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Verifying computation

Peggy wants to show Victor that she correctly ran a hash function without 
revealing her inputs

Peggy Victor

Claim: output is 4xtusYz

zkVMs enable this privacy-preserving verification for any computer program!



Zero-Knowledge Virtual Machines (zkVMs)

zkVMs are cryptographic proof systems for the correct execution of programs on 
virtual machines.

Processor

Memory
Cryptography gives two important 
properties:

- succinctness (small, fast proofs)
- zero-knowledge (input hiding)

Virtual machines execute 
instructions on a virtual processor 
with virtual memory

instructions

add rd, rs1, rs2
load rd, rs1
xor rd, rs1, rs2
store rs2, rs1



Architecture of a virtual machine
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Jolt zkVM proof machinery
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a zkVM uses different 
schemes to prove each 
part of the VM



zkVMs today

Why not more applications?

zkVM

lots of transactions, 
smart contracts, etc.

π

succinct, zk proof!

blockchain scaling

Ethereum from 19 to 10k 
transactions per second

prover overhead.

~5 orders of magnitude vs unverified computation



Problem: zkVM proof generation overhead

Question: Can insights from computer 
architecture help accelerate zkVMs?



Optimizations in hardware
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Processor Core

Optimizations take advantage of 
common programming patterns:

instructions
…
load(3)
load(4)
load(5)

add(a, b) → c
mul(a, c) → d
add(c, d) → e

store(e)
slow

fast

batched memory accesses fast registers between instructions

Outputs of instructions tend 
to be inputs to closely 
following instructions

Memory accesses tend to 
be sequential

batchload(3-5)



How these translate to zkVMs
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we need:
- adapt registers to the 

constraint system
- adapt constraint system 

and read/write memory to 
handle batching



Register constraints

RD RS1
30=30✅ 2=2✅ 24=24✅

0 7 18 30 2 24
0 1 2 29 30 31

0 48 18 30 2 24

Before:

After:

RS2
0=0✅ 7≠48

RD✅
18=18✅



Register constraints



Register constraints

0 7 18 30 2 24
0 1 2 29 30 31

0 48 18 30 2 24

Before:

After:

Sum = 500

Sum = 541

541 - 500 = 48 - 7 ✅



Memory batching

Programs usually access bytes consecutively

0 1 2 3 4 5 6 7 8 9 10 11

0…3 4…7 8…11

4 bytes

1 byte



Memory batching

LOAD(address 
4)

LOAD(address 
5)

mem[4]

mem[5]

mem[5]

2 memory accesses

1 memory access

Instruction: load addresses 4 and 5

Old:

LOAD(address 
4)

LOAD(address 
5)

mem[4…7]

mem[4]

New:



Memory batching constraints

10 2 6 7

mem[4] mem[5] mem[6] mem[7]

8 5 6 7

Instruction: store at indices 4 and 5

Correct store value = 2053

pack(8, 5) = 2053 ✅



Memory batching constraints

10 2 6 7

mem[4] mem[5] mem[6] mem[7]

10 5 6 8

10=10✅ 2≠5
modify?✅

6=6✅ 7≠8
modify?❌

Instruction: store at indices 4 and 5



Memory batching constraints

10 2 6 7

mem[4] mem[5] mem[6] mem[7]

10 2 10 8

Reported:

10 2 6 7

mem[4] mem[5] mem[6] mem[7]

10 2 10 8

Actual:

6≠10
modify?❌

Instruction: store at indices 4 and 5

6≠10
modify?✅



Evaluation

Constraints 
added

Memory 
proof 
speedup %

Memory 
proof size 
decrease %

Constraint 
proof 
slowdown %

Constraint 
proof size 
increase %

Moving 
registers

207 20-30 10 350-400 90

Moving 
registers + 
memory 
batching

207 + 85 25-35 10 350-400 100-125



Analysis: proof size

Proof size doesn’t change much: the memory proof size is much bigger, so a 
10% decrease is as large as a 90% increase in constraint proof size



Analysis: proof time
Read-write 
memory proof

Constraint system proof
Tradeoff wasn’t worth it for Jolt because the constraint proof time increases more 
than the memory proof decreases



Next steps

- More efficient register constraints: decreases added constraint 
overhead

- Smaller number of registers in the constraint system (keep some 
in memory checking)

- Other zkVMs might have different tradeoffs



Next steps

Option 1:

Option 2:

Remove load/store instructions by 
operating entirely over RAM instead of 
partially over registers

- This could be done in a 
preprocessing step: prover must 
show that they have correctly 
done the preprocessing
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