Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction

Theory of Reconstruction

Particle Size

Results

Conclusion

References

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen
Mentors: Prof. Richard French and Dr. Ryan Maguire

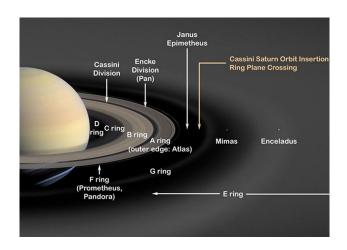
Mission San Jose High School and Leland High School

18 October 2025 Fifteenth Annual Fall-Term MIT PRIMES Conference

Saturn's Rings

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen


Introduction

Theory of Reconstruction

Particle Size

-

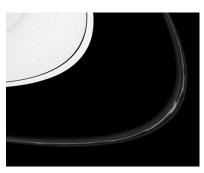
Conclusion

Narrow Ringlets

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction


Theory of Reconstruction

Particle Size

Danilo

Conclusion

- Gravitational interactions cause many interesting F ring properties
- Particle sizes in narrow rings differ widely from other regions

"Jets" and kinks in the F ring.

Cassini Radio Science Subsystem

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction

Theory of Reconstruction

Particle Size Theory

.

Conclusio

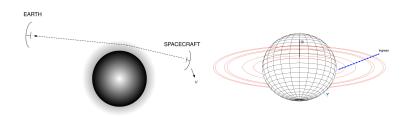
- The Cassini space probe launched in 1997 and orbited Saturn for 13 years
- The Radio Science Subsystem (RSS) transmitted 3 wavelengths of radio signals from Cassini to Earth

Method of Observation: Radio Occultations

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction


Theory of Reconstruction

Particle Size

Result

Conclusion

References

Geometry of a radio occultation. Occultation track for Rev 028.

Reconstruction Integrals

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction

Theory of Reconstruction

Particle Size Theory

Reculte

Conclusion

References

- The power of the signal alone cannot show the shape of the obstacle due to diffraction
- Thus the DSNs measure both amplitude (power) and phase of the waves they receive from Cassini

Forward Diffraction Integral

$$\hat{T}(\rho_0) = \frac{\mu_0}{i\lambda} \int_0^\infty \rho T(\rho) \int_0^{2\pi} \frac{e^{i\psi(\rho_0,\phi_0;\rho,\phi)}}{||\mathbf{R}_c - \boldsymbol{\rho}||} d\phi d\rho$$

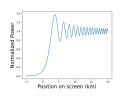
It is possible to reverse this integral to recover the "density" of the rings

Overcoming Diffraction

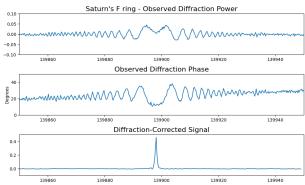
Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction


Theory of Reconstruction

Particle Size Theory


Results

Conclusion

References

Diffraction due to a straight edge.

Optical Depth Profiles

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

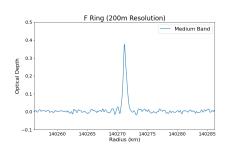
Advaith Mopuri and Maggie Shen

Introduction

Theory of Reconstruction

Particle Size

111001


Conclusion

References

Optical depth is directly proportional to how much ring material there is, making it a more useful measure of ring density:

Optical Depth

$$\tau(\rho) = -2\mu_0 \ln(|T(\rho)|)$$

X band optical depth profile of the F ring.

Mie Scattering Theory

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction

Theory of Re construction

Particle Size Theory

Result

Conclusio

Reference

- Optical depth at a given wavelength can be determined from the sizes of particles in the ring
- Size distribution $n(a) = n_0 \left(\frac{a}{a_0}\right)^{-q}$; $a_{min} < a < a_{max}$

Optical Depth

$$au(\lambda) = \int_0^\infty \pi a^2 Q_{ext}(a,\lambda) n(a) da$$

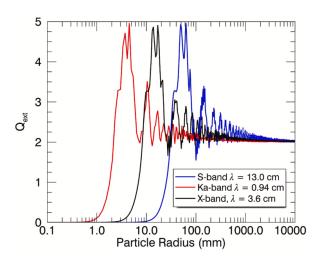
 Comparing the optical depths of pairs of wavelengths allows us to make conclusions about particle sizes

Comparing Optical Depths

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction


Theory of Reconstruction

Particle Size Theory

Danulka

Conclusio

References

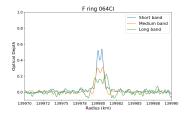
Extinction efficiency versus particle radius for the Ka (short) band, X (medium) band, and S (long) band.

Comparing Optical Depths

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction


Theory of Reconstruction


Particle Size Theory

Results

Conclusion

Reference

Optical depth profiles of the F ring and Strange ringlet on all 3 bands.

