The Geometry of a Counting Formula for Deformations of the Braid Arrangement

Aaron Lin Ladue Horton Watkins High School Under the Direction of Neha Goregaokar Brandeis University

October 19, 2025

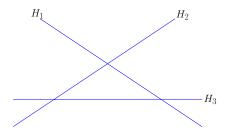
What is a Hyperplane Arrangement?

Definition: A *hyperplane arrangement* is a finite collection of affine hyperplanes in \mathbb{R}^n .

What is a Hyperplane Arrangement?

Definition: A *hyperplane arrangement* is a finite collection of affine hyperplanes in \mathbb{R}^n .

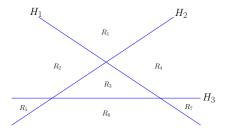
Example:



Hyperplane Arrangements

Definition: A hyperplane arrangement A of dimension n is a finite collection of affine hyperplanes in \mathbb{R}^n .

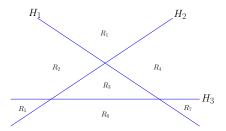
Example: The hyperplanes cut the space into *regions*.



Hyperplane Arrangements

Definition: A hyperplane arrangement A of dimension n is a finite collection of affine hyperplanes in \mathbb{R}^n .

Example: The hyperplanes cut the space into *regions*.

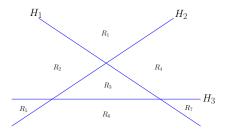


Arbitrary intersection of hyperplanes \rightarrow flat

Hyperplane Arrangements

Definition: A hyperplane arrangement A of dimension n is a finite collection of affine hyperplanes in \mathbb{R}^n .

Example: The hyperplanes cut the space into *regions*.



Arbitrary intersection of hyperplanes \rightarrow flat Intersection of flat and a region \rightarrow face

Deformations of the Braid Arrangement

Definition: Let $\mathbf{S} = (S_{a,b})_{1 \leq a < b \leq n}$ be a collection of finite sets of integers. The **S**-braid arrangement is the collection of the following hyperplanes:

$$\mathcal{A}_{S} = \{ H_{\mathsf{a},b,s} \mid 1 \leq \mathsf{a} < \mathsf{b} \leq \mathsf{n}, \mathsf{s} \in \mathcal{S}_{\mathsf{a},b} \},$$

where
$$H_{a,b,s} = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_a - x_b = s\}.$$

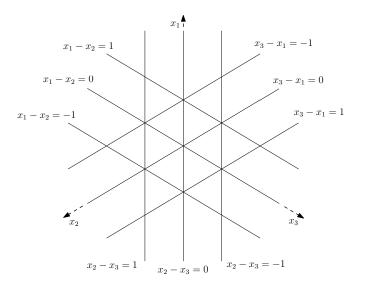
Deformations of the Braid Arrangement

Definition: Let $S = (S_{a,b})_{1 \le a < b \le n}$ be a collection of finite sets of integers. The S-braid arrangement is the collection of the following hyperplanes:

$$\mathcal{A}_{S} = \{ H_{\mathsf{a},b,s} \mid 1 \leq \mathsf{a} < \mathsf{b} \leq \mathsf{n}, \mathsf{s} \in \mathcal{S}_{\mathsf{a},b} \},$$

where
$$H_{a,b,s} = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_a - x_b = s\}.$$

Example: The *m-Catalan arrangement*: $S_{a,b} = [-m..m]$ for all $1 \le a < b \le n$.



The 1-Catalan arrangement in 3 dimensions. We visualize the arrangement by projecting it onto the hyperplane $x_1 + x_2 + x_3 = 0$, since each hyperplane is orthogonal to it.

The Bernardi Formula

Theorem: (Bernardi, 2018) For an **S**-braid arrangement A_{S} ,

of regions =
$$\sum_{(T,B)\in\mathcal{U}_{\mathbf{S}}(n)} (-1)^{n-|B|}$$

where $\mathcal{U}_{\mathbf{S}}(n)$ denotes the set of **S**-boxed trees with n nodes.

