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Big Picture

Elliptic curves: curves where we can add points!

Minimal field of definition of elliptic curve: studied through their j-invariant, which
tells us the smallest field where they can be defined.

Abelian surfaces: a two-dimensional version of elliptic curves.

Our question: What is the smallest field of definition for these surfaces when they have
the richest possible algebraic structure (maximal Picard rank)?

This connects classical ideas (elliptic curves, lattices, j-invariant) with modern research in
algebraic geometry and number theory.
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Roadmap

1 Elliptic Curves, Complex Tori, and Fields

2 CM theory

3 Our work on abelian surfaces
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What is an elliptic curve?

A (complex) elliptic curve is a special
kind of curve,

given with this kind of equation:

y2 = x3+ax+b, ∆ = −16(4a3+27b2) ̸= 0.

where a, b are complex numbers

We can add points!
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Why do we call an elliptic curve a complex torus?

A lattice is Λ = Zω1 + Zω2 ⊂ C with
ω2/ω1 /∈ R.
Riemann’s theorem (dim 1): every complex
torus C/Λ is an elliptic curve, and conversely
every elliptic curve over C is isomorphic to
some C/Λ.
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j-invariant of an elliptic curve

Any elliptic curve E over C can be written as

E : y2 = x3 + ax+ b, with 4a3 + 27b2 ̸= 0.

The j-invariant uniquely determines its isomorphism class over C:

j(E) = 1728
4a3

4a3 + 27b2
.

Example

For
E : y2 = x3 − 2x+ 1,

we have a = −2, b = 1, so

j(E) = 1728 · 4(−2)3

4(−2)3 + 27(1)2
= 1728 · −32

−5
=

55296

5
.
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Minimal field of definition

Any complex elliptic curve E/C is isomorphic to

E′ : y2 = x3 +
3j(E)

1728− j(E)
x+

2j(E)

1728− j(E)
.

The minimal field of definition of E is Q(j(E)).

Example

For E : y2 = x3 − 2x+ 1, we found j(E) = 55296
5 ∈ Q. Therefore E can be defined over Q

itself.
If j(E) were an algebraic irrational (e.g. for CM curves like j = 76771008 + 44330496

√
3) the

minimal field would be Q(j(E)).

Sophia Hou (MIT PRIMES) Field of Definition of Abelian Surfaces with Maximal Picard Rank October 18 2025 7 / 18



From curves to surfaces: what changes?

In dimension 1, the j-invariant controls the minimal field of definition.

In dimension 2, harder to describe the minimal field of definition for a general abelian
surface

However, Picard-max “very algebraic” abelian surfaces A become products of CM elliptic
curves:

A ∼= E1 × E2, E1 ∼ E2, End(Ei) orders in an imaginary quadratic field.

Our Question: what is the minimal field of definition of A (or its isomorphism
class)?
⇒ This is the focus of the rest of the talk.
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Elliptic Curves as Complex Lattices

Every elliptic curve E/C can be viewed as a complex torus:

E = C/Λ, Λ = ⟨ω1, ω2⟩.

Isogeny:

E1 = C/Λ1, E2 = C/Λ2 are isogenous ⇐⇒ there exists α ∈ C such that αΛ1 ⊆ Λ2.
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Complex Multiplication and Example Lattice

E has complex multiplication (CM) if
End(E) is larger than Z.
Equivalently, End(E) is an order
O ⊂ K = Q(

√
−n) in an imaginary quadratic

field.

Such orders have the form O = Z+ f OK with
conductor f .

Example

For Λ = ⟨3, 2 +
√
−3⟩,

End(C/Λ) = Z[3
√
−3].
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Ring Class Fields and j-invariants

First Main Theorem of Complex Multiplication:

K(j(O)) = LO, Gal(LO/K) ∼= Cl(O).

The field LO is the ring class field of O, i.e. the maximal
abelian extension of K unramified outside primes dividing the
conductor of O.

Real j: j(E) ∈ R ⇐⇒ the class [E] ∈ Cl(O) has order ≤ 2.

LO

Q(j(E))

K

Q

2

|Cl(O)|

2

|Cl(O)|
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Example: O = Z[3
√
−3]

Here K = Q(
√
−3) and O = Z[3

√
−3] has conductor 3.

Its class group Cl(O) has order 3 with elements {1, [Λ], [Λ]2}.
Thus [LO : K] = 3 and Gal(LO/K) ∼= Cl(O).

The class [Λ] has order 3, so j(Λ) /∈ R.
The three CM j-values form one real and one
complex-conjugate pair, generating the same ring class field
LO.

LO

Q(j(E))

K

Q

2

3

2

3
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Picard-maximal Abelian Surfaces

Theorem (Schoen)

A complex abelian surface has maximal Picard rank ⇐⇒ it is isomorphic to

A ∼= E1 × E2, with E1, E2 CM and isogenous.

Theorem (Shioda-Mitani)

Up to isomorphism, such surfaces are classified by a pair (d,E):

Ad,E := C/O × E, O = Z[dα], End(E) = Z[α].
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Main Theorem

Setup. For a decomposition of the abelian surface Ad,E ≃ E1 × E2 the field of definition of the
decomposition is Q(j(E), j(E1), j(E2)).

Theorem (Devadas-Hou)

If d = pn is a prime power and E is an elliptic curve with CM by O, the minimal field of definition of a
decomposition of Apn,E is

Q
(
j(E), j(E1), j(E2)

)
=

{
the maximal real subfield of LO′, if j(E) ∈ R,

LO′, if j(E) /∈ R,

where LO′ is the ring class field of O′ = Z+ pnO.

Degrees. In the real-j case the degree [LO′ : Q] is |Cl(O′)|; otherwise it is [LO′ : Q] = 2 |Cl(O′)|.
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How we proved it

1 Decomposition lemma. Show

Apn,E
∼= E1 × E2 ⇐⇒

(
End(E1) = O, End(E2) = O′, [E1] · ϕ([E2]) = [E] ∈ Cl(O)

)
,

where ϕ : Cl(O′) → Cl(O) is the natural map.

2 Degree lower bound. j(E2) is a root of the Hilbert class polynomial of O′ (which has degree
|Cl(O′)|) so [

Q
(
j(E), j(E1), j(E2)

)
: Q

]
≥ |Cl(O′)|.

3 Case split via CM/class field theory.

If j(E) ∈ R (i.e. [E] has order ≤ 2 in Cl(O)), then j(C/O′) is real and the field generated is
exactly the real subfield of LO′ ; the lower bound is sharp.
If j(E) /∈ R (order > 2), then adjoining j(E) and j(E1) gives all of LO, and together with
j(E2) one obtains the full LO′ .
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