
Architecture-based Modifications
for Zero-Knowledge Virtual

Machines
Celine Zhang and Eric Archerman

Mentor: Simon Langowski

Verifying computation

Peggy wants to show Victor that she correctly ran a hash function without
revealing her inputs

Peggy Victor

Claim: output is 4xtusYz

zkVMs enable this privacy-preserving verification for any computer program!

Zero-Knowledge Virtual Machines (zkVMs)

zkVMs are cryptographic proof systems for the correct execution of programs on
virtual machines.

Processor

Memory
Cryptography gives two important
properties:

- succinctness (small, fast proofs)
- zero-knowledge (input hiding)

Virtual machines execute
instructions on a virtual processor
with virtual memory

instructions

add rd, rs1, rs2
load rd, rs1
xor rd, rs1, rs2
store rs2, rs1

Architecture of a virtual machine

Bytecode

RAM

Registers

Action Unit

Execution

program counter

instruction

inputs output

load
store

read rs1, rs2 write rd

large memory

32 memory elements

 …

Bytecode

RAM

Registers

Action Unit

Execution

program counter

instruction

inputs output

load
store

read rs1, rs2 write rd

Jolt zkVM proof machinery

Instructions

RAM

Registers

Action Unit

Execution

program counter

instruction

inputs output

load
store

read rs1, rs2 write rd

read-only memory

read/write memory

constraint system

a zkVM uses different
schemes to prove each
part of the VM

zkVMs today

Why not more applications?

zkVM

lots of transactions,
smart contracts, etc.

π

succinct, zk proof!

blockchain scaling

Ethereum from 19 to 10k
transactions per second

prover overhead.

~5 orders of magnitude vs unverified computation

Problem: zkVM proof generation overhead

Question: Can insights from computer
architecture help accelerate zkVMs?

Optimizations in hardware

 …r e sg

Processor Core

Optimizations take advantage of
common programming patterns:

instructions
…
load(3)
load(4)
load(5)

add(a, b) → c
mul(a, c) → d
add(c, d) → e

store(e)
slow

fast

batched memory accesses fast registers between instructions

Outputs of instructions tend
to be inputs to closely
following instructions

Memory accesses tend to
be sequential

batchload(3-5)

How these translate to zkVMs

RAM

Registers

Action Unit

Execution

inputs output

load
store

read rs1, rs2 write rd

read-only memory

read/write memory

constraint system
Action Unit

Registers

Execution

inputs output

RAM

batchload
batchstore

we need:
- adapt registers to the

constraint system
- adapt constraint system

and read/write memory to
handle batching

Register constraints

RD RS1
30=30✅ 2=2✅ 24=24✅

0 7 18 30 2 24
0 1 2 29 30 31

0 48 18 30 2 24

Before:

After:

RS2
0=0✅ 7≠48

RD✅
18=18✅

Register constraints

Register constraints

0 7 18 30 2 24
0 1 2 29 30 31

0 48 18 30 2 24

Before:

After:

Sum = 500

Sum = 541

541 - 500 = 48 - 7 ✅

Memory batching

Programs usually access bytes consecutively

0 1 2 3 4 5 6 7 8 9 10 11

0…3 4…7 8…11

4 bytes

1 byte

Memory batching

LOAD(address
4)

LOAD(address
5)

mem[4]

mem[5]

mem[5]

2 memory accesses

1 memory access

Instruction: load addresses 4 and 5

Old:

LOAD(address
4)

LOAD(address
5)

mem[4…7]

mem[4]

New:

Memory batching constraints

10 2 6 7

mem[4] mem[5] mem[6] mem[7]

8 5 6 7

Instruction: store at indices 4 and 5

Correct store value = 2053

pack(8, 5) = 2053 ✅

Memory batching constraints

10 2 6 7

mem[4] mem[5] mem[6] mem[7]

10 5 6 8

10=10✅ 2≠5
modify?✅

6=6✅ 7≠8
modify?❌

Instruction: store at indices 4 and 5

Memory batching constraints

10 2 6 7

mem[4] mem[5] mem[6] mem[7]

10 2 10 8

Reported:

10 2 6 7

mem[4] mem[5] mem[6] mem[7]

10 2 10 8

Actual:

6≠10
modify?❌

Instruction: store at indices 4 and 5

6≠10
modify?✅

Evaluation

Constraints
added

Memory
proof
speedup %

Memory
proof size
decrease %

Constraint
proof
slowdown %

Constraint
proof size
increase %

Moving
registers

207 20-30 10 350-400 90

Moving
registers +
memory
batching

207 + 85 25-35 10 350-400 100-125

Analysis: proof size

Proof size doesn’t change much: the memory proof size is much bigger, so a
10% decrease is as large as a 90% increase in constraint proof size

Analysis: proof time
Read-write
memory proof

Constraint system proof
Tradeoff wasn’t worth it for Jolt because the constraint proof time increases more
than the memory proof decreases

Next steps

- More efficient register constraints: decreases added constraint
overhead

- Smaller number of registers in the constraint system (keep some
in memory checking)

- Other zkVMs might have different tradeoffs

Next steps

Option 1:

Option 2:

Remove load/store instructions by
operating entirely over RAM instead of
partially over registers

- This could be done in a
preprocessing step: prover must
show that they have correctly
done the preprocessing

Acknowledgments

Thank you Simon (very much) and PRIMES

And Prof. Srini Devadas and Dr. Slava Gerovitch

And parents

Questions?

