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Background: Knots and Knot Diagrams

Definition (Knot)
A knot is a closed loop in R3.

Definition (Knot Diagrams)
A knot diagram is a projection of a knot into the plane.

Figure: Knot diagram of the trefoil
knot

Figure: Oriented knot diagram of
the trefoil knot
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Background: Knot Equivalence

Definition (Equivalence)
We call two knot diagrams equivalent if one deform one into the other
without breaking any part of the knot.

Figure: The unknot
Figure: The unknot, but twisted
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Background: Timeline of Knot Tabulation

165 different 10-crossing prime knots (late 1800s)

9, 988 different 13-crossing prime knots (early 1980s)
1, 388, 705 different 16-crossing prime knots (1998)
294, 130, 458 different 19-crossing prime knots (2019)
1, 847, 319, 428 different 20-crossing prime knots (2025)

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 4 / 28



Background: Timeline of Knot Tabulation

165 different 10-crossing prime knots (late 1800s)
9, 988 different 13-crossing prime knots (early 1980s)

1, 388, 705 different 16-crossing prime knots (1998)
294, 130, 458 different 19-crossing prime knots (2019)
1, 847, 319, 428 different 20-crossing prime knots (2025)

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 4 / 28



Background: Timeline of Knot Tabulation

165 different 10-crossing prime knots (late 1800s)
9, 988 different 13-crossing prime knots (early 1980s)
1, 388, 705 different 16-crossing prime knots (1998)

294, 130, 458 different 19-crossing prime knots (2019)
1, 847, 319, 428 different 20-crossing prime knots (2025)

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 4 / 28



Background: Timeline of Knot Tabulation

165 different 10-crossing prime knots (late 1800s)
9, 988 different 13-crossing prime knots (early 1980s)
1, 388, 705 different 16-crossing prime knots (1998)
294, 130, 458 different 19-crossing prime knots (2019)

1, 847, 319, 428 different 20-crossing prime knots (2025)

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 4 / 28



Background: Timeline of Knot Tabulation

165 different 10-crossing prime knots (late 1800s)
9, 988 different 13-crossing prime knots (early 1980s)
1, 388, 705 different 16-crossing prime knots (1998)
294, 130, 458 different 19-crossing prime knots (2019)
1, 847, 319, 428 different 20-crossing prime knots (2025)

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 4 / 28



Background: Knot Invariants

Definition (Knot Invariants)
A knot invariant is a function of a knot diagram that is the same for any
two equivalent knot diagrams.

f

( )
= f

( )

Examples include:

Tricolorability
Alexander Polynomial
Jones Polynomial

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 5 / 28



Background: Knot Invariants

Definition (Knot Invariants)
A knot invariant is a function of a knot diagram that is the same for any
two equivalent knot diagrams.

f

( )
= f

( )

Examples include:

Tricolorability
Alexander Polynomial
Jones Polynomial

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 5 / 28



Background: Knot Invariants

Definition (Knot Invariants)
A knot invariant is a function of a knot diagram that is the same for any
two equivalent knot diagrams.

f

( )
= f

( )

Examples include:

Tricolorability
Alexander Polynomial
Jones Polynomial

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 5 / 28



Background: Knot Invariants

Definition (Knot Invariants)
A knot invariant is a function of a knot diagram that is the same for any
two equivalent knot diagrams.

f

( )
= f

( )

Examples include:
Tricolorability

Alexander Polynomial
Jones Polynomial

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 5 / 28



Background: Knot Invariants

Definition (Knot Invariants)
A knot invariant is a function of a knot diagram that is the same for any
two equivalent knot diagrams.

f

( )
= f

( )

Examples include:
Tricolorability
Alexander Polynomial

Jones Polynomial

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 5 / 28



Background: Knot Invariants

Definition (Knot Invariants)
A knot invariant is a function of a knot diagram that is the same for any
two equivalent knot diagrams.

f

( )
= f

( )

Examples include:
Tricolorability
Alexander Polynomial
Jones Polynomial

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireBackground October 18, 2025 5 / 28



Background: Links

Definition (Link)
A link is a collection of loops in R3.

