The Radon transform and Hecke Algebras

Kai Yamashita Mentor: Ivan Motorin

October 19, 2025 MIT PRIMES Conference

Outline

- Radon transform
 - Equivalence relations
 - Radon transform
- Unipotent Radon transform
 - Basics
 - Unipotent Radon transform
- Basic Results
- 4 Hecke Algebras

2/25

Outline

- Radon transform
 - Equivalence relations
 - Radon transform
- Unipotent Radon transform
 - Basics
 - Unipotent Radon transform
- Basic Results
- 4 Hecke Algebras

3/25

Algebras

Definition

The free vector space on a set A over a field K is denoted by K[A], and is the vector space over K with basis elements e_a for all $a \in A$.

Definition

An associative algebra is a free vector space with associative bilinear product $*: K[A] \times K[A] \to K[A]$.

Example

- The free vector space over a set with a single element is isomorphic to the field itself, as it is a one dimensional vector space.
- The group algebra over a field is a vector space with basis elements e_g for all g in a group G and multiplication $e_g * e_h = e_{gh}$.

Equivalence relations

Definition

An equivalence relation between two sets of elements X and Y is an subset \sim of $X \times Y$.

• This allows us to define equivalence between elements of the set X and Y, namely for $x \in X$, $y \in Y$ and an equivalence relation \sim , we say $x \sim y$ iff $(x, y) \in \sim$.

Example

• The diagonal equivalence relation is defined on $X \times X$ and $(x,y) \in \sim$ iff x = y.

Invariant equivalence relations

Definition

Given an action by a set G on X and Y, we say that an equivalence relation \sim is invariant under the action by G if for all $x \in X$ and $y \in Y$, $x \sim y \Leftrightarrow gx \sim gy$ for all $g \in G$.

Example

 The diagonal equivalence relation is invariant under actions by any group.

 Kai Yamashita
 Radon transform
 10/19/2025
 6 / 25

- Consider two actions of an group G on sets M and N, along with an equivalence relation \sim that is invariant under the action of G.
- We can also define the action of G on $\mathbb{C}[M]$ and $\mathbb{C}[N]$ by the action on the bases.
- Let R be the linear operator from $\mathbb{C}[M]$ to $\mathbb{C}[N]$ defined on the basis of $\mathbb{C}[M]$ as $R(e_m) = \sum_{n \sim m} e_n$.
- Similarly, let R' to be the linear operator from $\mathbb{C}[N]$ to $\mathbb{C}[M]$ defined on the basis as $R'(e_n) = \sum_{m \sim n} e_m$.

Definition

We define $R' \circ R$ as the Radon transform.

• The Radon transform intertwines the action of G on the left, i.e. $R' \circ R(g*m) = g*R' \circ R(m)$.

 Kai Yamashita
 Radon transform
 10/19/2025
 7 / 25

- Consider two actions of an group G on sets M and N, along with an equivalence relation \sim that is invariant under the action of G.
- We can also define the action of G on $\mathbb{C}[M]$ and $\mathbb{C}[N]$ by the action on the bases.
- Let R be the linear operator from $\mathbb{C}[M]$ to $\mathbb{C}[N]$ defined on the basis of $\mathbb{C}[M]$ as $R(e_m) = \sum_{n \sim m} e_n$.
- Similarly, let R' to be the linear operator from $\mathbb{C}[N]$ to $\mathbb{C}[M]$ defined on the basis as $R'(e_n) = \sum_{m \sim n} e_m$.

Definition

We define $R' \circ R$ as the Radon transform.

• The Radon transform intertwines the action of G on the left, i.e. $R' \circ R(g*m) = g*R' \circ R(m)$.

