
The Geometry of a Counting Formula for
Deformations of the Braid Arrangement

Aaron Lin
Ladue Horton Watkins High School

Under the Direction of Neha Goregaokar
Brandeis University

October 19, 2025



What is a Hyperplane Arrangement?

Definition: A hyperplane arrangement is a finite collection of
affine hyperplanes in Rn.

Example:

H1 H2

H3



What is a Hyperplane Arrangement?

Definition: A hyperplane arrangement is a finite collection of
affine hyperplanes in Rn.

Example:

H1 H2

H3



Hyperplane Arrangements

Definition: A hyperplane arrangement A of dimension n is a finite
collection of affine hyperplanes in Rn.

Example: The hyperplanes cut the space into regions.

H1 H2

H3

R1

R4R2

R3

R5
R6

R7

Arbitrary intersection of hyperplanes → flat
Intersection of flat and a region → face



Hyperplane Arrangements

Definition: A hyperplane arrangement A of dimension n is a finite
collection of affine hyperplanes in Rn.

Example: The hyperplanes cut the space into regions.

H1 H2

H3

R1

R4R2

R3

R5
R6

R7

Arbitrary intersection of hyperplanes → flat

Intersection of flat and a region → face



Hyperplane Arrangements

Definition: A hyperplane arrangement A of dimension n is a finite
collection of affine hyperplanes in Rn.

Example: The hyperplanes cut the space into regions.

H1 H2

H3

R1

R4R2

R3

R5
R6

R7

Arbitrary intersection of hyperplanes → flat
Intersection of flat and a region → face



Deformations of the Braid Arrangement

Definition: Let S = (Sa,b)1≤a<b≤n be a collection of finite sets of
integers. The S-braid arrangement is the collection of the following
hyperplanes:

AS = {Ha,b,s | 1 ≤ a < b ≤ n, s ∈ Sa,b},

where Ha,b,s = {(x1, . . . , xn) ∈ Rn | xa − xb = s}.

Example: The m-Catalan arrangement: Sa,b = [−m..m] for all
1 ≤ a < b ≤ n.
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The 1-Catalan arrangement in 3 dimensions. We visualize the
arrangement by projecting it onto the hyperplane x1 + x2 + x3 = 0,
since each hyperplane is orthogonal to it.



The Bernardi Formula

Theorem: (Bernardi, 2018) For an S-braid arrangement AS,

# of regions =
∑

(T ,B)∈US(n)

(−1)n−|B|

where US(n) denotes the set of S-boxed trees with n nodes.

Key points:

▶ For m = max{|s| | s ∈ Sa,b, 1 ≤ a < b ≤ n}, the underlying
trees are (m + 1)-ary trees on n labeled nodes.

▶ Any S-braid arrangement is a subarrangement of the
m-Catalan arrangement
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Each region of the m-Catalan arrangement can be associated to a
unique (m + 1)-ary tree via a bijection given in Bernardi 2018.
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Trees associated with a region R of AS form a set of trees TR . We
denote US(R) as the set of S-boxed trees corresponding to TR .



Region-wise Formula

Question: For a region R of AS, what is∑
(T ,B)∈US(R)

(−1)n−|B|?

where US(R) = {(T ,B) | T ∈ TR ,B is an S-boxing of T}.

Hope: It equals 1 for each region.

▶ Known: For transitive arrangements, this equals 1 (Bernardi,
2018)

▶ Our Result: This equals 1 for all S-braid arrangements!

To prove this, we need to understand S-boxed trees...
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S-Boxed Trees: Definitions

Definition: Let T ∈ T be a
rooted plane tree with labeled
nodes.

▶ The cadet of a node u is
cadet(u) = rightmost
non-leaf child of u (if exists)

▶ A cadet sequence is
(v1, v2, . . . , vk) where
vi+1 = cadet(vi )
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Definition: An S-cadet sequence
is a cadet sequence (v1, . . . , vk)
satisfying

j∑
p=i+1

lsib(vp) /∈ S−
vi ,vj

∀i < j .

where for 1 ≤ a < b ≤ n,
S−
a,b = {s ≥ 0 | −s ∈ Sa,b} and

S−
b,a = {s > 0 | s ∈ Sa,b} ∪ {0}.

Definition: A pair (T ,B) where
T ∈ T (m)(n) and B is a set of S-
cadet sequences partitioning the
nodes of T is an S-boxed tree.
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Marked Trees

Recent development
(Bernardi, 2024): Bijection
between faces of the m-Catalan
arrangement and marked (m, n)-
trees.
Definition: A marked (m, n)-
tree is a pair (T , µ) where:

▶ T ∈ T (m)(n)

▶ µ is a set of cadet edges of
T

▶ If e = {j , 0-child(j)} ∈ µ,
then j < 0-child(j).
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Bernardi’s bijection for faces of the Catalan arrangement.



Observations!

We notice that S-boxed trees and marked trees look similar!
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In fact, there is a bijection between S-boxed trees and the set of
marked trees corresponding to faces avoiding AS hyperplanes.
We can now reinterpret the Bernardi formula geometrically in
terms of faces.
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Completing the Proof

Main Result: For any region R of AS:∑
(T ,B)∈US(R)

(−1)n−|B| = 1.

Proof:

▶ By the bijection:∑
(T ,B)∈US(R)

(−1)n−|B| =
∑

F∈FS(R)

(−1)n−dim(F ).

▶ The faces in FS(R) partition region R.

▶ This sum equals the Euler characteristic of R.

▶ Since R is contractible: χ(R) = 1.
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