MT-BN: Multi-Scale Topological Bayesian Networks Hierarchical Structure Learning with Topological Priors

Aaryan Arora

MT-BN Research Project

October 19, 2025

Talk Roadmap

Preliminaries: Bayesian networks, scores, and why flat learning fails at scale

Problem Introduction: $p \gg n$, interpretability gaps, and missed topology

MT-BN Pipeline (Novelty): multi-layer partitions ⇒ inter/intra DAGs ⇒ VB CPDs & posteriors

Visuals throughout: hierarchy diagrams, priors, and an end-to-end inputs \rightarrow outputs

schematic

Bayesian Networks: Definition

Let $X \in \mathbb{R}^{n \times p}$ be the data (rows=samples, cols=variables). A BN defines

$$p(X_1,\ldots,X_p) = \prod_{i=1}^p p(X_i \mid X_{\mathrm{Pa}(i)}), \quad X_i = \sum_{j \in \mathrm{Pa}(i)} \beta_{ji} X_j + \varepsilon_i, \ \varepsilon_i \sim \mathcal{N}(0,\sigma_i^2).$$

Scores (continuous data):

BIC: local MLE + penalty; add/remove/reverse edges to increase total score.

BGe: Bayesian linear-Gaussian marginal likelihood integrating out (β, σ^2) .

Why Flat BN Learning is Intractable

Number of possible directed graphs on p nodes is $2^{\binom{p}{2}}$ (acyclic subset still super-exponential).

Heuristics (HC, GES, MCMC) struggle when $p \gtrsim 500$; mixing degrades rapidly.

In the common regime $p\gg n$, local tests and model selection are noisy \Rightarrow spurious edges.

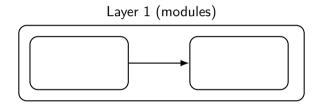
Flat Search over p nodes $2^{\binom{p}{2}}$ candidates

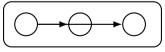
Natural Topology in Real Systems

Modularity: variables cluster into functional groups (pathways, sectors, communities).

Hubs: degree is heterogeneous (few high-degree regulators, many low-degree nodes).

Multi-scale: modules of modules \Rightarrow layered structure.





Layer 2 (inside a module)

Topological Priors We Will Use

nCRP for hierarchical partitions: data-driven layers & module membership.

SBM prior for edges: $\theta_{in} \gg \theta_{out}$ favors dense intra-/sparse inter-module wiring.

Log-normal degree prior: encourages hub heterogeneity.

Depth prior on *L*: geometric/Poisson to avoid over-fragmentation.

Notation (aligned to this project)

 $X \in \mathbb{R}^{n \times p}$, p variables, n samples.

Layers $\ell=1,\ldots,L$; partition at layer ℓ : $P^{(\ell)}=\{C_1^{(\ell)},\ldots,C_{M_\ell}^{(\ell)}\}.$

Graphs: $G^{(\ell)}$ over modules at layer ℓ ; within-module $G_m^{(\ell+1)}$ over $C_m^{(\ell)}$.

Module signals: $S^{(\ell)} \in \mathbb{R}^{n \times M_{\ell}}$ via PC1 (or mean) per module.

Scoring: BGe/BIC; Indegree cap d_{max} .

Priors: SBM($\theta_{in}, \theta_{out}$) + LogNormal(μ, σ) + depth prior p(L).

Limits of Traditional BN Learning

Computational: Super-exponential state space; infeasible beyond modest *p*.

Statistical: $p \gg n$ yields unstable tests and weakly identified structures.

Interpretability: Flat graphs ignore hierarchy ⇒ hard to read, low modular insight.

Missed topology: No native encoding of modularity or hub structure.

Design Goals for a Better Learner

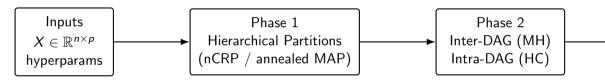
Exploit hierarchy: learn layers & modules from data (not pre-fixed).

Shrink search: operate on small graphs (modules; small within-module DAGs).

Encode topology: priors for blocks and degrees prune implausible edges.

Quantify confidence: posterior edge probabilities & parameter uncertainty.

Big Picture: From Data to Multi-Scale DAGs



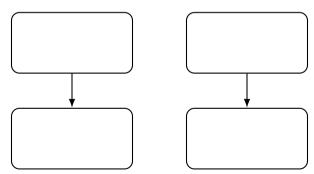
Phase 1: Hierarchical Partitions (nCRP)

Goal: infer L and $P^{(\ell)}$ jointly from data.

Variables choose paths down a tree: "rich-get-richer" with concentration α_{ℓ} .

Practical inference: annealed MAP or collapsed Gibbs; enforce min module size.

Stop when $K_{\ell}=M_{\ell}\leq 1$ or modules too small / marginal gain $<\varepsilon$.



Phase 2 (a): Inter-Module Graph by MH

Data: module signals $S^{(\ell)}$ (PC1 or mean).

