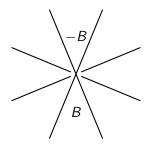

Full-Twist Presentations for Fundamental Groups of Complexified Hyperplane Arrangements

Jerry Liu Mentor: Nathan Williams

October 19, 2025 MIT PRIMES Conference


Motivation and Background

- ▶ In **1926**, Emil Artin introduced a presentation for the braid group $B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i \ (|i-j| > 1) \rangle$.
- ▶ In **1947**, Artin found a presentation for the pure braid group P_n : the subgroup where each strand returns to its starting point.
- ▶ The pure braid group is notoriously difficult to work with.
- ► This motivates a fundamental question: Can we find a simpler presentation for pure braid groups?

Central Hyperplane Arrangements

- ightharpoonup A real hyperplane in \mathbb{R}^n is a linear subspace of dimension n-1
- A central arrangement \mathcal{H} is a finite collection of real hyperplanes in \mathbb{R}^n all intersecting at the origin.
- ightharpoonup Any subset of \mathcal{H} is called a *subarrangement*.
- A subarrangement $\mathcal{A} \subseteq \mathcal{H}$ is said to be *full* if it includes every hyperplane of \mathcal{H} that contains some fixed linear subspace of \mathbb{R}^n .
- ▶ The *regions* of \mathcal{H} are the connected components of the complement $\mathbb{R}^n \setminus \bigcup_{H \in \mathcal{H}} H$.

Braid Group and Pure Braid Group

Fix a finite Coxeter group W with real hyperplane arrangement \mathcal{H} in \mathbb{R}^n . Define $V^{\mathrm{reg}}_{\mathbb{C}} := \mathbb{C}^n \setminus \mathcal{H}_{\mathbb{C}}$.

Definition

The $braid\ group$ of W is defined as

$$B(W) := \pi_1(V_{\mathbb{C}}^{\mathrm{reg}}/W).$$

Definition

The *pure braid group* of W is defined as

$$P(W) := \pi_1(V_{\mathbb{C}}^{\mathrm{reg}}).$$

Main Conjecture: Full-Twist Presentation

The element c is called the *full twist*, which is defined as

$$\mathbb{C} := e^{2\pi i t} x_0 \text{ for } 0 \leq t \leq 1.$$

Let $\operatorname{Red}_{\mathbb{T}}(\mathbb{c})$ be the set of reduced words in \mathbb{T} for the full twist \mathbb{c} and $[\operatorname{Red}_{\mathbb{T}}(\mathbb{c})]$ as the relation setting all these reduced words equal.

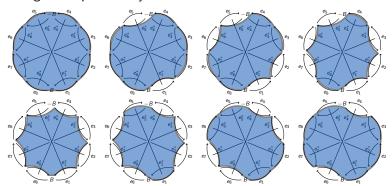
Conjecture

$$P(W) = \langle \mathbb{T} : [\operatorname{Red}_{\mathbb{T}}(\mathbb{c})] \rangle.$$

- ▶ Proven for type A, B, D, H_3 , and $I_2(m)$
- Can be generalized to central hyperplane arrangements.

Steps to Proving the Conjecture

Step 1: Identify some viable presentation for the pure braid group P(W)


Steps to Proving the Conjecture

- Step 1: Identify some viable presentation for the pure braid group P(W)
- ▶ Step 2: Demonstrate that the presentation we identified is equivalent to one specified in the conjecture

Salvetti Complex: Model for $V^{\mathrm{reg}}_{\mathbb{C}} = \mathbb{C}^n \setminus \mathcal{H}_{\mathbb{C}}$

Fix a base point x_B in the interior of some region B. We only need the 0, 1, and 2-cells for $\pi_1(V_{\mathbb{C}}^{\mathrm{reg}}, x_B)$. Call this complex $P^*(\mathcal{H}, B)$.

- 0-cells The regions of the hyperplane arrangement.
- 1-cells For each pair of adjacent regions, connect them with edge e oriented away from B an edge e^* oriented towards B.
- 2-cells For each rank-two subarrangement \mathcal{A} , glue one 2-cell for the regions separated by \mathcal{A} .

