}')$ is real and the field generated is exactly the *real subfield* of $L_{\mathcal{O}'}$; the lower bound is sharp.
 - If $j(E) \notin \mathbb{R}$ (order > 2), then adjoining j(E) and $j(E_1)$ gives all of $L_{\mathcal{O}}$, and together with $j(E_2)$ one obtains the full $L_{\mathcal{O}'}$.

Acknowledgments

I would like to thank my PRIMES mentor, Sheela Devadas, for her guidance and support throughout the PRIMES program. I would also like to thank the PRIMES organizers for the opportunity to conduct math research and present to the PRIMES community and the broader audience of young mathematicians.

18 / 18