Architecture-based Modifications
for Zero-Knowledge Virtual
Machines

Celine Zhang and Eric Archerman

Mentor: Simon Langowski

Verifying computation

Peggy wants to show Victor that she correctly ran a hash function without
revealing her inputs

Claim: output is 4xtusYz

fn sha3_chain(input: [u8; 321, num_iters: u32) -> [u8; 32] {
let mut hash = input;
for _ in @..num_iters {
let mut hasher = Keccak256::new();

hasher.update(input);
hash = Into::<[u8; 32]>::into(xres);

let res = &hasher.finalize();
Peggy Victor

hash
}

zkVMs enable this privacy-preserving verification for any computer program!

Zero-Knowledge Virtual Machines (zkVMs)

zkVVMs are cryptographic proof systems for the correct execution of programs on

virtual machines.

instructions Processor

add rd, rsl, rs2
load rd, rsi >

xor rd, rsl, rs2

store rs2, rsl

Memory

Virtual machines execute
instructions on a virtual processor
with virtual memory

FX) = fo+ fix+ fox2 4 -+ fyx?
comy= gf(T)
= gfo+f1T+f2T2+"'+ded

= @f- @ (g (7))

Cryptography gives two important
properties:
- succinctness (small, fast proofs)
- zero-knowledge (input hiding)

Architecture of a virtual machine

[Execution }

A

inputs output

\ A A

program counter 4

Bytecode Action Unit }

instruction L

A
/ e (D088
A\ A

[Registers %\ 32 memory elements

A

store

load
| 111} L][]

v EI=I Illll E] i
" n L]

RAM
large memory

Jolt zkVM proof machinery

Instructions

program counter

[Execution

A

inputs output

A A

Action Unit

instruction

(&

read-only memory

constraint system

A

read rs1, rs2 write rd
Y

[Registers

A

store
load

Y

RAM

read/write memory

a zkVM uses different
schemes to prove each
part of the VM

zkVVMs today

H - E] 0x077f2811404... From 0x4838B106...B0BAD5f97 B REIER
OC C a I n S Ca I n g 23 secs ago To 0xD3d959d9...a372a37¢c2 B
— B Oxa7bb18eb76... From 0x3463aeD7...dA999f4cA
23 secs ago To 0xA0b86991...E3606eB48
E] Oxb1e4ca22ccc... From 0x2f45Ae83...aa77a71d9 -
23 secs ago To 0xbD216513...0FF64ee9e
E] 0x038c2bae50... From 0x0e9E3919...519e419ca yT—
23 secs ago To 0xF9b14803...171DAC97C -
@ 0xf703421bc40... From 0x4093aA64...743257e89
23 secs ago To 0xA0b86991...E3606eB48
E] 0x15d19be551... From 0xE8876Ab5...d8Aca4FfF =
23 secs ago To 0x61e24Ce4...5f8032955

lots of transactions,
smart contracts, etc.

—— succinct, zk proof!

Ethereum from 19 to 10k

transactions per second
Why not more applications? prover overhead.

~5 orders of magnitude vs unverified computation

Problem: zkVM proof generation overhead

Question: Can insights from computer
architecture help accelerate zkVMs?

Optimizations in hardware

Optimizations take advantage of
common programming patterns:

instructions Memory accesses tend to
[Processor Core] be sequential

@I... .] J Outputs of instructions tend

add(a, b) » ¢ / to be inputs to closely

mul(a, c) > d

add(c, d) > e following instructions

store(e) £;7

batched memory accesses fast reqisters between instructions

slow

How these translate to zkVMs

[Execution } [Execution }

inputs output inputs output
4)
Acti .
[ction Unit } Action Unit
read rs1, rs2 | |write rd
[S 1 [Registers }
egisters
\C _/
load store batchload batchstore
RAM RAM

read-only memory

constraint system

read/write memory

we need:

adapt registers to the
constraint system

adapt constraint system
and read/write memory to
handle batching

Register constraints

Before:

0 1 2 29 30 31

0 7 18 OO0 30 2 24

After:

0 48 18 OO0 30 2 24

@ RS1 RS2

0=0{" 7#48 18=18[% 30=30[2=2[% 24=24[%
RD[%

Register constraints

Claim:
RS1_Val = RegistersInput|RS1Bits]

O RegistersInput[0]

—0
O RegistersInput[1]
o—
— 0
O O RegistersInput|2]
RS1Bits[2] =0 —O
v oO— O RegistersInput[3]
RS1Bits = [0, 0, 1] RS1Bits[0] =0
A RegistersInput[4] = RS1_Val
RS1Bits|2] =1 51Bi =
its[2] RS1Bits[1] = 0 X O RegistersInput[s]

—O/O_ RS1Bits[0] = 1

X 5

RegistersInput[6
RS1Bits[1] =1 O o putio]

—0

O RegistersInput|[7]

Register constraints

Before:

0 2 29 30 31

0 18 OO 30 2 24 sum=s00
After:

0 18 OO 30 2 24 sm=

541 - 500 = 48 - 7 [2

Memory batching

1 byte
Programs usually access bytes consecutively @
0 1 2) 10 11
0...3 4... 1

4 bytes

Memory batching

Instruction: load addresses 4 and 5

Old:

New:

LOAD (address
4)

mem|[4]

LOAD (address
5)

LOAD (address
4)

mem/[4..7]

mem|[4]

| <

LOAD (address
5)

mem/[D]

| <

1 memory access

Memory batching constraints

Instruction: store at indices 4 and 5

mem[4] mem[5] mem[6] mem[7]

6 7 Correct store value = 2053

6 14

pack(8, 95) = 2033 {4

Memory batching constraints

Instruction: store at indices 4 and 5

mem[4] mem[5] mem[6] mem[7]

10 2 6 I
10 5 6 8
10=10(% 2#5 6=6[" 7#8

modify?74 modify?)¢

Memory batching constraints

Reported: Actual:

mem[4] mem[5] mem[6] mem]7] mem[4] mem[5] mem[6] mem]7]

10 2 6 7 10 2 6 7
10 2 10 8 10 2 10 8
610 6#10
modify?'4 modify?)¢

Instruction: store at indices 4 and 5

Evaluation

Constraints

added
Moving 207
registers
Moving 207 + 85
registers +
memory

batching

Memory
proof
speedup %

20-30

25-35

Memory
proof size
decrease %

10

10

Constraint
proof size
increase %

Constraint
proof
slowdown %

350-400 90

350-400 100-125

Analysis: proof size

Fibonacci - proof sizes subparts (regs&batch)

0.200 A
0.175 1
0.150 A
= 0.125
< biivo total
N
v 0.075 -
0.050 A

0.025 -

0.000

0 5000 10000 15000 20000 25000
Input (n)

Proof size doesn’t change much: the memory proof size is much bigger, so a
10% decrease is as large as a 90% increase in constraint proof size

Analysis: proof time

Read-write
memory proof

Fibonacci — prove subphases (vanilla)

5 W bytecode [openings [rlcs_polys . rwm_wit

e commit mmm preamble 0 rlcs_setup i spartan
. il 0 rles_aux e orwm mm wit_join
47w ilwit

20000 x 25000

Constraint system proof

Tradeoff wasn’t worth it for Jolt because the constraint proof time increases more
than the memory proof decreases

Next steps

- More efficient register constraints: decreases added constraint
overhead
- Smaller number of registers in the constraint system (keep some
in memory checking)
- Other zkVMs might have different tradeoffs

Next steps g Y
i
Remove load/store instructions by Option 1: Achen

|
I
operating entirely over RAM instead of |
I
I
|

_ _ RAM
partially over registers Registers
- This could be done in a R ;
preprocessing step: prover must
show that they have correctly Ksiaaie
done the preprocessing grasp, GO ;
r-——-—-=-- T I
| [|
[Action [|
| Units | |
| | | |
: bl ram |
: | |
| |
| |

Acknowledgments

Thank you Simon (very much) and PRIMES
And Prof. Srini Devadas and Dr. Slava Gerovitch

And parents

Questions?