Salvetti Presentation

Theorem (Salvetti, 87)

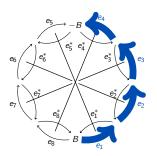
Let ${\cal H}$ be a hyperplane arrangement, then

$$\pi_1(\mathbb{C}^n \setminus \mathcal{H}, x_B) \cong \pi_1(\mathcal{P}^*(\mathcal{H}, B), B).$$

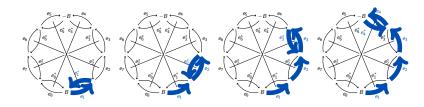
- ▶ Construct a generating set for $\pi_1(\mathcal{P}^*(\mathcal{H}, B), B)$.
- Define gal(C) as a choice of positive minimal gallery from B to C.
- ▶ For $C' \stackrel{e}{\rightarrow} C$, we define the corresponding loop \mathbb{t}_e by:

$$\mathbb{t}_e \coloneqq \operatorname{\mathsf{gal}}(C')ee^*\operatorname{\mathsf{gal}}(C')^{-1}.$$

Let \mathbb{T}_{edge} represent the set of all such loops t_e . This is a valid generating set.


Positive Minimal Gallery

A positive minimal gallery


$$\mathbf{b} := b_1, b_2, \dots, b_N$$

from B to -B specifies a set $\mathbb{T}_{\mathbf{b}} = \{\mathbb{b}_i\}_{i=1}^N$ by the formula:

$$\mathbb{b}_i := (b_1 b_2 \cdots b_{i-1}) b_i b_i^* (b_{i-1}^{-1} \cdots b_2^{-1} b_1^{-1}) \text{ for } 1 \leq i \leq N,$$

Example of Positive Minimal Gallery

If $\mathbf{b} = e_1 e_2 e_3 e_4$, $\mathbb{T}_{\mathbf{b}}$ contains the loops

$$\begin{split} \mathbb{b}_1 &= \mathbb{t}_{e_1} = e_1 e_1^*, \\ \mathbb{b}_2 &= \mathbb{t}_{e_2} = e_1 e_2 e_2^* e_1^{-1}, \\ \mathbb{b}_3 &= \mathbb{t}_{e_3} = e_1 e_2 e_3 e_3^* e_2^{-1} e_1^{-1}, \text{ and } \\ \mathbb{b}_4 &= \mathbb{t}_{e_4} = e_1 e_2 e_3 e_4 e_4^* e_3^{-1} e_2^{-1} e_1^{-1}. \end{split}$$

Forming the Generators

Theorem (Salvetti, 87)

For any positive minimal gallery **b** from B to -B, \mathbb{T}_b is a generating set of $\pi_1(\mathcal{P}^*(\mathcal{H},B),B)$. Specifically, if $C \stackrel{e}{\to} C'$ with $H_e = H_{b_k}$, then

$$\mathbb{b}_e = \left(\prod_{k>i\geq 1, H_i\notin S(c)} \mathbb{b}_i\right)^{-1} \mathbb{b}_k \left(\prod_{k>i\geq 1, H_i\notin S(c)} \mathbb{b}_i\right).$$

One can see that the conjugation step is the most difficult step in calculating the relations for $\pi_1(V_{\mathbb{C}}^{\mathrm{reg}}, x_B)$.

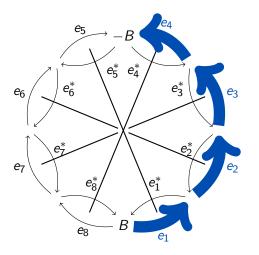
Rank-Two Relations

Theorem (Salvetti, 87)

Fix a positive minimal gallery **b** from B to -B in $\mathcal{P}^*(\mathcal{H}, B)$. For each full rank two subarrangement \mathcal{A} of \mathcal{H} , we can choose one two-cell in $\mathcal{P}^*(\mathcal{H}, B)$ with edges labeled

$$e_1, e_2, \ldots, e_M, \quad e_{M+1}, \ldots, e_{2M}$$

where $\{H_{e_i}\}_{i=1}^M = A$ and $H_{e_1} <_b \cdots <_b H_{e_M}$. Denote $[\mathcal{A}]_{T_b}$ as representing the relations


$$\mathbb{t}_{e_M}\cdots\mathbb{t}_{e_2}\mathbb{t}_{e_1}=\mathbb{t}_{e_1}\mathbb{t}_{e_M}\cdots\mathbb{t}_{e_2}=\cdots=\mathbb{t}_{e_{M-1}}\cdots\mathbb{t}_{e_2}\mathbb{t}_{e_1}\mathbb{t}_{e_M}.$$

Then

$$\pi_1(\mathcal{P}^*(\mathcal{H},B),B) = \langle \mathbb{T}_b : [\mathcal{A}]_{\mathcal{T}_b} \rangle.$$

where the relations range over all full rank-two subarrangements $\mathcal{A} \subset \mathcal{H}$.