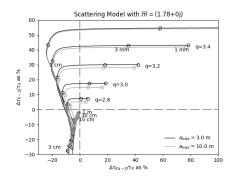
- **Proportionality constant** n_0 can be determined from Δau
- The remaining degrees of freedom are a_{min} , a_{max} , and q

Constraining Particle Sizes

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction


Theory of Reconstruction

Particle Size Theory

Results

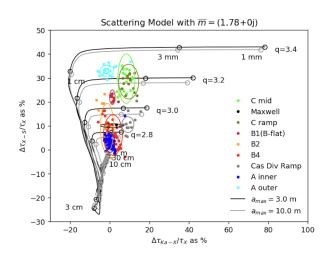
Conclusio

- Values of q and a_{max} determine curves for differential optical depth
- Plotting short/medium differential opacity with medium/long differential opacity significantly constrains q, a_{min}, and a_{max}

Previous Results: Other Ring Features

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen


Introduction

Theory of Reconstruction

Particle Size

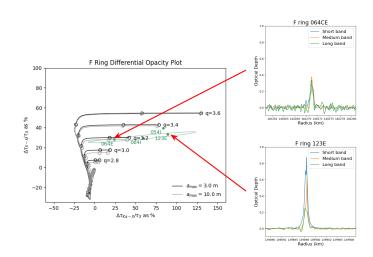
Results

Conclusio

F Ring

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen


Introduction

Theory of Reconstruction

Particle Size Theory

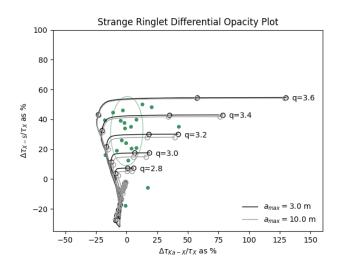
Results

Conclusion

Strange Ringlet

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen


Introduction

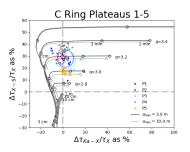
Theory of Reconstruction

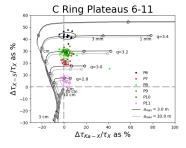
Particle Size Theory

Results

Conclusion

C Ring Plateaus


Exploring Saturn's Narrow Ringlets with Cassini Radio Science


Advaith Mopuri and Maggie Shen

Results

Plateaus are optically "bright" regions in the C ring.

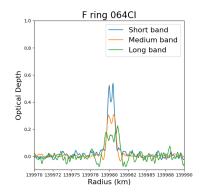
2D differential opacity graph of C ring plateaus.

Concluding Remarks

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction


Theory of Reconstruction

Particle Size Theory

Result

Conclusion

- High resolution reconstructions allow us to analyze particle sizes in narrow ringlets
- The F ring is unique from other ring regions
- Most easily interpreted as an abundance of smaller particles

Acknowledgments

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction

Theory of Reconstruction

Particle Size

D 1.

Conclusion

References

We would like to thank Professor Richard French and Dr. Ryan Maguire for their invaluable guidance and support through the research process. We also thank Dave Darrow for his feedback on our presentation, and the MIT PRIMES-USA program for this research opportunity.

References

338-362

Exploring Saturn's Narrow Ringlets with Cassini Radio Science

Advaith Mopuri and Maggie Shen

Introduction

Theory of Reconstruction

Particle Size Theory

110501105

Conclusion

References

Asmar, S. W., French, R. G., Marouf, E. A., et al. 2018, Cassini Radio Science User's Guide, 1st edn., NASA Jet Propulsion Laboratory

Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009, The Structure of Saturn's Rings, ed. M. K. Dougherty, L. W. Esposito, & S. M. Krimigis (Dordrecht: Springer Netherlands), 375–412,

doi: 10.1007/978-1-4020-9217-6_13

Cuzzi, J. N., Marouf, E. A., French, R. G., Murray, C. D., & Cooper, N. J. 2024, Science Advances, 10, eadl6601, doi: 10.1126/sciadv.ad16601

French, R., Flury, S., Fong, J., Maguire, R., & Steranka, G. 2019, NASA-Planetary-Science/rss_ringoccs: rss_ringoccs v1.1, v1.1, Zenodo, doi: 10.5281/zenodo.2548947

Jerousek, R. G., Colwell, J. E., Hedman, M. M., et al. 2020, Icarus, 344, 113565, doi: 10.1016/j.icarus.2019.113565

Marouf, E. A., Leonard Tyler, G., Zebker, H. A., Simpson, R. A., & Eshleman, V. R. 1983, Icarus, 54, 189, doi: 10.1016/0019-1035(83)90192-6

Marouf, E. A., Tyler, G. L., & Rosen, P. A. 1986, Icarus, 68, 120

Murray, C. D., & French, R. S. 2018, The F Ring of Saturn, ed. M. S. Tiscareno & C. D. Murray, Cambridge Planetary Science (Cambridge University Press),

NASA/JPL-Caltech. 2004-2017, NASA/JPL Photojournal, https://photojournal.jpl.nasa.gov/