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Verifying computation

Peggy wants to show Victor that she correctly ran a hash function without
revealing her inputs

Claim: output is 4xtusYz

fn sha3_chain(input: [u8; 321, num_iters: u32) -> [u8; 32] {
let mut hash = input;
for _ in @..num_iters {
let mut hasher = Keccak256::new();

hasher.update(input);
hash = Into::<[u8; 32]>::into(xres);

let res = &hasher.finalize();
Peggy Victor

hash
}

zkVMs enable this privacy-preserving verification for any computer program!



Zero-Knowledge Virtual Machines (zkVMs)

zkVVMs are cryptographic proof systems for the correct execution of programs on

virtual machines.

instructions Processor

add rd, rsl, rs2
load rd, rsi >

xor rd, rsl, rs2

store rs2, rsl

Memory

Virtual machines execute
instructions on a virtual processor
with virtual memory

FX) = fo+ fix+ fox2 4 -+ fyx?
comy= gf(T)
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Cryptography gives two important
properties:
- succinctness (small, fast proofs)
- zero-knowledge (input hiding)



Architecture of a virtual machine
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Jolt zkVM proof machinery
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a zkVM uses different
schemes to prove each
part of the VM



zkVVMs today
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lots of transactions,
smart contracts, etc.

—— succinct, zk proof!

Ethereum from 19 to 10k

transactions per second
Why not more applications? prover overhead.

~5 orders of magnitude vs unverified computation



Problem: zkVM proof generation overhead

Question: Can insights from computer
architecture help accelerate zkVMs?



Optimizations in hardware

Optimizations take advantage of
common programming patterns:

instructions Memory accesses tend to
[ Processor Core ] be sequential

@I... .] J Outputs of instructions tend

add(a, b) » ¢ / to be inputs to closely

mul(a, c) > d

add(c, d) > e following instructions

store(e) £;7

batched memory accesses fast reqisters between instructions

slow




How these translate to zkVMs
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we need:

adapt registers to the
constraint system

adapt constraint system
and read/write memory to
handle batching



Register constraints

Before:

0 1 2 29 30 31

0 7 18 OO0 30 2 24

After:

0 48 18 OO0 30 2 24
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Register constraints

Claim:
RS1_Val = RegistersInput|RS1Bits]
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Register constraints

Before:

0 2 29 30 31

0 18 OO 30 2 24  sum=s00
After:

0 18 OO 30 2 24 sm=

541 - 500 = 48 - 7 [2



Memory batching

1 byte
Programs usually access bytes consecutively @
0 1 2 ) 10 11
0...3 4... 1

4 bytes




Memory batching

Instruction: load addresses 4 and 5

Old:

New:

LOAD (address
4)

mem|[4]

LOAD (address
5)

LOAD (address
4)

mem/[4..7]

mem|[ 4]

| <

LOAD (address
5)

mem/[ D]

| <

1 memory access



Memory batching constraints

Instruction: store at indices 4 and 5

mem[4] mem[5] mem[6] mem[7]

6 7 Correct store value = 2053

6 14

pack(8, 95) = 2033 {4




Memory batching constraints

Instruction: store at indices 4 and 5

mem[4] mem[5] mem[6] mem[7]

10 2 6 I
10 5 6 8
10=10(% 2#5 6=6[" 7#8

modify?74 modify? )¢



Memory batching constraints

Reported: Actual:

mem[4] mem[5] mem[6] mem]7] mem[4] mem[5] mem[6] mem]7]

10 2 6 7 10 2 6 7
10 2 10 8 10 2 10 8
610 6#10
modify?'4 modify? )¢

Instruction: store at indices 4 and 5



Evaluation

Constraints
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Analysis: proof size

Fibonacci - proof sizes subparts (regs&batch)
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Proof size doesn’t change much: the memory proof size is much bigger, so a
10% decrease is as large as a 90% increase in constraint proof size



Analysis: proof time

Read-write
memory proof

Fibonacci — prove subphases (vanilla)
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Constraint system proof

Tradeoff wasn’t worth it for Jolt because the constraint proof time increases more
than the memory proof decreases



Next steps

- More efficient register constraints: decreases added constraint
overhead
- Smaller number of registers in the constraint system (keep some
in memory checking)
- Other zkVMs might have different tradeoffs



Next steps g Y
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