Example

$$\pi_1(V_{\mathbb{C}}^{\text{reg}}, x_B) = \left\langle \mathbb{b}_1, \mathbb{b}_2, \mathbb{b}_3, \mathbb{b}_4 : \begin{array}{ll} \mathbb{b}_4 \mathbb{b}_3 \mathbb{b}_2 \mathbb{b}_1 = & \mathbb{b}_1 \mathbb{b}_4 \mathbb{b}_3 \mathbb{b}_2 \\ & = \mathbb{b}_2 \mathbb{b}_1 \mathbb{b}_4 \mathbb{b}_3 & = \mathbb{b}_3 \mathbb{b}_2 \mathbb{b}_1 \mathbb{b}_4 \end{array} \right\rangle.$$

Algorithmic Procedure for Step 1

- ldentify every single full rank 2 subarrangement A.
- Select a positive minimal gallery b to minimize the number of conjugation.
- ▶ Determine each of the rank 2 relations $[\mathcal{A}]_{\mathcal{T}_b}$.
- ▶ Combine the relations $[A]_{\mathcal{T}_b}$ to form a presentation of P(W).
- ▶ For finite Coxeter arrangement, the optimal choice for **b** is given by the c-sorting word for the long element $\mathbf{w}_o(\varepsilon)$.

Noncrossing Relations

Theorem

Let $\mathcal H$ be a finite Coxeter arrangement and c a Coxeter element of W. For the generators $\mathbb T_c:=\mathbb T_b$ determined by the c-sorting word $\mathsf w_o(\mathsf c)$, each c-noncrossing rank-2 subarrangement $\mathcal A$ of $\mathcal H$ yields a relation

$$[\mathcal{A}]_{\mathbb{T}_c} = [\operatorname{Red}_{\mathbb{T}_c}(\mathbb{c}_{\mathcal{A}})].$$

▶ If $A = \{H_{i_1} <_c \cdots <_c H_{i_k}\}$, then

$$\mathbb{b}_{i_k}\cdots\mathbb{b}_{i_1}=\mathbb{b}_{i_1}\mathbb{b}_{i_k}\cdots\mathbb{b}_{i_2}=\cdots=\mathbb{b}_{i_{k-1}}\cdots\mathbb{b}_{i_1}\mathbb{b}_{i_k}.$$

- ▶ Relations from c-noncrossing subarrangements appear naturally from the c-sorting gallery.
- c-crossing subarrangements require explicit computation (as shown next).

Computation for Type A

	Type A_{n-1} c-Noncrossing Full Rank-Two Subarrangements			
Label	$\mathcal{N}_c(A_{n-1}, A_1 \times A_1)$	$\mathcal{N}_c(A_{n-1},A_2)$		
Subarrangement	$\{H_{ij},H_{rs}\}$	$\{H_{ij},H_{ik},H_{jk}\}$		
Conditions	i < j < r < s or i < r < s < j	$i{<}j{<}k$		
Picture		i		
Relation	[(en)(ii)]	[(ij)(ik)(jk)]		
	Type A_{n-1} c-Crossing Full Rank-Two Subarrangements			
Label	$\mathcal{C}_c(A_{n-1}, A_1 \times A_1)$			
Subarrangement	$\{H_{ij},H_{rs}\}$			
Conditions	i <r<j<s< td=""><td></td></r<j<s<>			
Picture				
Relation	[(ij)(rs) ^(js)]			

Figure 1. The full rank-two subarrangements of type A_{n-1} .