◄□▶
◄□▶
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
₹
*
₹
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*</p

- Consider two actions of an group G on sets M and N, along with an equivalence relation \sim that is invariant under the action of G.
- We can also define the action of G on $\mathbb{C}[M]$ and $\mathbb{C}[N]$ by the action on the bases.
- Let R be the linear operator from $\mathbb{C}[M]$ to $\mathbb{C}[N]$ defined on the basis of $\mathbb{C}[M]$ as $R(e_m) = \sum_{n \sim m} e_n$.
- Similarly, let R' to be the linear operator from $\mathbb{C}[N]$ to $\mathbb{C}[M]$ defined on the basis as $R'(e_n) = \sum_{m \sim n} e_m$.

Definition

We define $R' \circ R$ as the Radon transform.

• The Radon transform intertwines the action of G on the left, i.e. $R' \circ R(g*m) = g*R' \circ R(m)$.

4 □ ▶ ⟨률 ▶ ⟨혈 ▶ ⟨혈 ▶ │ 혈 │ 夕久○

- Consider two actions of an group G on sets M and N, along with an equivalence relation \sim that is invariant under the action of G.
- We can also define the action of G on $\mathbb{C}[M]$ and $\mathbb{C}[N]$ by the action on the bases.
- Let R be the linear operator from $\mathbb{C}[M]$ to $\mathbb{C}[N]$ defined on the basis of $\mathbb{C}[M]$ as $R(e_m) = \sum_{n \sim m} e_n$.
- Similarly, let R' to be the linear operator from $\mathbb{C}[N]$ to $\mathbb{C}[M]$ defined on the basis as $R'(e_n) = \sum_{m \sim n} e_m$.

Definition

Kai Yamashita

We define $R' \circ R$ as the Radon transform.

• The Radon transform intertwines the action of G on the left, i.e. $R' \circ R(g*m) = g*R' \circ R(m)$.

4 □ ▶ ⟨률 ▶ ⟨혈 ▶ ⟨혈 ▶ │ 혈 │ 夕久○

- Consider two actions of an group G on sets M and N, along with an equivalence relation \sim that is invariant under the action of G.
- We can also define the action of G on $\mathbb{C}[M]$ and $\mathbb{C}[N]$ by the action on the bases.
- Let R be the linear operator from $\mathbb{C}[M]$ to $\mathbb{C}[N]$ defined on the basis of $\mathbb{C}[M]$ as $R(e_m) = \sum_{n \geq m} e_n$.
- Similarly, let R' to be the linear operator from $\mathbb{C}[N]$ to $\mathbb{C}[M]$ defined on the basis as $R'(e_n) = \sum_{m \in n} e_m$.

Definition

We define $R' \circ R$ as the Radon transform.

• The Radon transform intertwines the action of G on the left, i.e. $R' \circ R(g * m) = g * R' \circ R(m).$

Outline

- Radon transform
 - Equivalence relations
 - Radon transform
- Unipotent Radon transform
 - Basics
 - Unipotent Radon transform
- Basic Results
- 4 Hecke Algebras

8 / 25

General Linear Group

Definition

The general linear group of dimension n over a field F, denoted $GL_n(F)$, is the group of invertible n by n matrices with entries in the field F.

• We will generally be working with finite fields of order q, denoted by \mathbb{F}_q .

Partitions

Definition

A partition of an integer n is a ordered tuple of positive integers such that the sum all integers in the tuple is equal to n.

Example

- \bullet (1,5,1) is a partition of 7
- (3,4) is another partition of 7

Kai Yamashita Radon transform 10/19/2025 10 / 25

Levi, unipotent and parabolic subgroups

Definition

The Levi subgroup of type λ , denoted by M_{λ} , is the product $\prod_{i \in \lambda} GL_i$.

The unipotent subgroup of type λ , known as U_{λ} , is the group of matrices with arbitrary elements above the blocks of M_{λ} , ones on the diagonal and zeroes below.

The parabolic subgroup of type λ , denoted as P_{λ} , is $M_{\lambda} \cdot U_{\lambda} = U_{\lambda} \cdot M_{\lambda}$.

Finally, we define P_{λ}^{op} and U_{λ}^{op} as the subgroups corresponding to the matrices in P_{λ} and U_{λ} transposed.

• Note that U_{λ} is a normal subgroup of P_{λ} .

