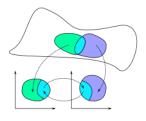
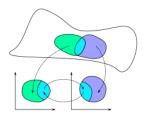
Dynamical Functionals on Ancient ARF and AC Ricci Flows

Rio Schillmoeller Mentor: Isaac Lopez

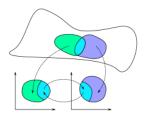
October 18-19, 2025 MIT PRIMES Conference



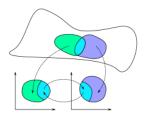
ullet A differentiable manifold is a set M and a set of coordinate patches such that



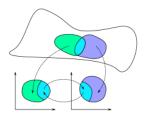
- ullet A differentiable manifold is a set M and a set of coordinate patches such that
 - The patches cover *M*.



- ullet A differentiable manifold is a set M and a set of coordinate patches such that
 - The patches cover *M*.
 - The patches look like open subsets of \mathbb{R}^n .

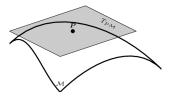


- ullet A differentiable manifold is a set M and a set of coordinate patches such that
 - The patches cover *M*.
 - The patches look like open subsets of \mathbb{R}^n .
 - There are smooth transition maps between the patches.



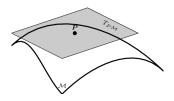
- A differentiable manifold is a set M and a set of coordinate patches such that
 - The patches cover *M*.
 - The patches look like open subsets of \mathbb{R}^n .
 - There are smooth transition maps between the patches.
- ullet Examples: Sphere, Torus, Klein Bottle, Mobius Strip, \mathbb{R}^n .

Tangent Space



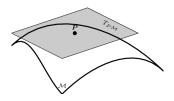
ullet The tangent space is the set of all tangent vectors at p.

Tangent Space



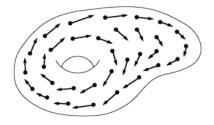
- The tangent space is the set of all tangent vectors at *p*.
- A vector field assigns each point a tangent vector.

Tangent Space



- The tangent space is the set of all tangent vectors at p.
- A vector field assigns each point a tangent vector.
 - Nearby tangent vectors point in similar directions.

A Vector Field



Definition (Riemannian Manifold)

A Riemannian manifold (M, g) is a differentiable manifold M equipped with a Riemannian metric g.

Definition (Riemannian Manifold)

A Riemannian manifold (M, g) is a differentiable manifold M equipped with a Riemannian metric g.

ullet g takes two vector fields and outputs a smooth function.

Definition (Riemannian Manifold)

A Riemannian manifold (M,g) is a differentiable manifold M equipped with a Riemannian metric g.

g takes two vector fields and outputs a smooth function.

Example

 $M=\mathbb{R}^n$ and $g=\langle\cdot,\cdot\rangle_{\mathbb{R}^n}$ is the Euclidean inner product.

Definition (Riemannian Manifold)

A Riemannian manifold (M, g) is a differentiable manifold M equipped with a Riemannian metric g.

ullet g takes two vector fields and outputs a smooth function.

Example

 $M=\mathbb{R}^n$ and $g=\langle\cdot,\cdot\rangle_{\mathbb{R}^n}$ is the Euclidean inner product.

• Length of a tangent vector at p: $\sqrt{g(X,X)(p)}$.

Definition (Riemannian Manifold)

A Riemannian manifold (M, g) is a differentiable manifold M equipped with a Riemannian metric g.

• g takes two vector fields and outputs a smooth function.

Example

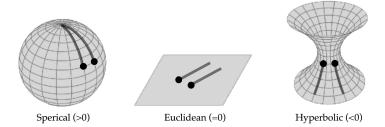
 $M=\mathbb{R}^n$ and $g=\langle\cdot,\cdot\rangle_{\mathbb{R}^n}$ is the Euclidean inner product.

- Length of a tangent vector at p: $\sqrt{g(X,X)(p)}$.
- Length of a curve $\gamma(t)$:

$$\int_0^1 \sqrt{g(\gamma'(t),\gamma'(t))} dt.$$

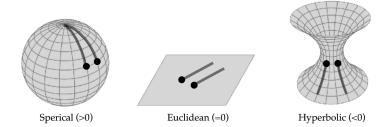
Ricci Curvature

• Geodesics: locally the shortest path between two points.



Ricci Curvature

- Geodesics: locally the shortest path between two points.
- Ricci Curvature: how much nearby geodesics deviate from each other.



