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Algebras

Definition

The free vector space on a set A over a field K is denoted by K [A], and is
the vector space over K with basis elements ea for all a ∈ A.

Definition

An associative algebra is a free vector space with associative bilinear
product ∗ : K [A]× K [A] → K [A].

Example

The free vector space over a set with a single element is isomorphic to
the field itself, as it is a one dimensional vector space.

The group algebra over a field is a vector space with basis elements
eg for all g in a group G and multiplication eg ∗ eh = egh.
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Equivalence relations

Definition

An equivalence relation between two sets of elements X and Y is an
subset ∼ of X × Y .

This allows us to define equivalence between elements of the set X
and Y , namely for x ∈ X , y ∈ Y and an equivalence relation ∼, we
say x ∼ y iff (x , y) ∈∼.

Example

The diagonal equivalence relation is defined on X × X and (x , y) ∈∼
iff x = y .
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Invariant equivalence relations

Definition

Given an action by a set G on X and Y , we say that an equivalence
relation ∼ is invariant under the action by G if for all x ∈ X and y ∈ Y ,
x ∼ y ⇔ gx ∼ gy for all g ∈ G .

Example

The diagonal equivalence relation is invariant under actions by any
group.
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The Radon transform

Consider two actions of an group G on sets M and N, along with an
equivalence relation ∼ that is invariant under the action of G .

We can also define the action of G on C[M] and C[N] by the action
on the bases.

Let R be the linear operator from C[M] to C[N] defined on the basis
of C[M] as R(em) =

∑
n∼m en.

Similarly, let R ′ to be the linear operator from C[N] to C[M] defined
on the basis as R ′(en) =

∑
m∼n em.

Definition

We define R ′ ◦ R as the Radon transform.

The Radon transform intertwines the action of G on the left, i.e.
R ′ ◦ R(g ∗m) = g ∗ R ′ ◦ R(m).
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General Linear Group

Definition

The general linear group of dimension n over a field F , denoted GLn(F ), is
the group of invertible n by n matrices with entries in the field F .

We will generally be working with finite fields of order q, denoted by
Fq.
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Partitions

Definition

A partition of an integer n is a ordered tuple of positive integers such that
the sum all integers in the tuple is equal to n.

Example

(1, 5, 1) is a partition of 7

(3, 4) is another partition of 7
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Levi, unipotent and parabolic subgroups

Definition

The Levi subgroup of type λ, denoted by Mλ, is the product
∏

i∈λ GLi .

The unipotent subgroup of type λ, known as Uλ, is the group of matrices
with arbitrary elements above the blocks of Mλ, ones on the diagonal and
zeroes below.

The parabolic subgroup of type λ, denoted as Pλ, is Mλ · Uλ = Uλ ·Mλ.

Finally, we define Pop
λ and Uop

λ as the subgroups corresponding to the
matrices in Pλ and Uλ transposed.

Note that Uλ is a normal subgroup of Pλ.
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Examples

For λ = (2, 3, 1), the corresponding Levi, unipotent, and parabolic
subgroups are as follows:

Mλ =



∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0
0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗ 0
0 0 0 0 0 ∗

Uλ =



1 0 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 0 0 ∗
0 0 0 1 0 ∗
0 0 0 0 1 ∗
0 0 0 0 0 1



Pλ =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 ∗

 .
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Unipotent Radon transform

Let M be the set GLn/Uλ and N the set GLn/U
op
λ .

Define an action of GLn on these two sets by g ∗ aUλ = gaUλ and
g ∗ aUop

λ = gaUop
λ .

Let g1Uλ ∼ g2U
op
λ iff there exists g ∈ GLn such that g ∈ g1Uλ and

g ∈ g2U
op
λ .

Let R : C[M] → C[N] be the linear operator where
R(em) =

∑
n∼m en.

Similarly, denote R ′ : C[N] → C[M] to be the linear operator in the
other direction defined by R ′(en) =

∑
m∼n em.

Definition

We define R ′ ◦ R as the unipotent Radon transform.
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Problem of Interest

Since the Radon transform is linear, we can write it as a matrix of
dimension |GLn/Uλ|.
The unipotent Radon transform intertwines the action of Mλ on the
right, i.e. R ′ ◦ R(a ∗m) = R ′ ◦ R(a) ∗m.

The unipotent Radon transform can be written as

R ′ ◦ R(gUλ) =
∑
u∈Uλ

∑
uop∈Uop

λ

guuopUλ.

