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Background and Motivation

» Shapley values: fair credit in cooperative games (Shapley 1953).
o Feature set: F'={1,...,p}; coalition payoff v4 = v(A) VA C F.
o Shapley value 3; quantifies fair share/importance of feature j
e V4: link between observed payoffs and underlying feature
contributions: va = Va({8;};ca) + noise
» Widely used for feature attribution in explainable AT (XAT)
o Regression: p-values. Complex ‘black-box’ trees/neural nets?
» Challenge a): Additivity of payoffs: Va({8;}jeca) = jeal;
o Diverse payoff methods (R?, TreeSHAP, Sobol indices, etc.) exist;
Shapley is applied blindly without checking its axioms!
o Fryer (21)’s “taxicab” payoff V4 = max jcaf3; (winner-takes-all)

> Challenge b): Dense, non-sparse attributions: 8 € RP, p large
o Most features negligible. Dense Shapley + thresholding = greedy!

» Need unified “nonlinear + sparse” attribution.



Recasting Shapley: A Statistical Framework

> A weighted least squares formulation recovers the Shapley values:

I,IBHCHZA:UJSH( Z/A—Zﬁ]—c s.t. C—V@,C—FZ,B]—VF,

jeA =
W (A) = —P=L
where wg; (A) (ZTAG—TAD" See Lundberg & Lee (17).
» Under wgy () = 400, wen (F) = +00, v4 < v4 — vy, we obtain

vam N oh)on = Y5705 o (| )1 = 14D (x o)

jeA W (A)

» Many payoff functions violate the Gaussian assumption due to
range constraints, skewness, heavy tails, & heterogeneity.

> We propose to consider T'(va) ~ N (32,24 T(55), o).



Univariate T-Mappings for Nonlinear Payoffs

» Our proposal restores additivity in a transformed domain using a
univariate, invertible function T'(-):
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» Simple T-mapping captures rich, multivariate payoff structures.
» Special case: T(x) = |z|%, then V4 = ||Bal4-

o d=1,2: {1/ly-ball. d — oo: V4 = maxjea |B;| (winner-takes-all)
> Exponential/log/odds transforms for other nonlinearities.

» Nicely, our method will learn T'(+) in a purely data-driven
manner, and bypass the need to specify its analytical form.



Sparse Isotonic Shapley Regression (SISR)

min we (AT (va) ZT Bi)}
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» Monotonicity: M constrains T to be increasing — preserve
ranking of feature importance: §; > 5; = T'(8;) > T(5;).
» Normalization: The scale constraint prevents degeneracy and
anchors the model scale (& yields a closed form update for J3!)

» Sparsity: We enforce explicit support control via ¢y, selecting
the most relevant features during optimization, not after.
o A |T(B;)|: over-shrinks and requires a fine \ grid search. s: an
upper bound, simple to specify & tune (RIC, Foster & George 94)



Equivalent Reformulations

» Challenges: (i) functional T', (ii) double nonconvex constraints
» Let v; = T(B;). As T'(0) = 0, the optimization problem becomes
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> As T(-) is only evaluated at observed v4(A C 2F), we discretize
the problem by introducing ¢ = [T(VA)] eR*, v =[v4),
§=[>;ea ] = Zy € R¥ with Z € R**7 the ‘incidence matrix’

» Introducing E(v) = {(¢,7) : v; < v;} to encode the pairwise
ordering and W = diag{wsu(A)} acor, it suffices to solve
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Two-Block Alternating Optimization

» For ¢, the problem reduces to a weighted isotonic regression (de
Leeuw et al 09). We solved it by an efficient stack-based weighted
variant of Pool-Adjacent-Violators Algorithm (PAVA).

» For 7, we use a “surrogate function” trick to deal with §, leading
to an iterative normalized hard-thresholding algorithm:
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where H(-; s) keeps the s largest entries of y, sets others to zero.



A Global Convergence Theorem

» We rigorously proved the algorithm has global convergence

v

Let p > ||ZTW Z||5, with || - || the matrix spectral norm.

» For any initial point 7(©) satisfying ||7(?]|o < s and ||[y@]|, = 1,
the sequence {W(k)} generated by the SISR algorithm produces
non-increasing (and thus convergent) function values:

1(y*RD) < 1(y*®))  for all k > 0.

» Furthermore, if p > ||ZT W Z||2, [|[y*+1)) — 4®) || — 0 as k — oc.



SISR Algorithm Outline

Input: v = [va]acer € R?" (baseline-adjusted, such that vy = 0),
sparsity level s, initial vector t(9) € R?" and the design matrix
Z € R?"*P and diagonal weight matrix W as constructed before.
1: Initialize t < ), v« 0
2 p |Z2TWZ]
3: repeat
4: while not converged do
5: E— H(y— %ZTW(ZW—t);S)
6 Y-
7 end while
8 0« Zv
9 Update t by fitting a weighted isotonic regression (W, Z) to §
10: until convergence
11: return ¢,y



Data Insights

Domain adaptation: Strong evidence that SISR accurately
recovers the underlying transformation 7.