Definition (Ricci flow equation)

 $\partial_t g = -2 \mathrm{Ric}.$

Definition (Ricci flow equation)

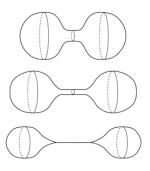
$$\partial_t g = -2 \text{Ric.}$$

Definition (Ricci flow equation)

$$\partial_t g = -2 \mathrm{Ric}$$
.

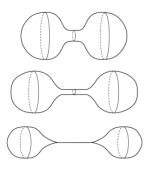
• Makes the manifold rounder while preserving topology.

Singularities



• Singularities are where the Riemann curvature blows up in finite time.

Singularities



- Singularities are where the Riemann curvature blows up in finite time.
- Cannot continue Ricci flow when singularity forms.

• Near a singularity point, manifolds often look like Ricci solitons.

• Near a singularity point, manifolds often look like Ricci solitons.

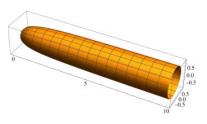
Definition (Ricci soliton)

Ricci solitons are Ricci flow solutions that don't change shape.

• Near a singularity point, manifolds often look like Ricci solitons.

Definition (Ricci soliton)

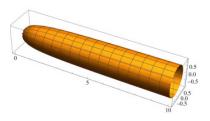
Ricci solitons are Ricci flow solutions that don't change shape.



• Near a singularity point, manifolds often look like Ricci solitons.

Definition (Ricci soliton)

Ricci solitons are Ricci flow solutions that don't change shape.



• Idea: cut out the Ricci Soliton before the singularity forms.

• In 1904, Poincaré formulated the conjecture in 3 dimensions.

- In 1904, Poincaré formulated the conjecture in 3 dimensions.
- In 1961, Smale proved it in dimensions > 4.

- In 1904, Poincaré formulated the conjecture in 3 dimensions.
- In 1961, Smale proved it in dimensions > 4.
- Smale won a Fields Medal.

- In 1904, Poincaré formulated the conjecture in 3 dimensions.
- In 1961, Smale proved it in dimensions > 4.
- Smale won a Fields Medal.
- In 1982, Freedman proved it in 4 dimensions.

- In 1904, Poincaré formulated the conjecture in 3 dimensions.
- In 1961, Smale proved it in dimensions > 4.
- Smale won a Fields Medal.
- In 1982, Freedman proved it in 4 dimensions.
- Freedman won a Fields Medal.

- In 1904, Poincaré formulated the conjecture in 3 dimensions.
- In 1961, Smale proved it in dimensions > 4.
- Smale won a Fields Medal.
- In 1982, Freedman proved it in 4 dimensions.
- Freedman won a Fields Medal.
- In 2003, Perelman proved it in 3 dimensions.

- In 1904, Poincaré formulated the conjecture in 3 dimensions.
- In 1961, Smale proved it in dimensions > 4.
- Smale won a Fields Medal.
- In 1982, Freedman proved it in 4 dimensions.
- Freedman won a Fields Medal.
- In 2003, Perelman proved it in 3 dimensions.
- Perelman rejected the Fields Medal and a million dollars.

- In 1904, Poincaré formulated the conjecture in 3 dimensions.
- In 1961, Smale proved it in dimensions > 4.
- Smale won a Fields Medal.
- In 1982, Freedman proved it in 4 dimensions.
- Freedman won a Fields Medal.
- In 2003, Perelman proved it in 3 dimensions.
- Perelman rejected the Fields Medal and a million dollars.
- Only solved Millennium Prize Problem out of 7.

Theorem (Poincaré Conjecture)

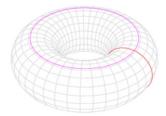
Any topological 3-dimensional manifold that is closed and simply connected is homeomorphic to the 3-dimensional sphere.

The Poincaré Conjecture

Theorem (Poincaré Conjecture)

Any topological 3-dimensional manifold that is closed and simply connected is homeomorphic to the 3-dimensional sphere.

Not simply connected:

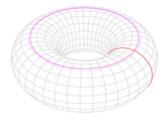


The Poincaré Conjecture

Theorem (Poincaré Conjecture)

Any topological 3-dimensional manifold that is closed and simply connected is homeomorphic to the 3-dimensional sphere.

• Not simply connected:



 Proof idea: if we ignore singularities, Ricci flow turns manifolds into spheres.

$$\lambda(g) = \inf\{\mathcal{F}(g, f) \mid f \in \mathcal{C}^{\infty}(M), \int_{M} e^{-f} = 1\}$$
 for compact M .