Presentation for Type A (Step 1)

Theorem

Let $c = s_{n-1}s_{n-2}\cdots s_1$. Then

$$P(A_{n-1}) = \left\langle \begin{array}{c} \mathbb{T}_c \end{array} \middle| \begin{array}{c} [(\mathring{\mathbb{I}}\mathring{\mathbb{J}})(\mathbb{I}^{\mathbb{S}})] & \text{if } \{H_{ij}, H_{rs}\} \in \mathcal{N}_c(A_{n-1}, A_1 \times A_1) \\ [(\mathring{\mathbb{I}}\mathring{\mathbb{J}})(\mathring{\mathbb{I}}\mathbb{K})(\mathring{\mathbb{J}}\mathbb{K})] & \text{if } \{H_{ij}, H_{ik}, H_{jk}\} \in \mathcal{N}_c(A_{n-1}, A_2) \\ [(\mathring{\mathbb{I}}\mathring{\mathbb{J}})(\mathbb{I}^{\mathbb{S}})(\mathbb{I}^{\mathbb{S}})] & \text{if } \{H_{ij}, H_{rs}\} \in \mathcal{C}_c(A_{n-1}, A_1 \times A_1) \end{array} \right\rangle.$$

Step 2

Firstly, we need to rewrite the relation to eliminate the conjugation, i.e. make all the relations positive.

Theorem

The pure braid group $P(A_{n-1})$ has the positive presentation:

$$P(A_{n-1}) = \left\langle \begin{array}{c} \mathbb{T}_c \\ [(\mathring{\mathbb{I}}\mathring{\mathbb{J}})(\mathbb{I}^s)] & \text{if } \{H_{ij}, H_{rs}\} \in \mathcal{N}_c(A_{n-1}, A_1 \times A_1) \\ [(\mathring{\mathbb{I}}\mathring{\mathbb{J}})(\mathring{\mathbb{I}}\mathbb{k})(\mathring{\mathbb{J}}\mathbb{k})] & \text{if } \{H_{ij}, H_{ik}, H_{jk}\} \in \mathcal{N}_c(A_{n-1}, A_2) \\ x = y & \text{if } \{H_{ij}, H_{rs}\} \in \mathcal{C}_c(A_{n-1}, A_1 \times A_1) \end{array} \right\rangle$$

where
$$x = y := (ij)(is)(rs)(js) = (is)(rs)(js)(ij)$$
.

Then, it can be shown that each of these relations can be completed to reduced words for the full twist, confirming our conjecture.

Type B Noncrossing

	Type B_n c-Noncrossing Full Rank-Two Subarrangements				
Label	$\mathcal{N}_c(B_n, A_1 \times A_1, 1)$	$\mathcal{N}_c(B_n, A_1 \times A_1, 2)$	$\mathcal{N}_c(B_n, A_2)$	$\mathcal{N}_c(B_n, B_2)$	
Subarrangement	$\{H_{ij}, H_{rs}\}$	$\{H_{ij},H_{k\overline{k}}\}$	$\{H_{ij}, H_{ik}, H_{jk}\}$	$\left\{ egin{array}{l} H_{ij}, H_{i\overline{i}}, \\ H_{\overline{i}i}, H_{i\overline{i}} \end{array} \right\}$	
Conditions	$ i {<} j {<} r {<} s $ and ${I=J=R=S\over I=J=R=S}$ or ${I=J=R=S\over I=J=R=S}$	$ \begin{array}{ccc} & & & & & & & \\ i < j < k & & & k < i < j \\ I = J & & I = J \end{array} $	$ i < j < k $ and $\substack{I=J=K\\I=\overline{J}=\overline{K}\\I=J=\overline{K}}$ or $\substack{I=J=K\\I=J=\overline{K}}$	None	
	$ i {<} r {<} s {<} j $ and ${I=J=R=S\atop \overline{I}=J=\overline{R}=S\atop \overline{I}=J=R=S}$ or	$_{I=\overline{J}}^{ i < k < j }$			
Picture	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\bar{\bar{k}}_{1}^{\bar{\bar{j}},\bar{\bar{j}}}\bar{\bar{n}}_{1}^{\bar{\bar{i}},\bar{\bar{j}}}\bar{\bar{k}}_{1}^{\bar{\bar{n}}}\bar{\bar{n}}_{1}^{\bar{\bar{i}},\bar{\bar{j}},\bar{\bar{k}}}\bar{\bar{n}}_{1}^{\bar{\bar{n}}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\bar{\bar{i}}_{n}^{\bar{\bar{j}}} \bar{\bar{i}}_{1}^{\bar{\bar{n}}}$	
Ficture	$\overline{1} \overbrace{1}^{\overline{r}} \overbrace{1}^{\overline{s}} \overbrace{1}^{\overline{j}} \overline{n} i \overbrace{1}^{\overline{r}} \overbrace{1}^{\overline{s}} \overline{n} i \overbrace{1}^{\overline{r}} \overbrace{1}^{\overline{s}} \overline{n}$	$\prod_{n=1}^{i^{\overline{k}}} \prod_{j=1}^{\overline{i}} \overline{n}_{1}$			
Relation	[((1))((rs))]	[((8J))((kk))]	[((jk))((ik))((ij))]	[((jj))((ij))((ij))((ij))]	