The Bernardi Formula

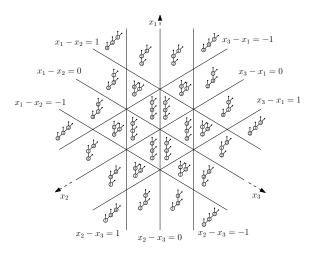
Theorem: (Bernardi, 2018) For an **S**-braid arrangement A_{S} ,

of regions =
$$\sum_{(T,B)\in\mathcal{U}_{S}(n)} (-1)^{n-|B|}$$

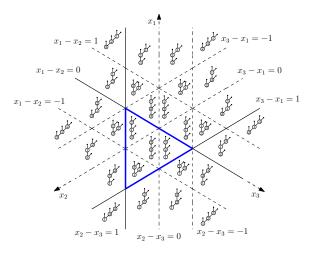
where $\mathcal{U}_{\mathbf{S}}(n)$ denotes the set of **S**-boxed trees with n nodes.

Key points:

- For $m = \max\{|s| \mid s \in S_{a,b}, 1 \le a < b \le n\}$, the underlying trees are (m+1)-ary trees on n labeled nodes.
- Any **S**-braid arrangement is a subarrangement of the m-Catalan arrangement



Each region of the m-Catalan arrangement can be associated to a unique (m+1)-ary tree via a bijection given in Bernardi 2018.



Trees associated with a region R of A_S form a set of trees T_R . We denote $\mathcal{U}_S(R)$ as the set of **S**-boxed trees corresponding to T_R .

Question: For a region R of A_S , what is

$$\sum_{(T,B)\in\mathcal{U}_{S}(R)} (-1)^{n-|B|}?$$

where $\mathcal{U}_{\mathbf{S}}(R) = \{(T, B) \mid T \in T_R, B \text{ is an } \mathbf{S}\text{-boxing of } T\}.$

Question: For a region R of A_{S} , what is

$$\sum_{(T,B)\in\mathcal{U}_{S}(R)} (-1)^{n-|B|}?$$

where $U_{\mathbf{S}}(R) = \{(T, B) \mid T \in T_R, B \text{ is an } \mathbf{S}\text{-boxing of } T\}.$

Hope: It equals 1 for each region.

Question: For a region R of A_{S} , what is

$$\sum_{(T,B)\in\mathcal{U}_{S}(R)} (-1)^{n-|B|}?$$

where $U_S(R) = \{(T, B) \mid T \in T_R, B \text{ is an } S\text{-boxing of } T\}.$

Hope: It equals 1 for each region.

- ► **Known:** For *transitive* arrangements, this equals 1 (Bernardi, 2018)
- ▶ Our Result: This equals 1 for all S-braid arrangements!

Question: For a region R of A_{S} , what is

$$\sum_{(T,B)\in\mathcal{U}_{S}(R)} (-1)^{n-|B|}?$$

where $U_S(R) = \{(T, B) \mid T \in T_R, B \text{ is an } S\text{-boxing of } T\}.$

Hope: It equals 1 for each region.

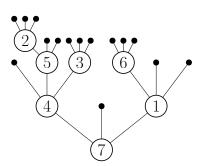
- ► **Known:** For *transitive* arrangements, this equals 1 (Bernardi, 2018)
- Our Result: This equals 1 for all S-braid arrangements!

To prove this, we need to understand **S**-boxed trees...

S-Boxed Trees: Definitions

Definition: Let $T \in \mathcal{T}$ be a rooted plane tree with labeled nodes.

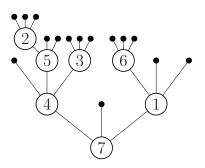
The cadet of a node u is cadet(u) = rightmost non-leaf child of u (if exists)



S-Boxed Trees: Definitions

Definition: Let $T \in \mathcal{T}$ be a rooted plane tree with labeled nodes.

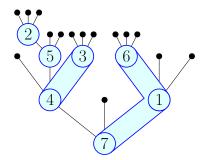
- The cadet of a node u is cadet(u) = rightmost non-leaf child of u (if exists)
- A cadet sequence is $(v_1, v_2, ..., v_k)$ where $v_{i+1} = \text{cadet}(v_i)$



Definition: An S-cadet sequence is a cadet sequence (v_1, \ldots, v_k) satisfying

$$\sum_{p=i+1}^{j} \mathsf{lsib}(v_p) \notin S_{v_i,v_j}^{-} \quad \forall i < j.$$

where for $1 \le a < b \le n$, $S_{a,b}^- = \{s \ge 0 \mid -s \in S_{a,b}\}$ and $S_{b,a}^- = \{s > 0 \mid s \in S_{a,b}\} \cup \{0\}$.

