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|
Particle Spin

@ Spin is an intrinsic property of particles.
@ It describes the interaction of particles with magnetic fields.

e A singular electron has spin(1/2). It has up-spin (1) or down-spin
({). The system has dimension 1+ 1 = 2.

e Due to quantum superpositioning, the spin of an electron can be
viewed as C2.

e | is (0,1) = v_ while T is (1,0) = vy.
Example

The vector (%,

% chance of 1.

) represents the electron with a % chance of | and a

o
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Two-Electron Systems

If there are two electrons, we consider C? ® C? (The ® is called the
tensor product).

o There are 22 = 4 possible states for all the electrons, which are

leolleof,1®l, and T® 1.
e Alternatively, v_ ® v_, v_ ® vy, vy @ v_, and V4 R V4.

@ The two electron system is a vector space because we consider
linear combinations of these spin states.

Example

An example of one possible 2-electron spin state is % I®J +% T 1.
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n-Electron Systems

Definition

The spin representation of n electrons is (C?)®", which encodes the
spin states of n-electron systems.

e Dimension 2"
@ Basis vy ® --- ® v+
e Contains another basis called Lusztig’s dual canonical basis.

Example

When n = 2, the dual canonical basis is vy @ v4, v ® v_, v_ ® vy,
and vy @ v_ — ¢ v ® v,

o It is a representation of the Temperley-Lieb algebra.

The Temperley-Lieb algebra helps us describe the dual canonical basis.
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The Temperley-Lieb Algebra

Definition

An n-diagram is two parallel lines with n vertices on both the top and
bottom line, where the vertices are connected by edges such that:
o the edges are between the parallel lines,

o the edges do not intersect each other, and
e each vertex is the endpoint of exactly one edge.
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The Temperley-Lieb Algebra
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R
The Temperley-Lieb Algebra

Definition

An algebra is a vector space with an additional multiplication
operation.

Example

Some examples of algebras are
e all n X n matrices over a field,
e the polynomials in R[z], and
e the group algebra.
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R
The Temperley-Lieb Algebra

Definition
The Temperley-Lieb Algebra, denoted TL,, is the algebra over C
generated by n-diagrams.

e If we consider it a vector space, the basis are the diagrams.
@ The elements are linear combinations of the diagrams.

Example

One possible element in TLg is
1
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R
The Temperley-Lieb Algebra

We also need to define multiplication of two diagrams to completely
define the algebra TL,.

The most natural way is by concatenation.
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Concatenating Diagrams
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Concatenating Diagrams
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Concatenating Diagrams
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Concatenating Diagrams
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R
Action of Temperley-Lieb Algebra

I mentioned before that the spin representation (C?)®" is a
representation of TL,.

@ This means that any element in TL,, can act on any element of
(C%)®" to obtain a new element (C?)®™.

o This action must be linear, so we only need to define it on the
basis.
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R
Action of Temperley-Lieb Algebra

Definition

The action of a n-diagram on (C2)®" is defined based on every
“feature” that appears:

a _/

e For each arc facing down connecting the ¢th and jth vertices, we
apply

vy @vy = 0,04 QU= —q,v- Q@vy = Lv_@v_+—0

to the ¢th and jth components, representing annihiliation.
@ For each arc facing up connecting the ¢ and ¢ + 1th vertices, we

apply
1

0: 11— v ®@u_ —q¢ V- Qus

between the ¢ and ¢ 4+ 1th components, representing creation.
e For each line, we apply the identity.
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R
Action of the Temperley-Lieb Algebra

Example

The following diagram acts on v_ @ v_ @ vy ® v ® v, in (C2)®5,

We have that
o (C2)®5 — (C2)®! — (C2)5
0 U_QRU_ QU QU Quy =V IRV Q4
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N
Results

Theorem

There is a bijection between the diagrammatic basis of TL, and
Lusztig’s dual canonical basis of (C?)®™ given by the action of diagrams
oMv—Q - RU_QRQuy ®--- vy for all k.

4 nk

@ The dual canonical basis is an important basis of the spin
representation.

@ The bijection is constructive: we can easily see which diagrams
correspond to which elements of the dual canonical basis.
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N
Results

The six diagrams for n = 4 acting on v— ® v_ ® v+ ® vy that give the
dual canonical basis.

NN

oD
-/

C

Xt

£ £

The arcs on the bottom in all of these diagrams cross the vertical line
between the second and third vertices.
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Other Results

e We give an explicit, non-inductive formula for the dual canonical
basis.

o We look at other known properties of the dual canonical basis
through this perspective, simplifying things.

o We give a new axiomatic definition of the canonical basis (which is
another important basis of the spin representation).

To prove our results, we also look at other objects such as the Hecke
algebra and spherical and aspherical modules.
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Future Work

Currently, studying the analog of the spin representation in the affine
setting.

@ There is no axiomatic definition of the dual canonical basis.

@ There is still an analog of the Temperley-Lieb algebra, the affine
Temperley-Lieb algebra.

e Know that the approach via TL,g works for a specific case.
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N
Result Clarification

Theorem

There is a bijection between the diagrammatic basis of TL,, and
Lusztig’s dual canonical basis of (C*)®™ given by the action of diagrams
oMU_® - - QU_Quy Q- Quy for all k.

k n—Fk

o This statement is a simplification; it isn’t completely accurate, as
the dimension of TL,, isn’t 2".

e The bijection is ®0§k§n Ind%%:@)TLn,kCtriV =~ (C?)%n,

e Diagrams whose only arcs on the bottom cross the vertical line
between the kth and k + 1th vertices form a basis of

TL, .
IndTLk @TLp_k (CtI‘lV .
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