FIGURE 2. The full rank-two-conocrossing subarrangements of type B_n . We use capital letters to mean the sign of the corresponding letter (for example, $I=\mathrm{sign}(i)$ and $\bar{I}=-\mathrm{sign}(i)$). Observe that i,j,r,s, and k do not necessarily stand for positive numbers, and that $\bar{i},\bar{j},\bar{r},\bar{s}$, and \bar{k} do not necessarily stand for negative numbers.

Type B Crossing

	Type B_n c-Crossing Full Rank-Two Subarrangements				
Label	$C_c(B_n, A_1 \times A_1, 1)$		$C_c(B_n, A_1 \times A_1, 2)$		$C_c(B_n, A_2)$
Subarrangement	$\{H_{ij}, H_{rs}\}$		$\{H_{ij},$	$H_{k\bar{k}}$	$\{H_{ij}, H_{ik}, H_{jk}\}$
Conditions	I = J = R = S	$\stackrel{ i < r < s < j }{I=J=\overline{R}=S}$	I=J	$_{I=\overline{J}}^{ k < i < j }$	$ i {<} j {<} k $ and $I=\overline{J}=K$
Picture Relation	$[((ij))^{((lr))((r\bar{j}))}((rs))]$	$[((1]))((rs))^{((sJ))(r\overline{J}))}$	$[(\mathbb{R})^{([\mathfrak{g}])}]$	$[(\mathbb{R}\mathbb{R})^{(\mathbb{R}^3)}(\mathbb{IJ})]$	$[((jk))((ij))^{(il)((ij))}((ik))^{(i\bar{j})}]$
Conditions	I = J = R = S	$\stackrel{ i < r < j < s }{\bar{I}=J=\overline{R}=S}$	$\stackrel{ i < k < j }{I=J}$		
Picture Relation	$[((1j))^{((lr))}((rs))]$	$[((\delta j))^{(0r)}] (rs) $	$\begin{bmatrix} \overline{k}, \overline{j} \\ \overline{k}, \overline{j} \\ \overline{k} \end{bmatrix} \begin{bmatrix} \overline{k} \\ \overline{k} \end{bmatrix}$ $[(k\overline{k})((ij))^{(llk\cdot l)}]$		
Conditions	$ \begin{array}{c} i < r < j < s \\ \overline{I} = J = R = S \end{array} $	$I=J=\overline{R}=S$			
Picture Relation	$[((ij))^{(ij)}(irs)^{(rj)}]$	$\begin{bmatrix} \overline{i} \\ \overline{i} $			

FIGURE 3. The full rank-two c-crossing subarrangements of type B_n . We use capital letters to mean the sign of the corresponding letter (for example, $I = \mathrm{sign}(i)$ and $I = -\mathrm{sign}(i)$). Observe that i,j,r,s, and k do not necessarily stand for positive numbers, and that i,j,r,\bar{s} , and k do not necessarily stand for negative numbers.

