On the *e*-positivity of the Chromatic Symmetric Functions of Left-melting Clique Chains

Emma Li Mentor: Dr. Foster Tom

October 19, 2025 MIT PRIMES Conference

Graphs

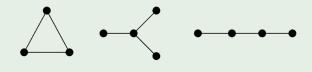
Definition

A graph G is a pair (V, E), where V is a set of vertices and E is a set of tuples of vertices (i, j) with $i, j \in V$. We say vertices i and j are adjacent if $(i, j) \in E$.

Graphs

Definition

A graph G is a pair (V, E), where V is a set of vertices and E is a set of tuples of vertices (i, j) with $i, j \in V$. We say vertices i and j are adjacent if $(i, j) \in E$.



A proper coloring of a graph is a coloring of the vertices such that no two adjacent vertices share the same color.

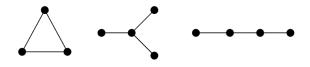
A proper coloring of a graph is a coloring of the vertices such that no two adjacent vertices share the same color.

Definition

A proper coloring on a graph G is a function $\kappa: V \to \mathbb{N}$ such that if $(i,j) \in E$, then $\kappa(i) \neq \kappa(j)$.

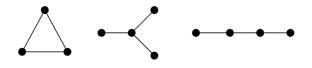
How many proper colorings with at most 4 colors are there?

How many proper colorings with at most 4 colors are there?



There are $4 \cdot 3 \cdot 2 = 24$ ways to color K_3 .

How many proper colorings with at most 4 colors are there?



There are $4 \cdot 3 \cdot 2 = 24$ ways to color K_3 .

There are $4 \cdot 3 \cdot 3 \cdot 3 = 108$ ways to color the claw graph.

How many proper colorings with at most 4 colors are there?

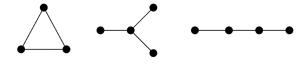


There are $4 \cdot 3 \cdot 2 = 24$ ways to color K_3 .

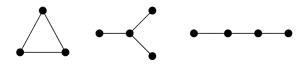
There are $4 \cdot 3 \cdot 3 \cdot 3 = 108$ ways to color the claw graph.

There are $4 \cdot 3 \cdot 3 \cdot 3 = 108$ ways to color P_4 .

How many proper colorings with at most k colors are there?

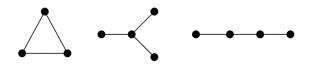


How many proper colorings with at most k colors are there?



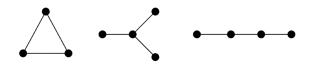
There are $k \cdot (k-1) \cdot (k-2) = k(k-1)(k-2)$ ways to color K_3 .

How many proper colorings with at most k colors are there?



There are $k \cdot (k-1) \cdot (k-2) = k(k-1)(k-2)$ ways to color K_3 . There are $k \cdot (k-1) \cdot (k-1) \cdot (k-1) = k(k-1)^3$ ways to color the claw graph.

How many proper colorings with at most k colors are there?



There are $k \cdot (k-1) \cdot (k-2) = k(k-1)(k-2)$ ways to color K_3 .

There are $k \cdot (k-1) \cdot (k-1) \cdot (k-1) = k(k-1)^3$ ways to color the claw graph.

There are $k \cdot (k-1) \cdot (k-1) \cdot (k-1) = k(k-1)^3$ ways to color P_4 .

Chromatic Polynomial

The chromatic polynomial $\chi_G(k)$ counts the number of proper colorings of a graph G with at most k colors.

Chromatic Polynomial

The chromatic polynomial $\chi_G(k)$ counts the number of proper colorings of a graph G with at most k colors.

The chromatic polynomial of any tree with n vertices is the same.

$$\chi_G(k) = k(k-1)^{n-1}$$

Definition

The *chromatic symmetric function* of G is the formal power series in variables $x = (x_1, x_2, x_3, ...)$ given by

$$X_G(x) = \sum_{\kappa} \left(\prod_{v \in V} x_{\kappa(v)} \right),$$

where the sum ranges over all proper colorings κ .

