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Background and Motivation

▶ Shapley values: fair credit in cooperative games (Shapley 1953).

Feature set: F = {1, . . . , p}; coalition payoff νA = ν(A) ∀A ⊆ F .
Shapley value βj quantifies fair share/importance of feature j
VA: link between observed payoffs and underlying feature
contributions: νA = VA({βj}j∈A) + noise

▶ Widely used for feature attribution in explainable AI (XAI)

Regression: p-values. Complex ‘black-box’ trees/neural nets?

▶ Challenge a): Additivity of payoffs: VA({βj}j∈A) =
∑

j∈Aβj

Diverse payoff methods (R2, TreeSHAP, Sobol indices, etc.) exist;
Shapley is applied blindly without checking its axioms!
Fryer (21)’s “taxicab” payoff VA = max j∈Aβj (winner-takes-all)

▶ Challenge b): Dense, non-sparse attributions: β ∈ Rp, p large

Most features negligible. Dense Shapley + thresholding = greedy!

▶ Need unified “nonlinear + sparse” attribution.
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Recasting Shapley: A Statistical Framework

▶ A weighted least squares formulation recovers the Shapley values:

min
β,c

∑
A

wSH(A)(νA −
∑
j∈A

βj − c)2 s.t. c = ν∅, c+

p∑
j=1

βj = νF ,

where wSH(A) = p−1

( p
|A|)|A|(p−|A|)

. See Lundberg & Lee (17).

▶ Under wSH(∅) = +∞, wSH(F ) = +∞, νA ← νA − ν∅, we obtain

νA ∼ N (µA, σ
2
A), µA =

∑
j∈A

β∗
j , σ

2
A ∝

(
p

|A|

)
|A|(p− |A|) (∝ 1

wSH(A)
)

▶ Many payoff functions violate the Gaussian assumption due to
range constraints, skewness, heavy tails, & heterogeneity.

▶ We propose to consider T (νA) ∼ N (
∑

j∈A T (β∗
j ), σ

2
A).
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Univariate T -Mappings for Nonlinear Payoffs

▶ Our proposal restores additivity in a transformed domain using a
univariate, invertible function T (·):

VA({βj}j∈A) = T−1(
∑
j∈A

T (βj)).

▶ Simple T -mapping captures rich, multivariate payoff structures.

▶ Special case: T (x) = |x|d, then VA = ∥βA∥d.
d = 1, 2: ℓ1/ℓ2-ball. d → ∞: VA = maxj∈A |βj | (winner-takes-all)

▶ Exponential/log/odds transforms for other nonlinearities.

▶ Nicely, our method will learn T (·) in a purely data-driven
manner, and bypass the need to specify its analytical form.
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Sparse Isotonic Shapley Regression (SISR)

min
β,T (·)

∑
A⊆2F

wSH(A){T (νA)−
∑
j∈A

T (βj)}2

s.t. ∥β∥0 ≤ s, T ∈M,

p∑
j=1

(T (βj))
2 = 1

▶ Monotonicity: M constrains T to be increasing → preserve
ranking of feature importance: βi ≥ βj ⇒ T (βi) ≥ T (βj).

▶ Normalization: The scale constraint prevents degeneracy and
anchors the model scale (& yields a closed form update for β!)

▶ Sparsity: We enforce explicit support control via ℓ0, selecting
the most relevant features during optimization, not after.

λ
∑

|T (βj)|: over-shrinks and requires a fine λ grid search. s: an
upper bound, simple to specify & tune (RIC, Foster & George 94)
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Equivalent Reformulations

▶ Challenges: (i) functional T , (ii) double nonconvex constraints

▶ Let γj = T (βj). As T (0) = 0, the optimization problem becomes

min
γ,T

∑
A⊆2F

wSH(A)
(
T (νA)−

∑
j∈A

γj
)2

s.t. ∥γ∥0 ≤ s, ∥γ∥2 = 1, T ∈M

▶ As T (·) is only evaluated at observed νA(A ⊆ 2F ), we discretize
the problem by introducing t =