Sparsity recovery: Robust SISR support recovery even in
challenging settings; lower sparsity yields faster computation.

Feature dependence and irrelevance: Correlation drives
curvature; sparsity yields piecewise behavior with distinct-slope
segments. (Even without correlation, irrelevant features can
distort raw worths, undermining additivity.)

Prostate data: Plain Shapley can assign spurious importance
with correlated or irrelevant predictors; SISR’s importance aligns
with corroborating diagnostics.

Boston housing: Standard Shapley ranks/signs shift with
payoff scaling; SISR remains stable, preserving interpretation.
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Domain Adaptation

» SISR accurately recovers the true T™ for various nonlinear
forms (top: 5th root, sqrt, normal, tan, exp, log; bottom: max)
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Sparsity Recovery

>
>

Affn: (9,v*) x 100, affinity to measure estimation accuracy
Supp: [supp(¥) Nsupp(y*)|/s* x 100%, support recovery rate for
correct feature identification. (Tuning: RIC)

The support recovery rate remains surprisingly strong even under
challenging cases—SISR consistently identifies the correct features

noise scale 5e-3 le-2 5e-2 le-1 2e-1

Affn Supp Affn Supp Affn Supp Affn Supp Affn Supp

99.6 100% 99.5 100% 97.9 100% 88.7 98.7% 66.2 80.7%
99.9 100% 97.8 100% 79.9 100% 70.9 98.0% 57.6 73.3%
87.9 100% 80.3 100% 68.9 100% 63.2 96.0% 54.3 65.3%
74.0 100% 70.5 100% 65.5 100% 60.6 90.7% 52.1 62.0%
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Lower sparsity levels generally lead to faster computation

Computational Cost vs. Sparsity Level

Computatonal Tme (seconds)

B 70 i
Number of Selected Features ( s)
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R?-Payoffs
» Standard 12?-constructed payoffs fail to satisfy Shapley!

e Both correlated and irrelevant features induce strong nonlinearity
e Correlation drives curvature; sparsity introduces breaks.

> SISR adaptively learns the transformation needed to calibrate
payoffs and restore additivity. (6 : z; ~ N(0,%),%;; = 01"=91)
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Figure: Estimated T(l/) across varying sparsity levels (s = 8,2, top to
down) and feature correlation strengths (0 = 0.9,0.5,0, left to right).



Case Study: Prostate Cancer

> Response: log(cancer volume) (1cavol). Predictors: age (age),
seminal vesicle invasion (svi, binary), log(capsular penetration)
(1cp), log(prostate specific antigen) (1psa), and so on.
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Figure: Raw Shapley (left) and SISR-calibrated values (s = 8,6,4); RIC
identifies s = 6 as optimal.

> Both methods agree that 1cp and lpsa are dominant
» svi: Naive Shapley ranks it 3rd (> 10%), while SISR-calibrated
4 gives it nearly zero.

o Independent checks: Stepwise AIC/BIC both exclude svi; very
last variable selected by LASSO; p-value = 0.6 in the full model.
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Case Study: Boston Housing

Shapley Values o §ISR calibrated estimates Estimated T
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Figure: Top: MSE payoff, bottom: Exponential payoff
» Trained XGB0OOST to predict median home value

» Standard Shapley values are highly sensitive to the payoff scale!

e The importance of DIS increases from minor to leading
e CHAS and other variables even receive negative attributions

» In contrast to sign and rank changes, SISR remains robust,
learning a nonlinear transformation that yields stable attributions
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Limitations

> Scalability: Coalition-level objects live in dimension 2P (t € R*”
and Z € R?"*P), and the isotonic step runs over all subsets.
e In practice, handling p > 25 is difficult without
randomized/approximate strategies.
» Outlier sensitivity: Extreme coalition payoffs (v4) can
contaminate the estimation of T'
o They can bend T toward extremes and biasing attributions
» No uncertainty quantification: We only provide point
estimates for T' and ~y with no standard errors or Cls.
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Future Directions

>

>

Randomized PAV: Develop an approximate,
streaming/distributed isotonic solver for T'(-).

Robust SISR.: Replace the quadratic loss with robust
alternatives (e.g., L1, Huber loss) to learn a transformation that
is more resilient to data imperfections.

Payoff Pooling: Integrate diverse payoff specifications to
enhance stability of feature rankings, and construct an
aggregated surrogate model
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Conclusions and Contributions

We introduced SISR, the first unified framework to address
nonlinearity and sparsity in Shapley-based explanations.

First to show that irrelevant features and inter-feature
dependencies can induce nonlinearity in payoff structures.

It learns a data-driven payoff transformation nonparametrically
(via PAVA) without a predefined basis expansion or other
parametric representation, and enforces sparsity inherently.

Simple and efficient closed-form updates with theoretical
convergence guarantees.

Extensive experiments show SISR stabilizes attributions and
correctly identifies relevant features, avoiding rank/sign
distortions common in standard Shapley values, offering an
interpretable framework for complex XAI attribution tasks.
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