Figure: Projection of the Hopf Link
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Kauffman Bracket

Definition (Kauffman Bracket)
The Kauffman bracket polynomial (KBP) of a link is defined by:

⟨ ⟩ = 1

⟨ ⟩ = (−A2 − A−2)⟨ ⟩

⟨ ⟩ = A⟨ ⟩+ A−1⟨ ⟩

The Kauffman Bracket polynomial is not an invariant, but it’s only ever off
by a power of (−A)3, and we can correct this with something called the
writhe.
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Writhe

Definition (Sign of Crossing)
The sign of a crossing is defined as shown below:

Figure: A negative (-1) crossing Figure: A positive (+1) crossing

Definition (Writhe)
The writhe of a link L, or w(L), is the sum of the signs of all of the
crossings of L.
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Jones Polynomial: Definition

Definition (Jones Polynomial)
The normalized bracket polynomial of an oriented link L is given by
X(L) = (−A3)−w(L)⟨L⟩. The Jones Polynomial of L, denoted by V(L), is
obtained by setting A = t−1/4.

One of the most widely recognized knot invariants

With another invariant, used to tabulate knots up to 20 crossings
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Jones Polynomial: Goals

Naive implementation for a knot with n crossings is O(n2n)

Computation can take hours or days as knots grow in size
Faster/sub-exponential algorithms will aid in tabulating 21-crossing
prime knots.
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Tangles: Definitions

Definition (Tangle Diagram)
A tangle diagram is a section of a knot/link diagram embedded in a disk.

Example

Figure: A tangle with a crossing from the trefoil
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Tangles: Definitions

Definition
Let T be a tangle. The type of T consists of the disc, along with the
points on the boundary of T. A tangle is a base tangle if it contains no
crossings or loops.

Figure: A base tangle with 6 boundary points
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Tangles: Kauffman Bracket Polynomial

Base tangles let us extend the KBP to tangles

For tangle on previous slide, ⟨ ⟩ = A⟨ ⟩+ A−1⟨ ⟩
If a tangle has many crossings, we can first find the KBP of smaller
tangles within, and glue the base tangles back in

Figure: A smaller tangle with 3 crossings contained in a larger one
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Tangles: Cutting
Let L be a link with n crossings. A cutting of L is a sequence of n + 1
tangles T0, T1, …, Tn such that:

T0 is empty
Tn is L embedded in a disk
For 0 ≤ i < n, the graph Ti+1 − Ti consists only of a crossing and the
edges connecting the boundary of Ti to Ti+1

T0

T1T2
T3

Figure: A cutting of the trefoil knot
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Tangles: Algorithm

Algorithm (Ellenberg et al., 2013)
Input: A link L with n crossings and a cutting T0, T1, …, Tn of L
Output: The Jones polynomial of L

Start with empty tangle T0

For i = 0 to i = n − 1:

Take the KBP of Ti, expressed in terms of the base tangles
Glue each base tangle into Ti+1
Remove the new crossing in Ti+1 by using the rules for computing the
KBP
Obtain the KBP of Ti+1 in terms of its base tangles

Compute the Jones polynomial of L using the KBP of Tn and the
writhe of L
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Tangles: Performance

Theorem (Djidjev and Vrťo, 2003)
Given a cutting of a knot with n crossings, the number of boundary
vertices in any tangle of the cutting is bounded above by c

√
n, where

c = 6
√

2 + 5
√

3.

Proposition
Let T be a type with m boundary points. Up to isotopy equivalence, there
are Cm/2 distinct base tangles with type T, where Ci is the ith Catalan
number.

Theorem (Ellenberg, Shieh, et al., 2025)
The time complexity for the tangle algorithm for a knot with n crossings is
O(n5/42c√n).
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A Different Recursion for Jones

Definition (Jones)
The Jones polynomial is the unique function satisfying

t−1V (t)− tV (t) = (
√

t − 1√
t)V (t)

V (t) = 1

Notice that there are two terms with crossings in the above skein
relation, so we can’t induct on crossing number as with the original
skein relation.
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Unknots

V
L
(t) = −(

√
t + 1√

t
)VL(t).

Thus, we want to make all components into unknots.
Proposition (Unknots)
If as one traverses the edges of a knot all crossings are first
encountered as overcrossings, the knot is an unknot.

Figure: Part of an Unknot
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Unknots

We can decorate each overcrossing we encounter as we progress along
each link component (and not skein decorated crossings) so that
eventually we get all unknots. We can induct on the number of
undecorated crossings instead of the number of crossings.

Figure: Decorated Part of Unknot
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Skein Template Algorithm

Algorithm (Gouesbet, Meunier-Guttin-Cluzel, and Letellier, 1999)
Input: A link L, a starting crossing, and a starting direction.
Output: The Jones polynomial of L
Repeat the following procedure until I have only unlinks:

If I encounter an overcrossing, decorate it (we won’t touch it again).

If I encounter an undercrossing

Use the skein relation. Decorate the overcrossing made from switching
the two strands (we won’t touch it again).