[
T (νA)

]
∈ R2p , ν = [νA],

δ = [
∑

j∈A γj ] = Zγ ∈ R2p with Z ∈ R2p×p the ‘incidence matrix’

▶ Introducing E(ν) = {(i, j) : νi ≤ νj} to encode the pairwise
ordering and W = diag{wSH(A)}A⊆2F , it suffices to solve

min
γ,t

1

2
(t− δ)⊤W (t− δ) s.t. δ = Zγ,

∥γ∥0 ≤ s, ∥γ∥2 = 1, ti ≤ tj ∀(i, j) ∈ E(ν)
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Two-Block Alternating Optimization

▶ For t⃗, the problem reduces to a weighted isotonic regression (de
Leeuw et al 09). We solved it by an efficient stack-based weighted
variant of Pool-Adjacent-Violators Algorithm (PAVA).

▶ For γ, we use a “surrogate function” trick to deal with δ, leading
to an iterative normalized hard-thresholding algorithm:

γnew =
H(y; s)
∥H(y; s)∥2

, where y = γold − 1

ρ
Z⊤W (Zγold − t).

where H(·; s) keeps the s largest entries of y, sets others to zero.
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A Global Convergence Theorem

▶ We rigorously proved the algorithm has global convergence

▶ Let ρ ≥ ∥Z⊤WZ∥2, with ∥ · ∥2 the matrix spectral norm.

▶ For any initial point γ(0) satisfying ∥γ(0)∥0 ≤ s and ∥γ(0)∥2 = 1,
the sequence {γ(k)} generated by the SISR algorithm produces
non-increasing (and thus convergent) function values:

l(γ(k+1)) ≤ l(γ(k)) for all k ≥ 0.

▶ Furthermore, if ρ > ∥Z⊤WZ∥2, ∥γ(k+1))− γ(k)∥2 → 0 as k →∞.
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SISR Algorithm Outline

Input: ν = [νA]A⊆2F ∈ R2p (baseline-adjusted, such that ν∅ = 0),

sparsity level s, initial vector t(0) ∈ R2p , and the design matrix
Z ∈ R2p×p and diagonal weight matrix W as constructed before.

1: Initialize t← t(0), γ ← 0
2: ρ← ∥Z⊤WZ∥2
3: repeat
4: while not converged do
5: ξ ← H(γ − 1

ρZ
⊤W (Zγ − t); s)

6: γ ← ξ
∥ξ∥2

7: end while
8: δ ← Zγ
9: Update t by fitting a weighted isotonic regression (W,Z) to δ

10: until convergence
11: return t, γ
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Data Insights

▶ Domain adaptation: Strong evidence that SISR accurately
recovers the underlying transformation T̂ .

▶ Sparsity recovery: Robust SISR support recovery even in
challenging settings; lower sparsity yields faster computation.

▶ Feature dependence and irrelevance: Correlation drives
curvature; sparsity yields piecewise behavior with distinct-slope
segments. (Even without correlation, irrelevant features can
distort raw worths, undermining additivity.)

▶ Prostate data: Plain Shapley can assign spurious importance
with correlated or irrelevant predictors; SISR’s importance aligns
with corroborating diagnostics.

▶ Boston housing: Standard Shapley ranks/signs shift with
payoff scaling; SISR remains stable, preserving interpretation.
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Domain Adaptation

▶ SISR accurately recovers the true T ∗ for various nonlinear
forms (top: 5th root, sqrt, normal, tan, exp, log; bottom: max)
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Sparsity Recovery
▶ Affn: ⟨γ̂, γ∗⟩ × 100, affinity to measure estimation accuracy
▶ Supp: |supp(γ̂) ∩ supp(γ∗)|/s∗ × 100%, support recovery rate for

correct feature identification. (Tuning: RIC)
▶ The support recovery rate remains surprisingly strong even under

challenging cases—SISR consistently identifies the correct features
noise scale 5e-3 1e-2 5e-2 1e-1 2e-1