Definition (Perelman's Lambda Functional)

$$\lambda(g) = \inf\{\mathcal{F}(g, f) \mid f \in \mathcal{C}^{\infty}(M), \int_{M} e^{-f} = 1\}$$
 for compact M .

ullet λ takes a metric and outputs a real number.

$$\lambda(g) = \inf\{\mathcal{F}(g, f) \mid f \in \mathcal{C}^{\infty}(M), \int_{M} e^{-f} = 1\}$$
 for compact M .

- ullet λ takes a metric and outputs a real number.
- $\partial_t \lambda(g(t)) \geq 0$ along the Ricci flow.

$$\lambda(g) = \inf\{\mathcal{F}(g, f) \mid f \in \mathcal{C}^{\infty}(M), \int_{M} e^{-f} = 1\}$$
 for compact M .

- ullet λ takes a metric and outputs a real number.
- $\partial_t \lambda(g(t)) \geq 0$ along the Ricci flow.
- If $\lambda(g(t_1)) = \lambda(g(t_2))$ along the Ricci flow, then (M, g(t)) is a Ricci soliton on $[t_1, t_2]$.

$$\lambda(g) = \inf\{\mathcal{F}(g, f) \mid f \in \mathcal{C}^{\infty}(M), \int_{M} e^{-f} = 1\}$$
 for compact M .

- ullet λ takes a metric and outputs a real number.
- $\partial_t \lambda(g(t)) \geq 0$ along the Ricci flow.
- If $\lambda(g(t_1)) = \lambda(g(t_2))$ along the Ricci flow, then (M, g(t)) is a Ricci soliton on $[t_1, t_2]$.
- Would be better if we could write $\lambda(g) = \mathcal{F}(g, f)$ where we know the behavior of f with respect to time.

A Result

Theorem

Suppose that $(M^n, g(t))$ is an ancient solution to the Ricci flow equation that is ARF or AC.

A Result

Theorem

Suppose that $(M^n, g(t))$ is an ancient solution to the Ricci flow equation that is ARF or AC.

• There exists a solution $f^{\infty}: M \times [0,\infty) \to \mathbb{R}$ to the conjugate heat flow such that the functional

$$\lambda_{\text{dyn}}^{\infty}(t) := \mathcal{F}[g(t), f^{\infty}(-t)] \tag{1}$$

is bounded from below by Perelman's λ -functional evaluated at g(t).

A Result

Theorem

Suppose that $(M^n, g(t))$ is an ancient solution to the Ricci flow equation that is ARF or AC.

• There exists a solution $f^\infty: M \times [0,\infty) \to \mathbb{R}$ to the conjugate heat flow such that the functional

$$\lambda_{\text{dyn}}^{\infty}(t) := \mathcal{F}[g(t), f^{\infty}(-t)] \tag{1}$$

is bounded from below by Perelman's λ -functional evaluated at g(t).

• If there exists a pair of non-positive times (t_1,t_2) such that $t_1 < t_2$ and

$$\lambda_{\text{dyn}}^{\infty}(t_1) = \lambda_{\text{dyn}}^{\infty}(t_2), \tag{2}$$

then $(g(t))_{t \in [t_1,t_2]}$ is a Ricci-flat, steady gradient Ricci soliton.

• I would like to thank

- I would like to thank
 - My mentor Isaac Lopez for his amazing mentorship.

- I would like to thank
 - My mentor Isaac Lopez for his amazing mentorship.
 - Dr. Ozuch for his invaluable advice along the way.

- I would like to thank
 - My mentor Isaac Lopez for his amazing mentorship.
 - Dr. Ozuch for his invaluable advice along the way.
 - The MIT PRIMES program for making this opportunity possible.

- I would like to thank
 - My mentor Isaac Lopez for his amazing mentorship.
 - Dr. Ozuch for his invaluable advice along the way.
 - The MIT PRIMES program for making this opportunity possible.
 - My parents for supporting me.

References

- [1] Alix Deruelle and Tristan Ozuch. "A Lojasiewicz inequality for ALE metrics". In: Ann. Sc. Norm. Super. Pisa, to appear (2020).
- [2] Robert Hashlofer and Reto Müller. "Dynamical stability and instability of Ricci-flat metrics". In: *Math. Ann.* 360 (2014), pp. 547–553.
- [3] Yu Li. "Ricci flow on asymptotically Euclidean manifolds". In: Geom. Topol. 22.3 (2018), 1837–1891. ISSN: 1465-3060. DOI: 10.2140/gt.2018.22.1837. URL: http://dx.doi.org/10.2140/gt.2018.22.1837.
- [4] Isaac M. Lopez and Tristan Ozuch. "Ancient and expanding spin ALE Ricci flows". In: *J. Funct. Anal.* 289.111062 (2025).