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Billiard Trajectories

Mathematical billiards is a dynamical system defined by the following rule:
the angle of incidence is equal to the angle of reflection.
Here’s a deceptively simple open problem:

Problem

Does every triangle have a periodic billiard orbit?

Every acute and right triangle has one.
Every obtuse triangle with obtuse angle < 112.3 degrees has one.
This is the current best bound (2018).
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Fagnano’s Problem and Solution

Problem (Fagnano 1775)

Given an acute triangle, what is the inscribed triangle of minimal
perimeter?

The unwrapping argument:
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Fagnano’s Problem
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For an acute triangle, the orthic triangle is the unique minimizer. It is also
a billiard orbit: ∠C ′B ′B = ∠A′B ′B, etc. In fact, it is the only 3-periodic
billiard orbit.

The minimizer of the perimeter is a periodic billiard orbit.
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Refractive Billiards

Refractive (Snell) billiards generalize this connection.

βα

Each point on the boundary is assigned a refraction coefficient κ such
that sinβ

sinα = κ. Note that we get regular billiards if κ = 1 for all points.

Periodic billiard orbit Perimeter minimizer

Periodic refractive billiard orbit ?

:

:
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Refractive Billiards

Refractive (Snell) billiards generalize this connection.

βα

Each point on the boundary is assigned a refraction coefficient κ such
that sinβ

sinα = κ. Note that we get regular billiards if κ = 1 for all points.

Periodic billiard orbit Perimeter minimizer

periodic refractive billiard orbit Weighted perimeter minimizer

:

:
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The Generalized Fagnano Problem
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Given △ABC and weights λa, λb, λc > 0, which inscribed △A′B ′C ′

minimizes λa · |B ′C ′|+ λb · |C ′A′|+ λc · |A′B ′|?

Theorem

The following are equivalent:

1 The gradient of the weighted perimeter vanishes at △A′B ′C ′.

2 △A′B ′C ′ is a counterclockwise refractive billiard orbit with
κ(BC ) = λb/λc , κ(CA) = λc/λa, κ(AB) = λa/λb.
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Sketch of the Argument

Theorem

The two sets below are in bijective correspondence:

1 Points P in the interior of △ABC satisfying
|PA| : |PB| : |PC | = λa : λb : λc ,

2 The set of 3-periodic CCW refractive billiard orbits.

The bijection sends P 7→ the pedal triangle of the isogonal conjugate of P.

Example (The Classic Fagnano problem)

The circumcenter is the unique point with PA = PB = PC . Its iso. conj.
is the orthocenter, which has the orthic triangle as its pedal triangle.
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Sketch of the Argument

It suffices to find the points P in the interior of △ABC satisfying
|PA| : |PB| : |PC | = λa : λb : λc .

Lemma (Existence)

Let △ABC have side lengths (a, b, c). There exists a point P satisfying
|PA| : |PB| : |PC | = λa : λb : λc somewhere in the plane iff the triangle
with side lengths (aλa, bλb, cλc) exists (possibly degenerate).
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Results

Theorem (Interior & Uniqueness)

A 3-periodic CCW refractive billiard orbit exists iff the triangle with side
lengths (aλA, bλB , cλC ) exists and each of the following hold:

α+ α̃ ⩽ π,

β + β̃ ⩽ π,

γ + γ̃ ⩽ π.

Moreover, if a 3-periodic orbit exists, it is unique and is the unique
minimizer of the weighted perimeter.

Theorem (Boundary)

If the condition above fails, then P does not exist inside the triangle, and
the the minimizer is the shortest “double covering” of an altitude.
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Interior & Uniqueness
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What about n ≥ 4?

Given a convex n-gon A1A2 . . .An, indices mod n and weights
λ1, λ2, . . . λn > 0, which B1B2 . . .Bn minimizes the weighted perimeter

n∑
i=1

λi · |Bi−1Bi |?

n = 3 had a nice geometric solution, but it’s harder for n ≥ 4.
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n ≥ 4 is tough.

Idea

Create a discrete dynamical system that has the weighted perimeter as an
energy function, that decreases with each step.

An example is the unit square for n = 4. We can define
T : [0, 1]× [0, 1] → [0, 1]× [0, 1] by alternating pairs of sides:

Then, the weighted perimeter strictly decreases. A quadrilateral is a
refractive billiard orbit if and only if it is a fixed point of this map.
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Why is it tough?

Using this, we can run numerical experiments. Even the local stability of
this system is very sensitive to the weights.

Example (Orbits are not unique.)
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Polygonal Refractive Outer Billiards

Let P be a convex polygon. For a point o, we call the leftmost vertex of P
from o’s perspective the head. T (o) is the reflection of o about its head.

For the refractive version, we have refractive indices λ1, λ2, . . . , λn > 0
that multiply to 1. T k(o) is the reflection of T k−1(o) about its head,
followed by a scaling by λk about its head.
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Gutkin & Simyani (1992)

Theorem (Gutkin and Simanyi 1992)

If P is quasi-rational then the orbits of T are bounded. If P is rational
the orbits of T are periodic.

Definition (Rational)

A polygon P is called rational if the vertices of P belong to a lattice.

Definition (Quasi-rational)

Take Q = A1 . . .A2m+1 to be a necklace polygon of P. Then there exist
2m positive real numbers ri satisfying 1 ≤ i ≤ 2m such that

−−−−→
AiAi+1 = ri a⃗i ,

with rm+i = ri . A polygon P is called quasi-rational if r1, . . . , rm are
rational up to a common factor, i.e., (r1 : r2 : · · · : rm) ∈ QPm−1.
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Examples

Example

A regular n-gon is:

1 Rational when n = 3, 4, 6

2 Quasi-rational for all n.

Blue if it returns before ≈ 20k iterations; black otherwise. n = 3, 4, 6 is all
blue!
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Examples
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Results

Here’s our main result regarding refractive outer billiards:

Theorem (Park 2025)

Let T̂ be the refractive outer billiard map about a convex polygon P. If P
is quasi-rational, then the orbits of T̂ are bounded. If P is rational and
each of λ1 . . . λn are rational, then the orbits of the refractive dual
billiards map T̂ are periodic.

Quasi-rational Bounded

Rational + each λ rational periodic

=⇒

=⇒
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Examples

For simplicity, we consider the orbit with λ1 = 2, λ2 = 1/2.
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Examples
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