Affn Supp Affn Supp Affn Supp Affn Supp Affn Supp

p = 10 99.6 100% 99.5 100% 97.9 100% 88.7 98.7% 66.2 80.7%
p = 15 99.9 100% 97.8 100% 79.9 100% 70.9 98.0% 57.6 73.3%
p = 20 87.9 100% 80.3 100% 68.9 100% 63.2 96.0% 54.3 65.3%
p = 25 74.0 100% 70.5 100% 65.5 100% 60.6 90.7% 52.1 62.0%

▶ Lower sparsity levels generally lead to faster computation
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R2-Payoffs
▶ Standard R2-constructed payoffs fail to satisfy Shapley!

Both correlated and irrelevant features induce strong nonlinearity
Correlation drives curvature; sparsity introduces breaks.

▶ SISR adaptively learns the transformation needed to calibrate
payoffs and restore additivity. (θ : xi ∼ N(0,Σ),Σij = θ|i−j|)
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Figure: Estimated T̂ (ν) across varying sparsity levels (s = 8, 2, top to
down) and feature correlation strengths (θ = 0.9, 0.5, 0, left to right).
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Case Study: Prostate Cancer

▶ Response: log(cancer volume) (lcavol). Predictors: age (age),
seminal vesicle invasion (svi, binary), log(capsular penetration)
(lcp), log(prostate specific antigen) (lpsa), and so on.
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Figure: Raw Shapley (left) and SISR-calibrated values (s = 8, 6, 4); RIC
identifies s = 6 as optimal.

▶ Both methods agree that lcp and lpsa are dominant

▶ svi: Naive Shapley ranks it 3rd (> 10%), while SISR-calibrated
γ̂ gives it nearly zero.

Independent checks: Stepwise AIC/BIC both exclude svi; very
last variable selected by LASSO; p-value = 0.6 in the full model.
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Case Study: Boston Housing

SISR	calibrated	estimates	(sum-normalized)
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Figure: Top: MSE payoff, bottom: Exponential payoff

▶ Trained XGBoost to predict median home value

▶ Standard Shapley values are highly sensitive to the payoff scale!

The importance of DIS increases from minor to leading
CHAS and other variables even receive negative attributions

▶ In contrast to sign and rank changes, SISR remains robust,
learning a nonlinear transformation that yields stable attributions

15



Limitations

▶ Scalability: Coalition-level objects live in dimension 2p (t ∈ R2p

and Z ∈ R2p×p), and the isotonic step runs over all subsets.

In practice, handling p>25 is difficult without
randomized/approximate strategies.

▶ Outlier sensitivity: Extreme coalition payoffs (νA) can
contaminate the estimation of T

They can bend T̂ toward extremes and biasing attributions

▶ No uncertainty quantification: We only provide point
estimates for T and γ with no standard errors or CIs.
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Future Directions

▶ Randomized PAV: Develop an approximate,
streaming/distributed isotonic solver for T (·).

▶ Robust SISR: Replace the quadratic loss with robust
alternatives (e.g., L1, Huber loss) to learn a transformation that
is more resilient to data imperfections.

▶ Payoff Pooling: Integrate diverse payoff specifications to
enhance stability of feature rankings, and construct an
aggregated surrogate model
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Conclusions and Contributions

▶ We introduced SISR, the first unified framework to address
nonlinearity and sparsity in Shapley-based explanations.

▶ First to show that irrelevant features and inter-feature
dependencies can induce nonlinearity in payoff structures.

▶ It learns a data-driven payoff transformation nonparametrically
(via PAVA) without a predefined basis expansion or other
parametric representation, and enforces sparsity inherently.

▶ Simple and efficient closed-form updates with theoretical
convergence guarantees.

▶ Extensive experiments show SISR stabilizes attributions and
correctly identifies relevant features, avoiding rank/sign
distortions common in standard Shapley values, offering an
interpretable framework for complex XAI attribution tasks.
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