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト . 差 . か Q (C)

11/25

Examples

For $\lambda = (2,3,1)$, the corresponding Levi, unipotent, and parabolic subgroups are as follows:

$$M_{\lambda} = egin{pmatrix} * & * & 0 & 0 & 0 & 0 \ * & * & 0 & 0 & 0 & 0 \ 0 & 0 & * & * & * & 0 \ 0 & 0 & * & * & * & 0 \ 0 & 0 & * & * & * & 0 \ 0 & 0 & 0 & 0 & 0 & * \end{pmatrix} U_{\lambda} = egin{pmatrix} 1 & 0 & * & * & * & * \ 0 & 1 & * & * & * & * \ 0 & 1 & * & * & * & * \ 0 & 0 & 1 & 0 & 0 & * \ 0 & 0 & 0 & 1 & 0 & * \ 0 & 0 & 0 & 0 & 1 & * \ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Kai Yamashita Radon transform 10/19/2025 12 / 25

Unipotent Radon transform

- Let M be the set GL_n/U_λ and N the set GL_n/U_λ^{op} .
- Define an action of GL_n on these two sets by $g*aU_\lambda=gaU_\lambda$ and $g*aU_\lambda^{op}=gaU_\lambda^{op}$.
- Let $g_1U_{\lambda} \sim g_2U_{\lambda}^{op}$ iff there exists $g \in GL_n$ such that $g \in g_1U_{\lambda}$ and $g \in g_2U_{\lambda}^{op}$.
- Let $R : \mathbb{C}[M] \to \mathbb{C}[N]$ be the linear operator where $R(e_m) = \sum_{n \sim m} e_n$.
- Similarly, denote $R': \mathbb{C}[N] \to \mathbb{C}[M]$ to be the linear operator in the other direction defined by $R'(e_n) = \sum_{m \sim n} e_m$.

Definition

We define $R' \circ R$ as the unipotent Radon transform.

4D > 4A > 4B > 4B > B 900

Kai Yamashita Radon transform 10/19/2025 13/25

Problem of Interest

- Since the Radon transform is linear, we can write it as a matrix of dimension $|GL_n/U_\lambda|$.
- The unipotent Radon transform intertwines the action of M_{λ} on the right, i.e. $R' \circ R(a * m) = R' \circ R(a) * m$.
- The unipotent Radon transform can be written as

$$R' \circ R(gU_{\lambda}) = \sum_{u \in U_{\lambda}} \sum_{u^{op} \in U_{\lambda}^{op}} guu^{op} U_{\lambda}.$$

Problem

What are the eigenvalues of the unipotent Radon transform?

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

14 / 25

Outline

- Radon transform
 - Equivalence relations
 - Radon transform
- Unipotent Radon transform
 - Basics
 - Unipotent Radon transform
- Basic Results
- 4 Hecke Algebras

Kai Yamashita Radon transform 10/19/2025 15 / 25

The induction argument

Theorem

All eigenvalues when $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ can be found by multiplying an eigenvalue from $\lambda = (n - \lambda_k, \lambda_k)$ and an eigenvalue from $\lambda = (\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_{k-1})$.

Corollary

Thus, the only λ that we need to consider to classify all possible eigenvalues for arbitrary λ are $\lambda = (k, n - k)$.

Kai Yamashita Radon transform 10/19/2025 16 / 25

Miscellaneous Results

Proposition

The matrix for the Radon transform is symmetric with integer coefficients.

Corollary

All eigenvalues for the Radon transform are real algebraic integers.

Proposition

- The largest eigenvalue for the Radon transform is $|U_{\lambda}|^2$.
- The eigenvalues for GL_2 are q^2 with multiplicity q-1, q with multiplicity $(q-1)(q^2-q-2)$, and 1 with multiplicity (q-1)q.