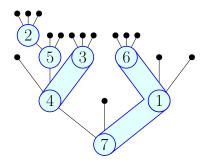


Definition: An S-cadet sequence is a cadet sequence (v_1, \ldots, v_k) satisfying

$$\sum_{p=i+1}^{j} \mathsf{lsib}(v_p) \notin S_{v_i,v_j}^{-} \quad \forall i < j.$$

where for $1 \le a < b \le n$, $S_{a,b}^- = \{s \ge 0 \mid -s \in S_{a,b}\}$ and $S_{b,a}^- = \{s > 0 \mid s \in S_{a,b}\} \cup \{0\}$.

Definition: A pair (T, B) where $T \in \mathcal{T}^{(m)}(n)$ and B is a set of **S**-cadet sequences partitioning the nodes of T is an **S**-boxed tree.

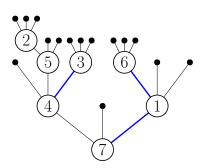


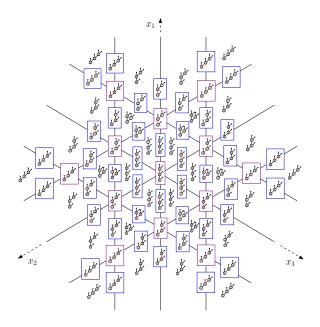
Marked Trees

Recent development (Bernardi, 2024): Bijection between faces of the m-Catalan arrangement and marked (m, n)-trees.

Definition: A marked (m, n)-tree is a pair (T, μ) where:

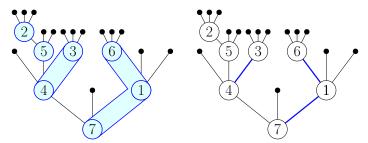
- $ightharpoonup T \in \mathcal{T}^{(m)}(n)$
- \blacktriangleright μ is a set of cadet edges of T
- ▶ If $e = \{j, 0\text{-child}(j)\} \in \mu$, then j < 0-child(j).



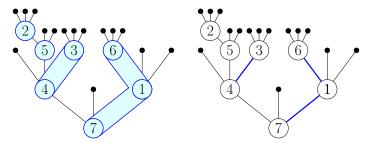


Bernardi's bijection for faces of the Catalan arrangement.

We notice that **S**-boxed trees and marked trees look similar!

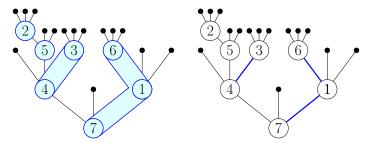


We notice that S-boxed trees and marked trees look similar!



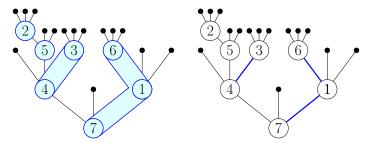
In fact, there is a bijection between **S**-boxed trees and the set of marked trees corresponding to faces avoiding \mathcal{A}_S hyperplanes.

We notice that S-boxed trees and marked trees look similar!



In fact, there is a bijection between **S**-boxed trees and the set of marked trees corresponding to faces avoiding \mathcal{A}_S hyperplanes.

We notice that **S**-boxed trees and marked trees look similar!



In fact, there is a bijection between **S**-boxed trees and the set of marked trees corresponding to faces avoiding $\mathcal{A}_{\mathbf{S}}$ hyperplanes. We can now reinterpret the Bernardi formula geometrically in terms of faces.

Completing the Proof

Main Result: For any region R of A_S :

$$\sum_{(T,B)\in\mathcal{U}_{S}(R)} (-1)^{n-|B|} = 1.$$

Proof:

By the bijection:

$$\sum_{(T,B)\in\mathcal{U}_{\boldsymbol{S}}(R)} (-1)^{n-|B|} = \sum_{F\in\mathcal{F}_{\boldsymbol{S}}(R)} (-1)^{n-\dim(F)}.$$

- ▶ The faces in $\mathcal{F}_{\mathbf{S}}(R)$ partition region R.
- ▶ This sum equals the Euler characteristic of *R*.
- ▶ Since *R* is contractible: $\chi(R) = 1$.

Thank You!

- ► Neha Goregaokar
- ► Prof. Olivier Bernardi
- Nathan Williams
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, Prof. Pavel Etingof
- MIT PRIMES-USA