Type D Noncrossing

	Type \mathcal{D}_n c-Noncrossing Full Rank-Two Subarrangements			
Label	$\mathcal{N}_c(D_n, A_1 \times A_1, 1)$	$\mathcal{N}_c(D_n, A_1 \times A_1, 2)$	$\mathcal{N}_c(D_n, A_2, 1)$	$\mathcal{N}_c(D_n, A_2, 2)$
Subarrangement	$\{H_{ij}, H_{rs}\}$	$\{H_{ij}, H_{kn}\}, \{H_{in}, H_{j\bar{n}}\}$	$\{H_{ij}, H_{ik}, H_{jk}\}$	$\{H_{in}, H_{ij}, H_{jn}\}$
Conditions	$ i \!<\! j \!<\! r \!<\! s $ and $\substack{I=J=R=S\\I=J=R=S\\I=J=R=S}$ or	$_{I=J}^{ i < j < k } \substack{ k < i < j \\I=J}$	$ i < j < k $ and $\prod_{\substack{I=J=K\\I=J=\overline{K}\ I=J=\overline{K}}}^{I=J=K}$ or	$ i < j $ and $\frac{I=J}{I=J}$ or
	$ i {<} r {<} s {<} j $ and $\frac{I=J=R=S}{I=J=R=S}$ or $\frac{I=J=R=S}{I=J=R=S}$	$I = \overline{J} \qquad \qquad i < j \\ I = \overline{J} \qquad \qquad I = J$		
Picture	$\begin{array}{c c} \overline{i} & \overline{\overline{v}} & \overline{v}_{n-1} & \overline{i} & \overline{\overline{v}} & \overline{v}_{n-1} & \overline{i} \\ \overline{1} & \ddots & 1 & \overline{1} \\ n-1 & x & n-1 & x & \overline{i} & n-1 \\ \end{array}$	$\prod_{n-1}^{\overline{k}} \bigcup_{j=1}^{\overline{j}} \prod_{k=n-1}^{\overline{n-1}} \bigcup_{k=j}^{\overline{j}} \prod_{i=1}^{\overline{k}} \prod_{j=1}^{\overline{n-1}} \prod_{i=1}^{\overline{n-1}} \prod_{i=1}^{\overline$	$\begin{array}{c} \bar{i} \bar{j} \bar{j} \bar{k} \\ \bar{1} \\ \bar{1} \\ \bar{n} \\ \bar{n} \\ \bar{i} \\ \bar{j} \\ \bar{i} \\ \bar{n} \\ \bar{i} \\ \bar$	$\prod_{n-1}^{\widetilde{i}} \prod_{j=1}^{\widetilde{n-1}} 1$
Tietate	$\begin{bmatrix} \bar{i} & \bar{j} & \bar{i} \\ \bar{1} & \bar{i} & \bar{1} \\ n - \bar{j} & \bar{i} & n - \bar{j} \\ s & i & n - \bar{j} \\ \end{bmatrix} \underbrace{\begin{bmatrix} \bar{i} & \bar{j} \\ \bar{i} & \bar{i} \\ \bar{i} & n - \bar{j} \\ s & i \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{j} \\ \bar{i} & \bar{i} \\ \bar{i} & n - \bar{j} \\ s & i \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{j} \\ \bar{i} & \bar{i} \\ \bar{i} & n - \bar{j} \\ \bar{i} & n - \bar{j} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & \bar{i} \\ \bar{i} & n - \bar{j} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & \bar{i} \\ \bar{i} & n - \bar{j} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} \underbrace{\begin{bmatrix} \bar{i} & \bar{i} \\ \bar{i} & n - \bar{i} \\ \end{bmatrix}}_{r} $	$\prod_{n-1}^{i\overline{k}} \underbrace{\int_{i}^{\overline{j}} \prod_{n-1}^{\overline{n-1}} \overline{j}}_{i}^{\overline{j}} \underbrace{\int_{i}^{\overline{n-1}} \prod_{n-1}^{\overline{n-1}} \overline{j}}_{i}^{\overline{n-1}}$	$\prod_{n-1}^{\overline{i}} \sum_{k=j}^{\overline{j-k}} 1$	$\overline{\overline{1}}_{n-1}^{\overline{j}} \overline{\overline{1}}_{i}^{\overline{n-1}}$
Relation	[((ij))((rs))]	$[(\!(ij)\!)(\!(kn)\!)],[(\!(ij)\!)(\!(j\!\overline{n})\!)]$	[((jk))((ik))((ij))]	[((in))((ij))((jn))]

FIGURE 4. The full rank-two c-noncrossing subarrangements of type D_n . The point in the center corresponds to n and \overline{n} . We use capital letters to mean the sign of the corresponding letter (for example, I = sign(i) and I = -sign(i)). Observe that i, j, r, s, and k do not necessarily stand for positive numbers, and that $\overline{i}, \overline{j}, \overline{r}, \overline{s}$, and \overline{k} do not necessarily stand for negative numbers. Also i, j, r, s, and k are never equal to n or \overline{n} . The letter n is denoted explicitly if they are used.