Kai Yamashita Radon transform 10/19/2025 17/25

Outline

- Radon transform
 - Equivalence relations
 - Radon transform
- Unipotent Radon transform
 - Basics
 - Unipotent Radon transform
- Basic Results
- 4 Hecke Algebras

18 / 25

Radon transform

Recall that

$$R'\circ R(gU_{\lambda})=\sum_{u\in U_{\lambda}}\sum_{u^{op}\in U_{\lambda}^{op}}guu^{op}U_{\lambda}.$$

The $\sum_{u,u^{op}}uu^{op}U_{\lambda}$ part of the formula leads us to consider the algebra of double cosets $U_{\lambda}gU_{\lambda}$.

Kai Yamashita Radon transform 10/19/2025 19 / 25

Hecke Algebras

- A Hecke Algebra $\mathcal{H}(G, H)$ is an algebra of double cosets HgH for a subgroup H of a finite group G.
- Multiplication of two elements Hg_1H and Hg_2H in this algebra is defined as the cosets that make up $a \cdot b$, for $a \in Hg_1H$ and $b \in Hg_1H$.
- Multiplication is also normalized by a factor of $\frac{1}{|H|}$ in order to make the coset HeH act as the identity.

Kai Yamashita Radon transform 10/19/2025 20/25

Radon transform in Hecke Algebras

- The Hecke algebra $\mathcal{H}(GL_n, U_\lambda)$ acts on $\mathbb{C}[GL_n/U_\lambda]$ on the right.
- The Radon transform is given by multiplication of an element from $\mathcal{H}(GL_n, U_{\lambda})$.

Proposition

All the eigenvalues of the unipotent Radon transform in $\mathbb{C}[GL_n/U_{\lambda}]$ are also eigenvalues of the Radon transform in $\mathcal{H}(GL_n, U_{\lambda})$.

Kai Yamashita Radon transform 10/19/2025 21 / 25

Yokonuma Hecke Algebra

Definition

The Yokonuma Hecke Algebra $\mathcal{H}(GL_n, U_\lambda)$ describes multiplication of double cosets of U_λ for $\lambda = \underbrace{(1, \ldots, 1)}_{n \text{ times}}$. It has generators g_i and t_i , and the

following relations:

- $t_i t_j = t_j t_i$;
- $\bullet t_j g_i = g_i t_{js_i};$
- $t_i^{q-1} = 1$;
- $\bullet \ g_ig_{i+1}g_i=g_{i+1}g_ig_{i+1};$
- $g_ig_j = g_jg_i \quad (|i-j| \geq 1);$
- $g_i^2 = q + \sum_{k=1}^{q-1} t_i^k t_{i+1}^{-k+(q-1)/2} g_i$.

- (ロ) (個) (重) (重) (重) のQで

Kai Yamashita Radon transform 10/19/2025 22 / 25

Yokonuma-Hecke algebra and the case $\lambda = (k, n - k)$

Proposition

Let $(R' \circ R)_{\lambda}$ be the unipotent Radon transform for $\lambda = (k, n - k)$ and let Y_n be the unipotent Radon transform for $\lambda = (1, \dots, 1)$ then

$$Y_n = Y_k \circ Y_{n-k} \circ (R' \circ R)_{\lambda}$$

and $Y_k, Y_{n-k}, (R' \circ R)_{\lambda}$ pairwise commute.

That helps us to find some eigenvalues of $(R' \circ R)_{\lambda}$.

23 / 25

Acknowledgments

I would like to thank my mentor, Ivan Motorin, the organizers of the PRIMES conference, as well as the MIT PRIMES-USA Program for allowing this research and presentation to take place.

Kai Yamashita Radon transform 10/19/2025 24 / 25

Bibliography

D. Bump Hecke Algebras 11 May 2010

A. Slipper

Non-abelian Fourier transforms and Normalized Intertwining operators for General Parabolics over Finite Fields, and the Kloosterman Fourier transform for Quadric Cones

22 Oct 2024

M. Orrison

Radon transforms and the Finite General Linear Groups Forum Mathematicum 16.1, 2004

M. Artin.

Algebra (2nd ed.)

Prentice Hall, 2011.