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What’s a differentiable manifold?

A differentiable manifold is a set M and a set of coordinate patches
such that

The patches cover M.
The patches look like open subsets of Rn.
There are smooth transition maps between the patches.

Examples: Sphere, Torus, Klein Bottle, Mobius Strip, Rn.
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Tangent Space

The tangent space is the set of all tangent vectors at p.

A vector field assigns each point a tangent vector.

Nearby tangent vectors point in similar directions.
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A Vector Field
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Riemannian Manifolds

Definition (Riemannian Manifold)

A Riemannian manifold (M, g) is a differentiable manifold M equipped
with a Riemannian metric g .

g takes two vector fields and outputs a smooth function.

Example

M = Rn and g = ⟨·, ·⟩Rn is the Euclidean inner product.

Length of a tangent vector at p:
√

g(X ,X )(p).

Length of a curve γ(t):∫ 1
0

√
g(γ′(t), γ′(t))dt.
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Ricci Curvature

Geodesics: locally the shortest path between two points.

Ricci Curvature: how much nearby geodesics deviate from each other.
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Ricci Flow

Definition (Ricci flow equation)

∂tg = −2Ric.

Makes the manifold rounder while preserving topology.
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Singularities

Singularities are where the Riemann curvature blows up in finite time.

Cannot continue Ricci flow when singularity forms.
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Dealing with Singularities

Near a singularity point, manifolds often look like Ricci solitons.

Definition (Ricci soliton)

Ricci solitons are Ricci flow solutions that don’t change shape.

Idea: cut out the Ricci Soliton before the singularity forms.
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The Poincaré Conjecture

In 1904, Poincaré formulated the conjecture in 3 dimensions.

In 1961, Smale proved it in dimensions > 4.

Smale won a Fields Medal.

In 1982, Freedman proved it in 4 dimensions.

Freedman won a Fields Medal.

In 2003, Perelman proved it in 3 dimensions.

Perelman rejected the Fields Medal and a million dollars.

Only solved Millennium Prize Problem out of 7.
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The Poincaré Conjecture

Theorem (Poincaré Conjecture)

Any topological 3-dimensional manifold that is closed and simply
connected is homeomorphic to the 3-dimensional sphere.

Not simply connected:

Proof idea: if we ignore singularities, Ricci flow turns manifolds into
spheres.
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Perelman’s Lambda Functional

Definition (Perelman’s Lambda Functional)

λ(g) = inf{F(g , f ) | f ∈ C∞(M),
∫
M e−f = 1} for compact M.

λ takes a metric and outputs a real number.

∂tλ(g(t)) ≥ 0 along the Ricci flow.

If λ(g(t1)) = λ(g(t2)) along the Ricci flow, then (M, g(t)) is a Ricci
soliton on [t1, t2].

Would be better if we could write λ(g) = F(g , f ) where we know the
behavior of f with respect to time.
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A Result

Theorem

Suppose that (Mn, g(t)) is an ancient solution to the Ricci flow equation
that is ARF or AC.

There exists a solution f ∞ : M × [0,∞) → R to the conjugate heat
flow such that the functional

λ∞
dyn(t) := F [g(t), f ∞(−t)] (1)

is bounded from below by Perelman’s λ-functional evaluated at g(t).

If there exists a pair of non-positive times (t1, t2) such that t1 < t2
and

λ∞
dyn(t1) = λ∞

dyn(t2), (2)

then (g(t))t∈[t1,t2] is a Ricci-flat, steady gradient Ricci soliton.
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