Proceed to the next crossing in each case.

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireSkein Template Algorithm October 18, 2025 20 / 28



Skein Template Algorithm

Algorithm (Gouesbet, Meunier-Guttin-Cluzel, and Letellier, 1999)
Input: A link L, a starting crossing, and a starting direction.
Output: The Jones polynomial of L
Repeat the following procedure until I have only unlinks:

If I encounter an overcrossing, decorate it (we won’t touch it again).
If I encounter an undercrossing

Use the skein relation. Decorate the overcrossing made from switching
the two strands (we won’t touch it again).

Proceed to the next crossing in each case.

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireSkein Template Algorithm October 18, 2025 20 / 28



Skein Template Algorithm

Algorithm (Gouesbet, Meunier-Guttin-Cluzel, and Letellier, 1999)
Input: A link L, a starting crossing, and a starting direction.
Output: The Jones polynomial of L
Repeat the following procedure until I have only unlinks:

If I encounter an overcrossing, decorate it (we won’t touch it again).
If I encounter an undercrossing

Use the skein relation. Decorate the overcrossing made from switching
the two strands (we won’t touch it again).

Proceed to the next crossing in each case.

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireSkein Template Algorithm October 18, 2025 20 / 28



Skein Template Algorithm

Algorithm (Gouesbet, Meunier-Guttin-Cluzel, and Letellier, 1999)
Input: A link L, a starting crossing, and a starting direction.
Output: The Jones polynomial of L
Repeat the following procedure until I have only unlinks:

If I encounter an overcrossing, decorate it (we won’t touch it again).
If I encounter an undercrossing

Use the skein relation. Decorate the overcrossing made from switching
the two strands (we won’t touch it again).

Proceed to the next crossing in each case.

Evan Ashoori, Peter Bai, Hansen Shieh Mentor: Ryan MaguireSkein Template Algorithm October 18, 2025 20 / 28



Time Complexity

Since each recursion splits the current link into two links with one fewer
undecorated crossing and each step of the recursion takes polynomial time
to compute, the worst case time complexity of the algorithm is O∼(2n).

In practice, we expect the algorithm to run in about O∼(2 n
2 ) since usually

around half of all crossings are first encountered are undercrossings.
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Load Balanced Algorithm

Definition (Kauffman Bracket Skein Relation)

⟨ ⟩ = A⟨ ⟩+ A−1⟨ ⟩

We can make the naive algorithm of recursively applying Skein relations
much more efficient by:

Performing immediate simplifications between iterations

Figure: Trefoil with some twists

Selecting crossings that yield immediate simplifications after applying
a Skein relation
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Load Balanced Algorithm

We can look for simple patterns with crossings that can be smoothed to
remove more than one crossing at once:

Example

Figure: Smoothing a crossing

Figure: Triple Figure: Gamma Figure: Bigon
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Load Balanced Algorithm

Definition (Complexity Type)
Suppose that smoothing a crossing in a knot with n crossings and
performing subsequent simplifications results in two knot diagrams with
n− a and n− b crossings. Then, this smoothing has complexity type (a, b).

Example
Smoothing the circled crossing has a complexity type of (1, 2):

Figure: Smoothing a crossing in a gamma
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Load Balanced Algorithm

Estimate the time complexity of the algorithm as Θ(αn) for a knot
diagram with n crossings and a hard-coded constant α

Example
Smoothing the circled crossing has a complexity type of (1, 2):

αn αn−1 αn−2

Example (Comparing Complexity Types)
For α = 1.75, we estimate a smoothing with complexity type (2, 2) to be
better than a smoothing with complexity type (1, 4) because

α−2 + α−2 ≈ 0.65 < 0.68 ≈ α−1 + α−4.
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Load Balanced Algorithm

Algorithm (Ewing and Millet, 1991)
Input: A link L
Output: The KBP of L

If L is the unknot, return 1.
If L has a component with no crossings, get rid of this component
and multiply the result by −A2 − A−2.

Otherwise, search for patterns and their corresponding potential
smoothings
Select the smoothing with complexity type (a, b) that minimizes
α−a + α−b

Evaluate the Skein relation and recurse
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Benchmarking

Preliminary Results
Algorithm Time (seconds)

Naive 33.819
Circle Counting 13.394

Skein Template Algorithm 1.611
Symbolic Calculus 0.121
Tangle Algorithm 0.052

Figure: Benchmarks on a random sample of 24-crossing knots

Future Work
Implement and benchmark two additional algorithms
Tabulate the Jones polynomial for all prime knots up to 20 crossings
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