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Algebras

Definition

The free vector space on a set A over a field K is denoted by K[A], and is
the vector space over K with basis elements e, for all a € A.

An associative algebra is a free vector space with associative bilinear
product x : K[A] x K[A] — K[A].

Example

@ The free vector space over a set with a single element is isomorphic to
the field itself, as it is a one dimensional vector space.

@ The group algebra over a field is a vector space with basis elements
eg for all g in a group G and multiplication ez * €, = egp.
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Equivalence relations

Definition

An equivalence relation between two sets of elements X and Y is an
subset ~ of X x Y.

@ This allows us to define equivalence between elements of the set X
and Y, namely for x € X, y € Y and an equivalence relation ~, we
say x ~ y iff (x,y) €~.

@ The diagonal equivalence relation is defined on X x X and (x,y) €~
iff x=y.
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Invariant equivalence relations

Definition
Given an action by a set G on X and Y, we say that an equivalence
relation ~ is invariant under the action by G if for all x € X and y € Y,

X~y gx~gyforall g eG.

@ The diagonal equivalence relation is invariant under actions by any

group.
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The Radon transform

@ Consider two actions of an group G on sets M and N, along with an
equivalence relation ~ that is invariant under the action of G.
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@ Consider two actions of an group G on sets M and N, along with an
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The Radon transform

@ Consider two actions of an group G on sets M and N, along with an
equivalence relation ~ that is invariant under the action of G.

@ We can also define the action of G on C[M] and C[N] by the action
on the bases.

o Let R be the linear operator from C[M] to C[N] defined on the basis
of C[M] as R(em) =, m€n-

e Similarly, let R’ to be the linear operator from C[N] to C[M] defined
on the basis as R'(e;) =Y., . €

m~n ~m:

Definition
We define R’ o R as the Radon transform.

@ The Radon transform intertwines the action of G on the left, i.e.
R o R(g*m) =g R oR(m).
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General Linear Group

Definition

The general linear group of dimension n over a field F, denoted GL,(F), is
the group of invertible n by n matrices with entries in the field F.

o We will generally be working with finite fields of order q, denoted by
Fy.
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Definition

A partition of an integer n is a ordered tuple of positive integers such that
the sum all integers in the tuple is equal to n.

v

e (1,5,1) is a partition of 7

@ (3,4) is another partition of 7
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Levi, unipotent and parabolic subgroups

Definition
The Levi subgroup of type A, denoted by M,, is the product [];cy GL;.

The unipotent subgroup of type A, known as U, is the group of matrices
with arbitrary elements above the blocks of M), ones on the diagonal and
zeroes below.

The parabolic subgroup of type A, denoted as Py, is My - Uy = Uy - M.

Finally, we define P/‘\’p and U)'fp as the subgroups corresponding to the
matrices in Py and U, transposed.

@ Note that U, is a normal subgroup of P,.
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For A = (2,3,1), the corresponding Levi, unipotent, and parabolic
subgroups are as follows:

*x x 00 0O 1 0 * % % x*
* x 00 0 O 0 1 x % *x =
00 «x x % 0 0 01 0 0 =
M=100 4+« 0|l looo10
0 0 %« x x 0 0 00 0 1 =
00 0 0 0 =« 0 00 0O0°1

% ok kx k k%

* ok ok ok x %

0 0 x *x x =

PA_OO****

0 0 x * * =

0 00 0 0 =
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Unipotent Radon transform

Let M be the set GL,/Uy and N the set GL,/U".

Define an action of GL, on these two sets by g x alU, = gaU, and
g * alyP = gaUy*.

Let ;41U\ ~ & Uf\’p iff there exists g € GL,, such that g € gy Uy and
g€ gUY.

Let R : C[M] — C[N] be the linear operator where

R(em) = >, wm€n-

Similarly, denote R’ : C[N] — C[M] to be the linear operator in the
other direction defined by R'(e;) =", €m-

Definition
We define R’ o R as the unipotent Radon transform.
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Problem of Interest

@ Since the Radon transform is linear, we can write it as a matrix of
dimension |GL,/U,|.

@ The unipotent Radon transform intertwines the action of M) on the
right, i.e. R'o R(axm) =R o R(a)*m.

@ The unipotent Radon transform can be written as

R' o R(gU,) = Z Z guuPU,.

uec U)\ uorPe UOP

Problem
What are the eigenvalues of the unipotent Radon transform?
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The induction argument

All eigenvalues when X\ = (A1, A2, ..., \k) can be found by multiplying an
eigenvalue from A\ = (n — Ak, A\x) and an eigenvalue from
A= (A1, A2, A3, ., Ak—).

Thus, the only A that we need to consider to classify all possible
eigenvalues for arbitrary \ are A = (k,n — k).
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Miscellaneous Results

Proposition
The matrix for the Radon transform is symmetric with integer coefficients.
All eigenvalues for the Radon transform are real algebraic integers.

Proposition

o The largest eigenvalue for the Radon transform is |Uy|2.

@ The eigenvalues for GLy are g2 with multiplicity g — 1, g with
multiplicity (g — 1)(¢? — g — 2), and 1 with multiplicity (g — 1)g.
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Radon transform

Recall that

R o R(gUy) = Z Z guu®P U,y.

ueUy UOPGU"P

The Zu,u"P uu®P Uy part of the formula leads us to consider the algebra of
double cosets UygU.

Kai Yamashita Radon transform 10/19/2025 19/25



Hecke Algebras

@ A Hecke Algebra H(G, H) is an algebra of double cosets HgH for a
subgroup H of a finite group G.

@ Multiplication of two elements HgyH and HgxH in this algebra is
defined as the cosets that make up a- b, for a € Hg1H and b € Hgy H.

o Multiplication is also normalized by a factor of ﬁ in order to make
the coset HeH act as the identity.

Kai Yamashita
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Radon transform in Hecke Algebras

@ The Hecke algebra H(GL,, Uy) acts on C[GL,/U,] on the right.

@ The Radon transform is given by multiplication of an element from

H(GLn, Uy).

Proposition

All the eigenvalues of the unipotent Radon transform in C[GL,/U,] are
also eigenvalues of the Radon transform in H(GL,, Uy).
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Yokonuma Hecke Algebra

Definition
The Yokonuma Hecke Algebra H(GL,, Uy) describes multiplication of
double cosets of Uy for A = (1,...,1). It has generators g; and t;, and the
\‘./—/
n times

following relations:

o titj = tjt;;
° th[ = glt.js,v
q—1 _ 1.

ot/ = 1;

8i8i+18i = 8i+18i8i+1;
gigi = gigi (li—jl=1);

1 —k+ 1 2
g, _q+zz 1tlk i+1 = &i-
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Yokonuma-Hecke algebra and the case A = (k,n — k)

Proposition

Let (R’ o R)) be the unipotent Radon transform for A = (k,n — k) and let
Y, be the unipotent Radon transform for A = (1,...,1) then
~——

n times

Yn=Yro Y, ko(R oR),

and Yk, Yao—k, (R’ o R)) pairwise commute.

That helps us to find some eigenvalues of (R’ o R).
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