Posterior for a candidate inter-graph *A*:

$$\log p(A \mid S) = \underbrace{\log p(S \mid A)}_{\text{BGe/BIC}} + \underbrace{\log p_{\text{SBM}}(A)}_{\theta_{\text{in}},\theta_{\text{out}}} + \underbrace{\sum_{i} \log p_{\text{LN}}(d_{i})}_{\mu,\sigma}.$$

MH update: toggle $u \rightarrow v$ if acyclic and indegree $\leq d_{\text{max}}$; accept by $\min\{1, \exp(\Delta \log p)\}$.

Phase 2 (b): Within-Module Graphs by HC

For each module $C_m^{(\ell)}$ (small $k = |C_m^{(\ell)}|$):

Enumerate legal single-edge add/remove/reverse moves (acyclic, indegree cap).

Score each by $\Delta S = \Delta(\mathrm{BGe/BIC}) + \Delta\log p_{\mathsf{SBM}} + \Delta\log p_{\mathsf{LN}}.$

Take best positive move; stop after patience iterations without improvement.

Phase 3: Variational Bayes for CPDs

With graphs fixed, fit linear-Gaussian CPDs via mean-field VB.

$$q(\beta, \sigma^2) = \prod_i \mathcal{N}(\beta_i \mid m_i, \Sigma_i) \operatorname{InvGamma}(\sigma_i^2 \mid a_i, b_i),$$
 $\mathsf{ELBO} = \mathbb{E}_q[\log p(X, \beta, \sigma^2 \mid G)] - \mathbb{E}_q[\log q(\beta, \sigma^2)].$

Outputs:

Posterior means/covariances for coefficients; $\mathbb{E}[\sigma_i^2]$ per node.

Edge posteriors: thin snapshots over outer iterations to estimate inclusion probs.

Acyclicity & Constraints

No self-loops; reject proposals that create cycles (reachability check).

Global indegree cap d_{max} for identifiability and speed.

Cross-layer consistency: within-module edges only among members; inter-edges only among modules.

Search-Space Reduction (Key Theorem)

Let $n = \sum_{k=1}^{K} |C_k|$, $m = \max_k |C_k|$. Then the MT-BN structure space factorizes:

$$|\mathcal{G}_{\mathsf{MT}}(K,m)| \leq |\mathcal{G}_K| \cdot |\mathcal{G}_m|^K$$

and

$$\frac{|\mathcal{G}_{\mathsf{MT}}(\mathcal{K}, m)|}{|\mathcal{G}_{n}|} \; \leq \; \exp\Bigl\{ \, - \, \tfrac{1}{2} \bigl[\textit{n}(\textit{n}-1) - \textit{K}(\mathcal{K}-1) - \textit{Km}(\textit{m}-1) \bigr] \log 2 \Bigr\},$$

showing an exponential shrinkage vs. flat BN when $m \ll n$ and $K \ll n$.

Putting It Together: The MT-BN Orchestrator

```
Outer iterations t = 1, ..., T:
```

Infer/update hierarchy up to L_{max} (stop if $K_{\ell} \leq 1$ or modules too small).

For each layer: MH on inter-graph; HC within modules.

Score log-joint; save thinned snapshots post burn-in.

End: VB parameter refinement + edge posterior aggregation.

Configuration Knobs (from our implementation)

Depth prior: geometric/Poisson; $\alpha_{per-layer}$; L_max; min_module_size.

Likelihood: BGe (ridge hyperparams) or BIC; max_indegree.

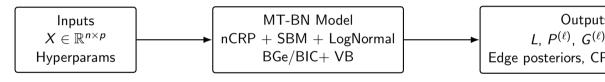
Priors: $(\theta_{in}, \theta_{out})$, (μ, σ) .

Signals: pc1 or mean; schedules: MH steps, HC patience.

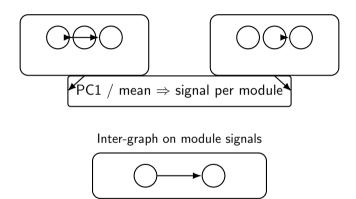
Complexity & Parallelism (Intuition)

Never search over all p at once: sum of small subproblems across layers/modules. Inter-graphs: $O(M_{\ell})$ proposals per sweep; within-modules: roughly $O(k^2)$ per HC iter. Module-wise independence \Rightarrow parallel within layers; caching local scores further speeds up.

Visual: Inputs \rightarrow MT-BN \rightarrow Outputs



Visual: Module Signals and Inter-Graph



What You Take Away

MT-BN discovers hierarchy and learns structure at every layer.

Topological priors (SBM, log-normal degree) prune the search space.

Hybrid inference (nCRP \rightarrow MH \rightarrow HC \rightarrow VB) scales and yields edge posteriors.

Outputs are **interpretable**: modules, cross-module flow, local hubs, and quantified confidence.

Questions?