Type D Crossing

	Type D_n c-Crossing Full Rank-Two Subarrangements				
Label	$C_c(D_n, A_1 \times A_1, 1)$		$C_c(D_n, A_1 \times A_1, 2)$		$C_c(D_n, A_2)$
Subarrangement	$\{H_{ij}, I_{ij}\}$	$\{H_{ij}, H_{rs}\}$		H_{kn}	$\{H_{ij}, H_{ik}, H_{jk}\}$
Conditions	$\begin{array}{c} i < j < r < s \\ \overline{I} = J = \overline{R} = S \end{array}$	$\substack{ i < r < s < j \\I=J=\overline{R}=S}$	$_{I=\overline{J}}^{ i < j < k }$	$_{I=\overline{J}}^{ k < i < j }$	$ i < j < k $ and $I = \overline{J} = K$
Picture Relation	$[((ij))^{((lr))((r^{\frac{1}{2})})}((rs))]$	$[((1]))((rs))^{(eJ))(r\bar{J})}$	$[((kn))((1))^{(lk)}]$	$\begin{bmatrix} \vec{k} & \vec{j} & \vec{j} \\ \vec{l} & \vec{j} & \vec{k} \\ (A') & (A') \end{bmatrix} \begin{bmatrix} (((\ln n)))(((\ln n))) & ((\ln n)) \end{bmatrix}$	$\begin{bmatrix} \tilde{I} & \tilde{I} & \tilde{I} \\ \tilde{I} & \tilde{I} & \tilde{I} \\ n-\tilde{I} & \tilde{I} & \tilde{I} \\ [(Jk))(\tilde{I}J))^{(\tilde{I}\tilde{J})}((lk))^{(\tilde{I}\tilde{J})} \end{bmatrix}$
Conditions	$_{I=J=R=S}^{\mid i\mid <\mid r\mid <\mid j\mid <\mid s\mid}$	$\stackrel{ i < r < j < s }{\overline{I}=J=\overline{R}=S}$	$_{I=J}^{ i < k < j }$		
Picture Relation	$\begin{bmatrix} \overline{i} & \overline{\overline{i}} & \overline{\overline{i}} \\ \overline{i} & \overline{i} \\ \overline{i} & \overline{i} \\ B & B \end{bmatrix}$ $[((ij))^{((lr))}((rs))]$	$[((\mathbb{I}))^{(\mathbb{I}^r)}]_{r-1}^{i}$	$\begin{bmatrix} \widetilde{\mathbb{R}} & \widetilde{\mathbb{R}} \\ \widetilde{\mathbb{R}} & \widetilde{\mathbb{R}} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbb{R}} & \widetilde{\mathbb{R}} \\ \widetilde{\mathbb{R}} & \widetilde{\mathbb{R}} \end{bmatrix}$		
Conditions	$ \begin{array}{c} i < r < j < s \\ \overline{I}=J=R=S \end{array} $	$_{I=J=\overline{R}=S}^{ i < r < j < s }$			
Picture Relation	$ \begin{array}{c} i^{\overline{r}, \overline{j}, \overline{s}_{\overline{r}-1}} \\ 1 \\ i \\ C \\ (C) \\ [(ij))^{(ij)}^{(ij)}^{(il)} ((rs))^{(rj)} \end{array} $	$\begin{bmatrix} \overline{i} \\ \overline{i} $			

FIGURE 5. The full rank-two c-crossing subarrangements of type D_n . The center point for each circle represents n and \overline{n} . We use capital letters to mean the sign of the corresponding letter (for example, I = sign(i) and $\overline{I} = -\text{sign}(i)$). Observe that i, j, r, s, and k do not necessarily stand for positive numbers, and that $\overline{i}, \overline{j}, \overline{r}, \overline{s}$, and \overline{k} do not necessarily stand for negative numbers. Also i, j, r, s, and k are never equal to n or \overline{n} . The letter n is denoted explicitly if they are used.

Future Work

- ▶ Prove the conjecture for other exceptional cases such as F_4 , H_4 , E_6 , . . .
- \triangleright Current progress for F_4 : For the 67 crossing subarrangements, we have rewritten 60 of these relations positively
- Find methods to write the non-positive relations as positive relation in a systematic manner
- Generalize the conjecture to central hyperplane arrangements

Acknowledgments

- Nathan Williams
- ► Neha Goregaokar
- ► MIT-PRIMES