Problem

What are the eigenvalues of the unipotent Radon transform?

Kai Yamashita Radon transform 10/19/2025 14 / 25



Outline

1 Radon transform
Equivalence relations
Radon transform

2 Unipotent Radon transform
Basics
Unipotent Radon transform

3 Basic Results

4 Hecke Algebras

Kai Yamashita Radon transform 10/19/2025 15 / 25



The induction argument

Theorem

All eigenvalues when λ = (λ1, λ2, . . . , λk) can be found by multiplying an
eigenvalue from λ = (n − λk , λk) and an eigenvalue from
λ = (λ1, λ2, λ3, . . . , λk−1).

Corollary

Thus, the only λ that we need to consider to classify all possible
eigenvalues for arbitrary λ are λ = (k, n − k).
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Miscellaneous Results

Proposition

The matrix for the Radon transform is symmetric with integer coefficients.

Corollary

All eigenvalues for the Radon transform are real algebraic integers.

Proposition

The largest eigenvalue for the Radon transform is |Uλ|2.
The eigenvalues for GL2 are q2 with multiplicity q − 1, q with
multiplicity (q − 1)(q2 − q − 2), and 1 with multiplicity (q − 1)q.
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Radon transform

Recall that

R ′ ◦ R(gUλ) =
∑
u∈Uλ

∑
uop∈Uop

λ

guuopUλ.

The
∑

u,uop uu
opUλ part of the formula leads us to consider the algebra of

double cosets UλgUλ.
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Hecke Algebras

A Hecke Algebra H(G ,H) is an algebra of double cosets HgH for a
subgroup H of a finite group G .

Multiplication of two elements Hg1H and Hg2H in this algebra is
defined as the cosets that make up a · b, for a ∈ Hg1H and b ∈ Hg1H.

Multiplication is also normalized by a factor of 1
|H| in order to make

the coset HeH act as the identity.
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Radon transform in Hecke Algebras

The Hecke algebra H(GLn,Uλ) acts on C[GLn/Uλ] on the right.

The Radon transform is given by multiplication of an element from
H(GLn,Uλ).

Proposition

All the eigenvalues of the unipotent Radon transform in C[GLn/Uλ] are
also eigenvalues of the Radon transform in H(GLn,Uλ).
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Yokonuma Hecke Algebra

Definition

The Yokonuma Hecke Algebra H(GLn,Uλ) describes multiplication of
double cosets of Uλ for λ = (1, . . . , 1︸ ︷︷ ︸

n times

). It has generators gi and ti , and the

following relations:

ti tj = tj ti ;

tjgi = gi tjsi ;

tq−1
j = 1;

gigi+1gi = gi+1gigi+1;

gigj = gjgi (|i − j | ≥ 1);

g2
i = q +

∑q−1
k=1 t

k
i t

−k+(q−1)/2
i+1 gi .
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Yokonuma-Hecke algebra and the case λ = (k , n − k)

Proposition

Let (R ′ ◦ R)λ be the unipotent Radon transform for λ = (k , n − k) and let
Yn be the unipotent Radon transform for λ = (1, . . . , 1︸ ︷︷ ︸

n times

) then

Yn = Yk ◦ Yn−k ◦ (R ′ ◦ R)λ

and Yk ,Yn−k , (R
′ ◦ R)λ pairwise commute.

That helps us to find some eigenvalues of (R ′ ◦ R)λ.

Kai Yamashita Radon transform 10/19/2025 23 / 25



Acknowledgments

I would like to thank my mentor, Ivan Motorin, the organizers of the
PRIMES conference, as well as the MIT PRIMES-USA Program for

allowing this research and presentation to take place.

Kai Yamashita Radon transform 10/19/2025 24 / 25



Bibliography

D. Bump
Hecke Algebras
11 May 2010

A. Slipper
Non-abelian Fourier transforms and Normalized Intertwining operators
for General Parabolics over Finite Fields, and the Kloosterman Fourier
transform for Quadric Cones
22 Oct 2024

M. Orrison
Radon transforms and the Finite General Linear Groups
Forum Mathematicum 16.1, 2004

M. Artin.
Algebra (2nd ed.)
Prentice Hall, 2011.

Kai Yamashita Radon transform 10/19/2025 25 / 25


	Radon transform
	Equivalence relations
	Radon transform

	Unipotent Radon transform
	Basics
	Unipotent Radon transform

	Basic Results
	Hecke Algebras