Example

What is the chromatic symmetric function of K_3 ?

Example

What is the chromatic symmetric function of K_3 ?

$$X_{K_3} = x_1 x_2 x_3 + x_1 x_2 x_4 + \dots + x_2 x_1 x_3 + x_2 x_1 x_4 + \dots = 6 \sum_{i < i < k} x_i x_j x_k.$$

If
$$x = (1, 1, 1, 1, \dots, 0, 0, \dots)$$
 for k number of 1's then $X_G(x) = \chi_G(k)$.

If
$$x = (1, 1, 1, 1, \dots, 0, 0, \dots)$$
 for k number of 1's then $X_G(x) = \chi_G(k)$.

Conjecture (Stanley, 1995)

If T_1 , T_2 are two non-isomorphic trees, then $X_{T_1} \neq X_{T_2}$.

Chromatic symmetric functions consist of an infinite number of terms, which is difficult to enumerate.

Chromatic symmetric functions consist of an infinite number of terms, which is difficult to enumerate.

Example

For G the claw graph,

$$X_G = \sum_{i \neq j} x_i^3 x_j + 6 \sum_{j < k; i \neq j, k} x_i^2 x_j x_k + 24 \sum_{i < j < k < \ell} x_i x_j x_k x_\ell.$$

Definition

The k-th elementary symmetric function is

$$e_k = \sum_{i_1 < \dots < i_k} x_{i_1} \dots x_{i_k}$$

Definition

The *k-th elementary symmetric function* is

$$e_k = \sum_{i_1 < \cdots < i_k} x_{i_1} \ldots x_{i_k}$$

Definition

For a partition $\lambda=\lambda_1\lambda_2\lambda_3\dots$, the elementary symmetric function e_λ is

$$e_{\lambda} = \prod_{i} e_{\lambda_{i}}.$$

Definition

The *k-th elementary symmetric function* is

$$e_k = \sum_{i_1 < \cdots < i_k} x_{i_1} \ldots x_{i_k}$$

Definition

For a partition $\lambda=\lambda_1\lambda_2\lambda_3\dots$, the elementary symmetric function e_λ is

$$e_{\lambda} = \prod_{i} e_{\lambda_{i}}.$$

Example

Consider $\lambda = 211$. Then, we have

$$e_{211} = e_2 e_1 e_1 = (x_1 x_2 + x_1 x_3 + x_2 x_3 + \dots)(x_1 + x_2 + x_3 + \dots)^2.$$

Example

Let G be the bowtie graph. Then, the chromatic symmetric function of G is

$$X_G = 4e_{32} + 12e_{41} + 20e_5.$$

The chromatic symmetric function of the claw graph is

$$X_{K_{1,3}} = e_{211} - 2e_{22} + 5e_{31} + 4e_4.$$

Positivity

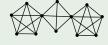
Definition

A graph G is said to be *e-positive* if the expansion of the chromatic symmetric function of G has all non-negative coefficients in the *e*-basis.

Past work

Theorem (Tom, 2024)

Chains of cliques are e-positive.

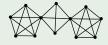


Past work

Theorem (Tom, 2024)

Chains of cliques are e-positive.

Example



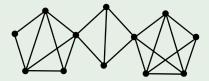
Theorem (Tom-Vailaya, 2024)

Adjacent chains of cycles and cliques are e-positive.

Main result

Theorem (Li-Tom, 2025)

Left-melting clique chains are e-positive.



Acknowledgments

I would like to thank:

My mentor Dr. Foster Tom.

The MIT PRIMES-USA Program for making this research possible.

My family.

References

- [Sta97] Richard P. Stanley. *Enumerative Combinatorics Volume 2*. Cambridge University Press & Assessment, 1997.
- [Tom24a] Foster Tom. A signed e-expansion of the chromatic quasisymmetric function. 2024. arXiv: 2311.08020 [math.CO].
- [TV24] Foster Tom and Aarush Vailaya. *Adjacent cycle-chains are e-positive*. 2024. arXiv: 2410.21762 [math.CO].